123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166 |
- #!/usr/bin/env python
- """ camshift_node.py - Version 1.1 2013-12-20
- Modification of the ROS OpenCV Camshift example using cv_bridge and publishing the ROI
- coordinates to the /roi topic.
- """
- import rospy
- import cv2
- from cv2 import cv as cv
- from rbx1_vision.ros2opencv2 import ROS2OpenCV2
- from std_msgs.msg import String
- from sensor_msgs.msg import Image
- import numpy as np
- class CamShiftNode(ROS2OpenCV2):
- def __init__(self, node_name):
- ROS2OpenCV2.__init__(self, node_name)
- self.node_name = node_name
-
- # The minimum saturation of the tracked color in HSV space,
- # as well as the min and max value (the V in HSV) and a
- # threshold on the backprojection probability image.
- self.smin = rospy.get_param("~smin", 85)
- self.vmin = rospy.get_param("~vmin", 50)
- self.vmax = rospy.get_param("~vmax", 254)
- self.threshold = rospy.get_param("~threshold", 50)
-
- # Create a number of windows for displaying the histogram,
- # parameters controls, and backprojection image
- cv.NamedWindow("Histogram", cv.CV_WINDOW_NORMAL)
- cv.MoveWindow("Histogram", 700, 50)
- cv.NamedWindow("Parameters", 0)
- cv.MoveWindow("Parameters", 700, 325)
- cv.NamedWindow("Backproject", 0)
- cv.MoveWindow("Backproject", 700, 600)
-
- # Create the slider controls for saturation, value and threshold
- cv.CreateTrackbar("Saturation", "Parameters", self.smin, 255, self.set_smin)
- cv.CreateTrackbar("Min Value", "Parameters", self.vmin, 255, self.set_vmin)
- cv.CreateTrackbar("Max Value", "Parameters", self.vmax, 255, self.set_vmax)
- cv.CreateTrackbar("Threshold", "Parameters", self.threshold, 255, self.set_threshold)
-
- # Initialize a number of variables
- self.hist = None
- self.track_window = None
- self.show_backproj = False
-
- # These are the callbacks for the slider controls
- def set_smin(self, pos):
- self.smin = pos
-
- def set_vmin(self, pos):
- self.vmin = pos
-
- def set_vmax(self, pos):
- self.vmax = pos
-
- def set_threshold(self, pos):
- self.threshold = pos
- # The main processing function computes the histogram and backprojection
- def process_image(self, cv_image):
- try:
- # First blur the image
- frame = cv2.blur(cv_image, (5, 5))
-
- # Convert from RGB to HSV space
- hsv = cv2.cvtColor(frame, cv2.COLOR_BGR2HSV)
-
- # Create a mask using the current saturation and value parameters
- mask = cv2.inRange(hsv, np.array((0., self.smin, self.vmin)), np.array((180., 255., self.vmax)))
-
- # If the user is making a selection with the mouse,
- # calculate a new histogram to track
- if self.selection is not None:
- x0, y0, w, h = self.selection
- x1 = x0 + w
- y1 = y0 + h
- self.track_window = (x0, y0, x1, y1)
- hsv_roi = hsv[y0:y1, x0:x1]
- mask_roi = mask[y0:y1, x0:x1]
- self.hist = cv2.calcHist( [hsv_roi], [0], mask_roi, [16], [0, 180] )
- cv2.normalize(self.hist, self.hist, 0, 255, cv2.NORM_MINMAX);
- self.hist = self.hist.reshape(-1)
- self.show_hist()
-
- if self.detect_box is not None:
- self.selection = None
-
- # If we have a histogram, track it with CamShift
- if self.hist is not None:
- # Compute the backprojection from the histogram
- backproject = cv2.calcBackProject([hsv], [0], self.hist, [0, 180], 1)
-
- # Mask the backprojection with the mask created earlier
- backproject &= mask
-
- # Threshold the backprojection
- ret, backproject = cv2.threshold(backproject, self.threshold, 255, cv.CV_THRESH_TOZERO)
-
- x, y, w, h = self.track_window
- if self.track_window is None or w <= 0 or h <=0:
- self.track_window = 0, 0, self.frame_width - 1, self.frame_height - 1
-
- # Set the criteria for the CamShift algorithm
- term_crit = ( cv2.TERM_CRITERIA_EPS | cv2.TERM_CRITERIA_COUNT, 10, 1 )
-
- # Run the CamShift algorithm
- self.track_box, self.track_window = cv2.CamShift(backproject, self.track_window, term_crit)
-
- # Display the resulting backprojection
- cv2.imshow("Backproject", backproject)
- except:
- pass
- return cv_image
-
- def show_hist(self):
- bin_count = self.hist.shape[0]
- bin_w = 24
- img = np.zeros((256, bin_count*bin_w, 3), np.uint8)
- for i in xrange(bin_count):
- h = int(self.hist[i])
- cv2.rectangle(img, (i*bin_w+2, 255), ((i+1)*bin_w-2, 255-h), (int(180.0*i/bin_count), 255, 255), -1)
- img = cv2.cvtColor(img, cv2.COLOR_HSV2BGR)
- cv2.imshow('Histogram', img)
-
- def hue_histogram_as_image(self, hist):
- """ Returns a nice representation of a hue histogram """
- histimg_hsv = cv.CreateImage((320, 200), 8, 3)
-
- mybins = cv.CloneMatND(hist.bins)
- cv.Log(mybins, mybins)
- (_, hi, _, _) = cv.MinMaxLoc(mybins)
- cv.ConvertScale(mybins, mybins, 255. / hi)
-
- w,h = cv.GetSize(histimg_hsv)
- hdims = cv.GetDims(mybins)[0]
- for x in range(w):
- xh = (180 * x) / (w - 1) # hue sweeps from 0-180 across the image
- val = int(mybins[int(hdims * x / w)] * h / 255)
- cv2.rectangle(histimg_hsv, (x, 0), (x, h-val), (xh,255,64), -1)
- cv2.rectangle(histimg_hsv, (x, h-val), (x, h), (xh,255,255), -1)
-
- histimg = cv2.cvtColor(histimg_hsv, cv.CV_HSV2BGR)
-
- return histimg
-
- if __name__ == '__main__':
- try:
- node_name = "camshift"
- CamShiftNode(node_name)
- try:
- rospy.init_node(node_name)
- except:
- pass
- rospy.spin()
- except KeyboardInterrupt:
- print "Shutting down vision node."
- cv.DestroyAllWindows()
|