12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403440444054406440744084409441044114412441344144415441644174418441944204421442244234424442544264427442844294430443144324433443444354436443744384439444044414442444344444445444644474448444944504451445244534454445544564457445844594460446144624463446444654466446744684469447044714472447344744475447644774478447944804481448244834484448544864487448844894490449144924493449444954496449744984499450045014502450345044505450645074508450945104511451245134514451545164517451845194520452145224523452445254526452745284529453045314532453345344535453645374538453945404541454245434544454545464547454845494550455145524553455445554556455745584559456045614562456345644565456645674568456945704571457245734574457545764577457845794580458145824583458445854586458745884589459045914592459345944595459645974598459946004601460246034604460546064607460846094610461146124613461446154616461746184619462046214622462346244625462646274628462946304631463246334634463546364637463846394640464146424643464446454646464746484649465046514652465346544655465646574658465946604661466246634664466546664667466846694670467146724673467446754676467746784679468046814682468346844685468646874688468946904691469246934694469546964697469846994700470147024703470447054706470747084709471047114712471347144715471647174718471947204721472247234724472547264727472847294730473147324733473447354736473747384739474047414742474347444745474647474748474947504751475247534754475547564757475847594760476147624763476447654766476747684769477047714772477347744775477647774778477947804781478247834784478547864787478847894790479147924793479447954796479747984799480048014802480348044805480648074808480948104811481248134814481548164817481848194820482148224823482448254826482748284829483048314832483348344835483648374838483948404841484248434844484548464847484848494850485148524853485448554856485748584859486048614862486348644865486648674868486948704871487248734874487548764877487848794880488148824883488448854886488748884889489048914892489348944895489648974898489949004901490249034904490549064907490849094910491149124913491449154916491749184919492049214922492349244925492649274928492949304931493249334934493549364937493849394940494149424943494449454946494749484949495049514952495349544955495649574958495949604961496249634964496549664967496849694970497149724973497449754976497749784979498049814982498349844985498649874988498949904991499249934994499549964997499849995000500150025003500450055006500750085009501050115012501350145015501650175018501950205021502250235024502550265027502850295030503150325033503450355036503750385039504050415042504350445045504650475048504950505051505250535054505550565057505850595060506150625063506450655066506750685069507050715072507350745075507650775078507950805081508250835084508550865087508850895090509150925093509450955096509750985099510051015102510351045105510651075108510951105111511251135114511551165117511851195120512151225123512451255126512751285129513051315132513351345135513651375138513951405141514251435144514551465147514851495150515151525153515451555156515751585159516051615162516351645165516651675168516951705171517251735174517551765177517851795180518151825183518451855186518751885189519051915192519351945195519651975198519952005201520252035204520552065207520852095210521152125213521452155216521752185219522052215222522352245225522652275228522952305231523252335234523552365237523852395240524152425243524452455246524752485249525052515252525352545255525652575258525952605261526252635264526552665267526852695270527152725273527452755276527752785279528052815282528352845285528652875288528952905291529252935294529552965297529852995300530153025303530453055306530753085309531053115312531353145315531653175318531953205321532253235324532553265327532853295330533153325333533453355336533753385339534053415342534353445345534653475348534953505351535253535354535553565357535853595360536153625363536453655366536753685369537053715372537353745375537653775378537953805381538253835384538553865387538853895390539153925393539453955396539753985399540054015402540354045405540654075408540954105411541254135414541554165417541854195420542154225423542454255426542754285429543054315432543354345435543654375438543954405441544254435444544554465447544854495450545154525453545454555456545754585459546054615462546354645465546654675468546954705471547254735474547554765477547854795480548154825483548454855486548754885489549054915492549354945495549654975498549955005501550255035504550555065507550855095510551155125513551455155516551755185519552055215522552355245525552655275528552955305531553255335534553555365537553855395540554155425543554455455546554755485549555055515552555355545555555655575558555955605561556255635564556555665567556855695570557155725573557455755576557755785579558055815582558355845585558655875588558955905591559255935594559555965597559855995600560156025603560456055606560756085609561056115612561356145615561656175618561956205621562256235624562556265627562856295630563156325633563456355636563756385639564056415642564356445645564656475648564956505651565256535654565556565657565856595660566156625663566456655666566756685669567056715672567356745675567656775678567956805681568256835684568556865687568856895690569156925693569456955696569756985699570057015702570357045705570657075708570957105711571257135714571557165717571857195720572157225723572457255726572757285729573057315732573357345735573657375738573957405741574257435744574557465747574857495750575157525753575457555756575757585759576057615762576357645765576657675768576957705771577257735774577557765777577857795780578157825783578457855786578757885789579057915792579357945795579657975798579958005801580258035804580558065807580858095810581158125813581458155816581758185819582058215822582358245825582658275828582958305831583258335834583558365837583858395840584158425843584458455846584758485849585058515852585358545855585658575858585958605861586258635864586558665867586858695870587158725873587458755876587758785879588058815882588358845885588658875888588958905891589258935894589558965897589858995900590159025903590459055906590759085909591059115912591359145915591659175918591959205921592259235924592559265927592859295930593159325933593459355936593759385939594059415942594359445945594659475948594959505951595259535954595559565957595859595960596159625963596459655966596759685969597059715972597359745975597659775978597959805981598259835984598559865987598859895990599159925993599459955996599759985999600060016002600360046005600660076008600960106011601260136014601560166017601860196020602160226023602460256026602760286029603060316032603360346035603660376038603960406041604260436044604560466047604860496050605160526053605460556056605760586059606060616062606360646065606660676068606960706071607260736074607560766077607860796080608160826083608460856086608760886089609060916092609360946095609660976098609961006101610261036104610561066107610861096110611161126113611461156116611761186119612061216122612361246125612661276128612961306131613261336134613561366137613861396140614161426143614461456146614761486149615061516152615361546155615661576158615961606161616261636164616561666167616861696170617161726173617461756176617761786179618061816182618361846185618661876188618961906191619261936194619561966197619861996200620162026203620462056206620762086209621062116212621362146215621662176218621962206221622262236224622562266227622862296230623162326233623462356236623762386239624062416242624362446245624662476248624962506251625262536254625562566257625862596260626162626263626462656266626762686269627062716272627362746275627662776278627962806281628262836284628562866287628862896290629162926293629462956296629762986299630063016302630363046305630663076308630963106311631263136314631563166317631863196320632163226323632463256326632763286329633063316332633363346335633663376338633963406341634263436344634563466347634863496350635163526353635463556356635763586359636063616362636363646365636663676368636963706371637263736374637563766377637863796380638163826383638463856386638763886389639063916392639363946395639663976398639964006401640264036404640564066407640864096410641164126413641464156416641764186419642064216422642364246425642664276428642964306431643264336434643564366437643864396440644164426443644464456446644764486449645064516452645364546455645664576458645964606461646264636464646564666467646864696470647164726473647464756476647764786479648064816482648364846485648664876488648964906491649264936494649564966497649864996500650165026503650465056506650765086509651065116512651365146515651665176518651965206521652265236524652565266527652865296530653165326533653465356536653765386539654065416542654365446545654665476548654965506551655265536554655565566557655865596560656165626563656465656566656765686569657065716572657365746575657665776578657965806581658265836584658565866587658865896590659165926593659465956596659765986599660066016602660366046605660666076608660966106611661266136614661566166617661866196620662166226623662466256626662766286629663066316632663366346635663666376638663966406641664266436644664566466647664866496650665166526653665466556656665766586659666066616662666366646665666666676668666966706671667266736674667566766677667866796680668166826683668466856686668766886689669066916692669366946695669666976698669967006701670267036704670567066707670867096710671167126713671467156716671767186719672067216722672367246725672667276728672967306731673267336734673567366737673867396740674167426743674467456746674767486749675067516752675367546755675667576758675967606761676267636764676567666767676867696770677167726773677467756776677767786779678067816782678367846785678667876788678967906791679267936794679567966797679867996800680168026803680468056806680768086809681068116812681368146815681668176818681968206821682268236824682568266827682868296830683168326833683468356836683768386839684068416842684368446845684668476848684968506851685268536854685568566857685868596860686168626863686468656866686768686869687068716872687368746875687668776878687968806881688268836884688568866887688868896890689168926893689468956896689768986899690069016902690369046905690669076908690969106911691269136914691569166917691869196920692169226923692469256926692769286929693069316932693369346935693669376938693969406941694269436944694569466947694869496950695169526953695469556956695769586959696069616962696369646965696669676968696969706971697269736974697569766977697869796980698169826983698469856986698769886989699069916992699369946995699669976998699970007001700270037004700570067007700870097010701170127013701470157016701770187019702070217022702370247025702670277028702970307031703270337034703570367037703870397040704170427043704470457046704770487049705070517052705370547055705670577058705970607061706270637064706570667067706870697070707170727073707470757076707770787079708070817082708370847085708670877088708970907091709270937094709570967097709870997100710171027103710471057106710771087109711071117112711371147115711671177118711971207121712271237124712571267127712871297130713171327133713471357136713771387139714071417142714371447145714671477148714971507151715271537154715571567157715871597160716171627163716471657166716771687169717071717172717371747175717671777178717971807181718271837184718571867187718871897190719171927193719471957196719771987199720072017202720372047205720672077208720972107211721272137214721572167217721872197220722172227223722472257226722772287229723072317232723372347235723672377238723972407241724272437244724572467247724872497250725172527253725472557256725772587259726072617262726372647265726672677268726972707271727272737274727572767277727872797280728172827283728472857286728772887289729072917292729372947295729672977298729973007301730273037304730573067307730873097310731173127313731473157316731773187319732073217322732373247325732673277328732973307331733273337334733573367337733873397340734173427343734473457346734773487349735073517352735373547355735673577358735973607361736273637364736573667367736873697370737173727373737473757376737773787379738073817382738373847385738673877388738973907391739273937394739573967397739873997400740174027403740474057406740774087409741074117412741374147415741674177418741974207421742274237424742574267427742874297430743174327433743474357436743774387439744074417442744374447445744674477448744974507451745274537454745574567457745874597460746174627463746474657466746774687469747074717472747374747475747674777478747974807481748274837484748574867487748874897490749174927493749474957496749774987499750075017502750375047505750675077508750975107511751275137514751575167517751875197520752175227523752475257526752775287529753075317532753375347535753675377538753975407541754275437544754575467547754875497550755175527553755475557556755775587559756075617562756375647565756675677568756975707571757275737574757575767577757875797580758175827583758475857586758775887589759075917592759375947595759675977598759976007601760276037604760576067607760876097610761176127613761476157616761776187619762076217622762376247625762676277628762976307631763276337634763576367637763876397640764176427643764476457646764776487649765076517652765376547655765676577658765976607661766276637664766576667667766876697670767176727673767476757676767776787679768076817682768376847685768676877688768976907691769276937694769576967697769876997700770177027703770477057706770777087709771077117712771377147715771677177718771977207721772277237724772577267727772877297730773177327733773477357736773777387739774077417742774377447745774677477748774977507751775277537754775577567757775877597760776177627763776477657766776777687769777077717772777377747775777677777778777977807781778277837784778577867787778877897790779177927793779477957796779777987799780078017802780378047805780678077808780978107811781278137814781578167817781878197820782178227823782478257826782778287829783078317832783378347835783678377838783978407841784278437844784578467847784878497850785178527853785478557856785778587859786078617862786378647865786678677868786978707871787278737874787578767877787878797880788178827883788478857886788778887889789078917892789378947895789678977898789979007901790279037904790579067907790879097910791179127913791479157916791779187919792079217922792379247925792679277928792979307931793279337934793579367937793879397940794179427943794479457946794779487949795079517952795379547955795679577958795979607961796279637964796579667967796879697970797179727973797479757976797779787979798079817982798379847985798679877988798979907991799279937994799579967997799879998000800180028003800480058006800780088009801080118012801380148015801680178018801980208021802280238024802580268027802880298030803180328033803480358036803780388039804080418042804380448045804680478048804980508051805280538054805580568057805880598060806180628063806480658066806780688069807080718072807380748075807680778078807980808081808280838084808580868087808880898090809180928093809480958096809780988099810081018102810381048105810681078108810981108111811281138114811581168117811881198120812181228123812481258126812781288129813081318132813381348135813681378138813981408141814281438144814581468147814881498150815181528153815481558156815781588159816081618162816381648165816681678168816981708171817281738174817581768177817881798180818181828183818481858186818781888189819081918192819381948195819681978198819982008201820282038204820582068207820882098210821182128213821482158216821782188219822082218222822382248225822682278228822982308231823282338234823582368237823882398240824182428243824482458246824782488249825082518252825382548255825682578258825982608261826282638264826582668267826882698270827182728273827482758276827782788279828082818282828382848285828682878288828982908291829282938294829582968297829882998300830183028303830483058306830783088309831083118312831383148315831683178318831983208321832283238324832583268327832883298330833183328333833483358336833783388339834083418342834383448345834683478348834983508351835283538354835583568357835883598360836183628363836483658366836783688369837083718372837383748375837683778378837983808381838283838384838583868387838883898390839183928393839483958396839783988399840084018402840384048405840684078408840984108411841284138414841584168417841884198420842184228423842484258426842784288429843084318432843384348435843684378438843984408441844284438444844584468447844884498450845184528453845484558456845784588459846084618462846384648465846684678468846984708471847284738474847584768477847884798480848184828483848484858486848784888489849084918492849384948495849684978498849985008501850285038504850585068507850885098510851185128513851485158516851785188519852085218522852385248525852685278528852985308531853285338534853585368537853885398540854185428543854485458546854785488549855085518552855385548555855685578558855985608561856285638564856585668567856885698570857185728573857485758576857785788579858085818582858385848585858685878588858985908591859285938594859585968597859885998600860186028603860486058606860786088609861086118612861386148615861686178618861986208621862286238624862586268627862886298630863186328633863486358636863786388639864086418642864386448645864686478648864986508651865286538654865586568657865886598660866186628663866486658666866786688669867086718672867386748675867686778678867986808681868286838684868586868687868886898690869186928693869486958696869786988699870087018702870387048705870687078708870987108711871287138714871587168717871887198720872187228723872487258726872787288729873087318732873387348735873687378738873987408741874287438744874587468747874887498750875187528753875487558756875787588759876087618762876387648765876687678768876987708771877287738774877587768777877887798780878187828783878487858786878787888789879087918792879387948795879687978798879988008801880288038804880588068807880888098810881188128813881488158816881788188819882088218822882388248825882688278828882988308831883288338834883588368837883888398840884188428843884488458846884788488849885088518852885388548855885688578858885988608861886288638864886588668867886888698870887188728873887488758876887788788879888088818882888388848885888688878888888988908891889288938894889588968897889888998900890189028903890489058906890789088909891089118912891389148915891689178918891989208921892289238924892589268927892889298930893189328933893489358936893789388939894089418942894389448945894689478948894989508951895289538954895589568957895889598960896189628963896489658966896789688969897089718972897389748975897689778978897989808981898289838984898589868987898889898990899189928993899489958996899789988999900090019002900390049005900690079008900990109011901290139014901590169017901890199020902190229023902490259026902790289029903090319032903390349035903690379038903990409041904290439044904590469047904890499050905190529053905490559056905790589059906090619062906390649065906690679068906990709071907290739074907590769077907890799080908190829083908490859086908790889089909090919092909390949095909690979098909991009101910291039104910591069107910891099110911191129113911491159116911791189119912091219122912391249125912691279128912991309131913291339134913591369137913891399140914191429143914491459146914791489149915091519152915391549155915691579158915991609161916291639164916591669167916891699170917191729173917491759176917791789179918091819182918391849185918691879188918991909191919291939194919591969197919891999200920192029203920492059206920792089209921092119212921392149215921692179218921992209221922292239224922592269227922892299230923192329233923492359236923792389239924092419242924392449245924692479248924992509251925292539254925592569257925892599260926192629263926492659266926792689269927092719272927392749275927692779278927992809281928292839284928592869287928892899290929192929293929492959296929792989299930093019302930393049305930693079308930993109311931293139314931593169317931893199320932193229323932493259326932793289329933093319332933393349335933693379338933993409341934293439344934593469347934893499350935193529353935493559356935793589359936093619362936393649365936693679368936993709371937293739374937593769377937893799380938193829383938493859386938793889389939093919392939393949395939693979398939994009401940294039404940594069407940894099410941194129413941494159416941794189419942094219422942394249425942694279428942994309431943294339434943594369437943894399440944194429443944494459446944794489449945094519452945394549455945694579458945994609461946294639464946594669467946894699470947194729473947494759476947794789479948094819482948394849485948694879488948994909491949294939494949594969497949894999500950195029503950495059506950795089509951095119512951395149515951695179518951995209521952295239524952595269527952895299530953195329533953495359536953795389539954095419542954395449545954695479548954995509551955295539554955595569557955895599560956195629563956495659566956795689569957095719572957395749575957695779578957995809581958295839584958595869587958895899590959195929593959495959596959795989599960096019602960396049605960696079608960996109611961296139614961596169617961896199620962196229623962496259626962796289629963096319632963396349635963696379638963996409641964296439644964596469647964896499650965196529653965496559656965796589659966096619662966396649665966696679668966996709671967296739674967596769677967896799680968196829683968496859686968796889689969096919692969396949695969696979698969997009701970297039704970597069707970897099710971197129713971497159716971797189719972097219722972397249725972697279728972997309731973297339734973597369737973897399740974197429743974497459746974797489749975097519752975397549755975697579758975997609761976297639764976597669767976897699770977197729773977497759776977797789779978097819782978397849785978697879788978997909791979297939794979597969797979897999800980198029803980498059806980798089809981098119812981398149815981698179818981998209821982298239824982598269827982898299830983198329833983498359836983798389839984098419842984398449845984698479848984998509851985298539854985598569857985898599860986198629863986498659866986798689869987098719872987398749875987698779878987998809881988298839884988598869887988898899890989198929893989498959896989798989899990099019902990399049905990699079908990999109911991299139914991599169917991899199920992199229923992499259926992799289929993099319932993399349935993699379938993999409941994299439944994599469947994899499950995199529953995499559956995799589959996099619962996399649965996699679968996999709971997299739974997599769977997899799980998199829983998499859986998799889989999099919992999399949995999699979998999910000100011000210003100041000510006100071000810009100101001110012100131001410015100161001710018100191002010021100221002310024100251002610027100281002910030100311003210033100341003510036100371003810039100401004110042100431004410045100461004710048100491005010051100521005310054100551005610057100581005910060100611006210063100641006510066100671006810069100701007110072100731007410075100761007710078100791008010081100821008310084100851008610087100881008910090100911009210093100941009510096100971009810099101001010110102101031010410105101061010710108101091011010111101121011310114101151011610117101181011910120101211012210123101241012510126101271012810129101301013110132101331013410135101361013710138101391014010141101421014310144101451014610147101481014910150101511015210153101541015510156101571015810159101601016110162101631016410165101661016710168101691017010171101721017310174101751017610177101781017910180101811018210183101841018510186101871018810189101901019110192101931019410195101961019710198101991020010201102021020310204102051020610207102081020910210102111021210213102141021510216102171021810219102201022110222102231022410225102261022710228102291023010231102321023310234102351023610237102381023910240102411024210243102441024510246102471024810249102501025110252102531025410255102561025710258102591026010261102621026310264102651026610267102681026910270102711027210273102741027510276102771027810279102801028110282102831028410285102861028710288102891029010291102921029310294102951029610297102981029910300103011030210303103041030510306103071030810309103101031110312103131031410315103161031710318103191032010321103221032310324103251032610327103281032910330103311033210333103341033510336103371033810339103401034110342103431034410345103461034710348103491035010351103521035310354103551035610357103581035910360103611036210363103641036510366103671036810369103701037110372103731037410375103761037710378103791038010381103821038310384103851038610387103881038910390103911039210393103941039510396103971039810399104001040110402104031040410405104061040710408104091041010411104121041310414104151041610417104181041910420104211042210423104241042510426104271042810429104301043110432104331043410435104361043710438104391044010441104421044310444104451044610447104481044910450104511045210453104541045510456104571045810459104601046110462104631046410465104661046710468104691047010471104721047310474104751047610477104781047910480104811048210483104841048510486104871048810489104901049110492104931049410495104961049710498104991050010501105021050310504105051050610507105081050910510105111051210513105141051510516105171051810519105201052110522105231052410525105261052710528105291053010531105321053310534105351053610537105381053910540105411054210543105441054510546105471054810549105501055110552105531055410555105561055710558105591056010561105621056310564105651056610567105681056910570105711057210573105741057510576105771057810579105801058110582105831058410585105861058710588105891059010591105921059310594105951059610597105981059910600106011060210603106041060510606106071060810609106101061110612106131061410615106161061710618106191062010621106221062310624106251062610627106281062910630106311063210633106341063510636106371063810639106401064110642106431064410645106461064710648106491065010651106521065310654106551065610657106581065910660106611066210663106641066510666106671066810669106701067110672106731067410675106761067710678106791068010681106821068310684106851068610687106881068910690106911069210693106941069510696106971069810699107001070110702107031070410705107061070710708107091071010711107121071310714107151071610717107181071910720107211072210723107241072510726107271072810729107301073110732107331073410735107361073710738107391074010741107421074310744107451074610747107481074910750107511075210753107541075510756107571075810759107601076110762107631076410765107661076710768107691077010771107721077310774107751077610777107781077910780107811078210783107841078510786107871078810789107901079110792107931079410795107961079710798107991080010801108021080310804108051080610807108081080910810108111081210813108141081510816108171081810819108201082110822108231082410825108261082710828108291083010831108321083310834108351083610837108381083910840108411084210843108441084510846108471084810849108501085110852108531085410855108561085710858108591086010861108621086310864108651086610867108681086910870108711087210873108741087510876108771087810879108801088110882108831088410885108861088710888108891089010891108921089310894108951089610897108981089910900109011090210903109041090510906109071090810909109101091110912109131091410915109161091710918109191092010921109221092310924109251092610927109281092910930109311093210933109341093510936109371093810939109401094110942109431094410945109461094710948109491095010951109521095310954109551095610957109581095910960109611096210963109641096510966109671096810969109701097110972109731097410975109761097710978109791098010981109821098310984109851098610987109881098910990109911099210993109941099510996109971099810999110001100111002110031100411005110061100711008110091101011011110121101311014110151101611017110181101911020110211102211023110241102511026110271102811029110301103111032110331103411035110361103711038110391104011041110421104311044110451104611047110481104911050110511105211053110541105511056110571105811059110601106111062110631106411065110661106711068110691107011071110721107311074110751107611077110781107911080110811108211083110841108511086110871108811089110901109111092110931109411095110961109711098110991110011101111021110311104111051110611107111081110911110111111111211113111141111511116111171111811119111201112111122111231112411125111261112711128111291113011131111321113311134111351113611137111381113911140111411114211143111441114511146111471114811149111501115111152111531115411155111561115711158111591116011161111621116311164111651116611167111681116911170111711117211173111741117511176111771117811179111801118111182111831118411185111861118711188111891119011191111921119311194111951119611197111981119911200112011120211203112041120511206112071120811209112101121111212112131121411215112161121711218112191122011221112221122311224112251122611227112281122911230112311123211233112341123511236112371123811239112401124111242112431124411245112461124711248112491125011251112521125311254112551125611257112581125911260112611126211263112641126511266112671126811269112701127111272112731127411275112761127711278112791128011281112821128311284112851128611287112881128911290112911129211293112941129511296112971129811299113001130111302113031130411305113061130711308113091131011311113121131311314113151131611317113181131911320113211132211323113241132511326113271132811329113301133111332113331133411335113361133711338113391134011341113421134311344113451134611347113481134911350113511135211353113541135511356113571135811359113601136111362113631136411365113661136711368113691137011371113721137311374113751137611377113781137911380113811138211383113841138511386113871138811389113901139111392113931139411395113961139711398113991140011401114021140311404114051140611407114081140911410114111141211413114141141511416114171141811419114201142111422114231142411425114261142711428114291143011431114321143311434114351143611437114381143911440114411144211443114441144511446114471144811449114501145111452114531145411455114561145711458114591146011461114621146311464114651146611467114681146911470114711147211473114741147511476114771147811479114801148111482114831148411485114861148711488114891149011491114921149311494114951149611497114981149911500115011150211503115041150511506115071150811509115101151111512115131151411515115161151711518115191152011521115221152311524115251152611527115281152911530115311153211533115341153511536115371153811539115401154111542115431154411545115461154711548115491155011551115521155311554115551155611557115581155911560115611156211563115641156511566115671156811569115701157111572115731157411575115761157711578115791158011581115821158311584115851158611587115881158911590115911159211593115941159511596115971159811599116001160111602116031160411605116061160711608116091161011611116121161311614116151161611617116181161911620116211162211623116241162511626116271162811629116301163111632116331163411635116361163711638116391164011641116421164311644116451164611647116481164911650116511165211653116541165511656116571165811659116601166111662116631166411665116661166711668116691167011671116721167311674116751167611677116781167911680116811168211683116841168511686116871168811689116901169111692116931169411695116961169711698116991170011701117021170311704117051170611707117081170911710117111171211713117141171511716117171171811719117201172111722117231172411725117261172711728117291173011731117321173311734117351173611737117381173911740117411174211743117441174511746117471174811749117501175111752117531175411755117561175711758117591176011761117621176311764117651176611767117681176911770117711177211773117741177511776117771177811779117801178111782117831178411785117861178711788117891179011791117921179311794117951179611797117981179911800118011180211803118041180511806118071180811809118101181111812118131181411815118161181711818118191182011821118221182311824118251182611827118281182911830118311183211833118341183511836118371183811839118401184111842118431184411845118461184711848118491185011851118521185311854118551185611857118581185911860118611186211863118641186511866118671186811869118701187111872118731187411875118761187711878118791188011881118821188311884118851188611887118881188911890118911189211893118941189511896118971189811899119001190111902119031190411905119061190711908119091191011911119121191311914119151191611917119181191911920119211192211923119241192511926119271192811929119301193111932119331193411935119361193711938119391194011941119421194311944119451194611947119481194911950119511195211953119541195511956119571195811959119601196111962119631196411965119661196711968119691197011971119721197311974119751197611977119781197911980119811198211983119841198511986119871198811989119901199111992119931199411995119961199711998119991200012001120021200312004120051200612007120081200912010120111201212013120141201512016120171201812019120201202112022120231202412025120261202712028120291203012031120321203312034120351203612037120381203912040120411204212043120441204512046120471204812049120501205112052120531205412055120561205712058120591206012061120621206312064120651206612067120681206912070120711207212073120741207512076120771207812079120801208112082120831208412085120861208712088120891209012091120921209312094120951209612097120981209912100121011210212103121041210512106121071210812109121101211112112121131211412115121161211712118121191212012121121221212312124121251212612127121281212912130121311213212133121341213512136121371213812139121401214112142121431214412145121461214712148121491215012151121521215312154121551215612157121581215912160121611216212163121641216512166121671216812169121701217112172121731217412175121761217712178121791218012181121821218312184121851218612187121881218912190121911219212193121941219512196121971219812199122001220112202122031220412205122061220712208122091221012211122121221312214122151221612217122181221912220122211222212223122241222512226122271222812229122301223112232122331223412235122361223712238122391224012241122421224312244122451224612247122481224912250122511225212253122541225512256122571225812259122601226112262122631226412265122661226712268122691227012271122721227312274122751227612277122781227912280122811228212283122841228512286122871228812289122901229112292122931229412295122961229712298122991230012301123021230312304123051230612307123081230912310123111231212313123141231512316123171231812319123201232112322123231232412325123261232712328123291233012331123321233312334123351233612337123381233912340123411234212343123441234512346123471234812349123501235112352123531235412355123561235712358123591236012361123621236312364123651236612367123681236912370123711237212373123741237512376123771237812379123801238112382123831238412385123861238712388123891239012391123921239312394123951239612397123981239912400124011240212403124041240512406124071240812409124101241112412124131241412415124161241712418124191242012421124221242312424124251242612427124281242912430124311243212433124341243512436124371243812439124401244112442124431244412445124461244712448124491245012451124521245312454124551245612457124581245912460124611246212463124641246512466124671246812469124701247112472124731247412475124761247712478124791248012481124821248312484124851248612487124881248912490124911249212493124941249512496124971249812499125001250112502125031250412505125061250712508125091251012511125121251312514125151251612517125181251912520125211252212523125241252512526125271252812529125301253112532125331253412535125361253712538125391254012541125421254312544125451254612547125481254912550125511255212553125541255512556125571255812559125601256112562125631256412565125661256712568125691257012571125721257312574125751257612577125781257912580125811258212583125841258512586125871258812589125901259112592125931259412595125961259712598125991260012601126021260312604126051260612607126081260912610126111261212613126141261512616126171261812619126201262112622126231262412625126261262712628126291263012631126321263312634126351263612637126381263912640126411264212643126441264512646126471264812649126501265112652126531265412655126561265712658126591266012661126621266312664126651266612667126681266912670126711267212673126741267512676126771267812679126801268112682126831268412685126861268712688126891269012691126921269312694126951269612697126981269912700127011270212703127041270512706127071270812709127101271112712127131271412715127161271712718127191272012721127221272312724127251272612727127281272912730127311273212733127341273512736127371273812739127401274112742127431274412745127461274712748127491275012751127521275312754127551275612757127581275912760127611276212763127641276512766127671276812769127701277112772127731277412775127761277712778127791278012781127821278312784127851278612787127881278912790127911279212793127941279512796127971279812799128001280112802128031280412805128061280712808128091281012811128121281312814128151281612817128181281912820128211282212823128241282512826128271282812829128301283112832128331283412835128361283712838128391284012841128421284312844128451284612847128481284912850128511285212853128541285512856128571285812859128601286112862128631286412865128661286712868128691287012871128721287312874128751287612877128781287912880128811288212883128841288512886128871288812889128901289112892128931289412895128961289712898128991290012901129021290312904129051290612907129081290912910129111291212913129141291512916129171291812919129201292112922129231292412925129261292712928129291293012931129321293312934129351293612937129381293912940129411294212943129441294512946129471294812949129501295112952129531295412955129561295712958129591296012961129621296312964129651296612967129681296912970129711297212973129741297512976129771297812979129801298112982129831298412985129861298712988129891299012991129921299312994129951299612997129981299913000130011300213003130041300513006130071300813009130101301113012130131301413015130161301713018130191302013021130221302313024130251302613027130281302913030130311303213033130341303513036130371303813039130401304113042130431304413045130461304713048130491305013051130521305313054130551305613057130581305913060130611306213063130641306513066130671306813069130701307113072130731307413075130761307713078130791308013081130821308313084130851308613087130881308913090130911309213093130941309513096130971309813099131001310113102131031310413105131061310713108131091311013111131121311313114131151311613117131181311913120131211312213123131241312513126131271312813129131301313113132131331313413135131361313713138131391314013141131421314313144131451314613147131481314913150131511315213153131541315513156131571315813159131601316113162131631316413165131661316713168131691317013171131721317313174131751317613177131781317913180131811318213183131841318513186131871318813189131901319113192131931319413195131961319713198131991320013201132021320313204132051320613207132081320913210132111321213213132141321513216132171321813219132201322113222132231322413225132261322713228132291323013231132321323313234132351323613237132381323913240132411324213243132441324513246132471324813249132501325113252132531325413255132561325713258132591326013261132621326313264132651326613267132681326913270132711327213273132741327513276132771327813279132801328113282132831328413285132861328713288132891329013291132921329313294132951329613297132981329913300133011330213303133041330513306133071330813309133101331113312133131331413315133161331713318133191332013321133221332313324133251332613327133281332913330133311333213333133341333513336133371333813339133401334113342133431334413345133461334713348133491335013351133521335313354133551335613357133581335913360133611336213363133641336513366133671336813369133701337113372133731337413375133761337713378133791338013381133821338313384133851338613387133881338913390133911339213393133941339513396133971339813399134001340113402134031340413405134061340713408134091341013411134121341313414134151341613417134181341913420134211342213423134241342513426134271342813429134301343113432134331343413435134361343713438134391344013441134421344313444134451344613447134481344913450134511345213453134541345513456134571345813459134601346113462134631346413465134661346713468134691347013471134721347313474134751347613477134781347913480134811348213483134841348513486134871348813489134901349113492134931349413495134961349713498134991350013501135021350313504135051350613507135081350913510135111351213513135141351513516135171351813519135201352113522135231352413525135261352713528135291353013531135321353313534135351353613537135381353913540135411354213543135441354513546135471354813549135501355113552135531355413555135561355713558135591356013561135621356313564135651356613567135681356913570135711357213573135741357513576135771357813579135801358113582135831358413585135861358713588135891359013591135921359313594135951359613597135981359913600136011360213603136041360513606136071360813609136101361113612136131361413615136161361713618136191362013621136221362313624136251362613627136281362913630136311363213633136341363513636136371363813639136401364113642136431364413645136461364713648136491365013651136521365313654136551365613657136581365913660136611366213663136641366513666136671366813669136701367113672136731367413675136761367713678136791368013681136821368313684136851368613687136881368913690136911369213693136941369513696136971369813699137001370113702137031370413705137061370713708137091371013711137121371313714137151371613717137181371913720137211372213723137241372513726137271372813729137301373113732137331373413735137361373713738137391374013741137421374313744137451374613747137481374913750137511375213753137541375513756137571375813759137601376113762137631376413765137661376713768137691377013771137721377313774137751377613777137781377913780137811378213783137841378513786137871378813789137901379113792137931379413795137961379713798137991380013801138021380313804138051380613807138081380913810138111381213813138141381513816138171381813819138201382113822138231382413825138261382713828138291383013831138321383313834138351383613837138381383913840138411384213843138441384513846138471384813849138501385113852138531385413855138561385713858138591386013861138621386313864138651386613867138681386913870138711387213873138741387513876138771387813879138801388113882138831388413885138861388713888138891389013891138921389313894138951389613897138981389913900139011390213903139041390513906139071390813909139101391113912139131391413915139161391713918139191392013921139221392313924139251392613927139281392913930139311393213933139341393513936139371393813939139401394113942139431394413945139461394713948139491395013951139521395313954139551395613957139581395913960139611396213963139641396513966139671396813969139701397113972139731397413975139761397713978139791398013981139821398313984139851398613987139881398913990139911399213993139941399513996139971399813999140001400114002140031400414005140061400714008140091401014011140121401314014140151401614017140181401914020140211402214023140241402514026140271402814029140301403114032140331403414035140361403714038140391404014041140421404314044140451404614047140481404914050140511405214053140541405514056140571405814059140601406114062140631406414065140661406714068140691407014071140721407314074140751407614077140781407914080140811408214083140841408514086140871408814089140901409114092140931409414095140961409714098140991410014101141021410314104141051410614107141081410914110141111411214113141141411514116141171411814119141201412114122141231412414125141261412714128141291413014131141321413314134141351413614137141381413914140141411414214143141441414514146141471414814149141501415114152141531415414155141561415714158141591416014161141621416314164141651416614167141681416914170141711417214173141741417514176141771417814179141801418114182141831418414185141861418714188141891419014191141921419314194141951419614197141981419914200142011420214203142041420514206142071420814209142101421114212142131421414215142161421714218142191422014221142221422314224142251422614227142281422914230142311423214233142341423514236142371423814239142401424114242142431424414245142461424714248142491425014251142521425314254142551425614257142581425914260142611426214263142641426514266142671426814269142701427114272142731427414275142761427714278142791428014281142821428314284142851428614287142881428914290142911429214293142941429514296142971429814299143001430114302143031430414305143061430714308143091431014311143121431314314143151431614317143181431914320143211432214323143241432514326143271432814329143301433114332143331433414335143361433714338143391434014341143421434314344143451434614347143481434914350143511435214353143541435514356143571435814359143601436114362143631436414365143661436714368143691437014371143721437314374143751437614377143781437914380143811438214383143841438514386143871438814389143901439114392143931439414395143961439714398143991440014401144021440314404144051440614407144081440914410144111441214413144141441514416144171441814419144201442114422144231442414425144261442714428144291443014431144321443314434144351443614437144381443914440144411444214443144441444514446144471444814449144501445114452144531445414455144561445714458144591446014461144621446314464144651446614467144681446914470144711447214473144741447514476144771447814479144801448114482144831448414485144861448714488144891449014491144921449314494144951449614497144981449914500145011450214503145041450514506145071450814509145101451114512145131451414515145161451714518145191452014521145221452314524145251452614527145281452914530145311453214533145341453514536145371453814539145401454114542145431454414545145461454714548145491455014551145521455314554145551455614557145581455914560145611456214563145641456514566145671456814569145701457114572145731457414575145761457714578145791458014581145821458314584145851458614587145881458914590145911459214593145941459514596145971459814599146001460114602146031460414605146061460714608146091461014611146121461314614146151461614617146181461914620146211462214623146241462514626146271462814629146301463114632146331463414635146361463714638146391464014641146421464314644146451464614647146481464914650146511465214653146541465514656146571465814659146601466114662146631466414665146661466714668146691467014671146721467314674146751467614677146781467914680146811468214683146841468514686146871468814689146901469114692146931469414695146961469714698146991470014701147021470314704147051470614707147081470914710147111471214713147141471514716147171471814719147201472114722147231472414725147261472714728147291473014731147321473314734147351473614737147381473914740147411474214743147441474514746147471474814749147501475114752147531475414755147561475714758147591476014761147621476314764147651476614767147681476914770147711477214773147741477514776147771477814779147801478114782147831478414785147861478714788147891479014791147921479314794147951479614797147981479914800148011480214803148041480514806148071480814809148101481114812148131481414815148161481714818148191482014821148221482314824148251482614827148281482914830148311483214833148341483514836148371483814839148401484114842148431484414845148461484714848148491485014851148521485314854148551485614857148581485914860148611486214863148641486514866148671486814869148701487114872148731487414875148761487714878148791488014881148821488314884148851488614887148881488914890148911489214893148941489514896148971489814899149001490114902149031490414905149061490714908149091491014911149121491314914149151491614917149181491914920149211492214923149241492514926149271492814929149301493114932149331493414935149361493714938149391494014941149421494314944149451494614947149481494914950149511495214953149541495514956149571495814959149601496114962149631496414965149661496714968149691497014971149721497314974149751497614977149781497914980149811498214983149841498514986149871498814989149901499114992149931499414995149961499714998149991500015001150021500315004150051500615007150081500915010150111501215013150141501515016150171501815019150201502115022150231502415025150261502715028150291503015031150321503315034150351503615037150381503915040150411504215043150441504515046150471504815049150501505115052150531505415055150561505715058150591506015061150621506315064150651506615067150681506915070150711507215073150741507515076150771507815079150801508115082150831508415085150861508715088150891509015091150921509315094150951509615097150981509915100151011510215103151041510515106151071510815109151101511115112151131511415115151161511715118151191512015121151221512315124151251512615127151281512915130151311513215133151341513515136151371513815139151401514115142151431514415145151461514715148151491515015151151521515315154151551515615157151581515915160151611516215163151641516515166151671516815169151701517115172151731517415175151761517715178151791518015181151821518315184151851518615187151881518915190151911519215193151941519515196151971519815199152001520115202152031520415205152061520715208152091521015211152121521315214152151521615217152181521915220152211522215223152241522515226152271522815229152301523115232152331523415235152361523715238152391524015241152421524315244152451524615247152481524915250152511525215253152541525515256152571525815259152601526115262152631526415265152661526715268152691527015271152721527315274152751527615277152781527915280152811528215283152841528515286152871528815289152901529115292152931529415295152961529715298152991530015301153021530315304153051530615307153081530915310153111531215313153141531515316153171531815319153201532115322153231532415325153261532715328153291533015331153321533315334153351533615337153381533915340153411534215343153441534515346153471534815349153501535115352153531535415355153561535715358153591536015361153621536315364153651536615367153681536915370153711537215373153741537515376153771537815379153801538115382153831538415385153861538715388153891539015391153921539315394153951539615397153981539915400154011540215403154041540515406154071540815409154101541115412154131541415415154161541715418154191542015421154221542315424154251542615427154281542915430154311543215433154341543515436154371543815439154401544115442154431544415445154461544715448154491545015451154521545315454154551545615457154581545915460154611546215463154641546515466154671546815469154701547115472154731547415475154761547715478154791548015481154821548315484154851548615487154881548915490154911549215493154941549515496154971549815499155001550115502155031550415505155061550715508155091551015511155121551315514155151551615517155181551915520155211552215523155241552515526155271552815529155301553115532155331553415535155361553715538155391554015541155421554315544155451554615547155481554915550155511555215553155541555515556155571555815559155601556115562155631556415565155661556715568155691557015571155721557315574155751557615577155781557915580155811558215583155841558515586155871558815589155901559115592155931559415595155961559715598155991560015601156021560315604156051560615607156081560915610156111561215613156141561515616156171561815619156201562115622156231562415625156261562715628156291563015631156321563315634156351563615637156381563915640156411564215643156441564515646156471564815649156501565115652156531565415655156561565715658156591566015661156621566315664156651566615667156681566915670156711567215673156741567515676156771567815679156801568115682156831568415685156861568715688156891569015691156921569315694156951569615697156981569915700157011570215703157041570515706157071570815709157101571115712157131571415715157161571715718157191572015721157221572315724157251572615727157281572915730157311573215733157341573515736157371573815739157401574115742157431574415745157461574715748157491575015751157521575315754157551575615757157581575915760157611576215763157641576515766157671576815769157701577115772157731577415775157761577715778157791578015781157821578315784157851578615787157881578915790157911579215793157941579515796157971579815799158001580115802158031580415805158061580715808158091581015811158121581315814158151581615817158181581915820158211582215823158241582515826158271582815829158301583115832158331583415835158361583715838158391584015841158421584315844158451584615847158481584915850158511585215853158541585515856158571585815859158601586115862158631586415865158661586715868158691587015871158721587315874158751587615877158781587915880158811588215883158841588515886158871588815889158901589115892158931589415895158961589715898158991590015901159021590315904159051590615907159081590915910159111591215913159141591515916159171591815919159201592115922159231592415925159261592715928159291593015931159321593315934159351593615937159381593915940159411594215943159441594515946159471594815949159501595115952159531595415955159561595715958159591596015961159621596315964159651596615967159681596915970159711597215973159741597515976159771597815979159801598115982159831598415985159861598715988159891599015991159921599315994159951599615997159981599916000160011600216003160041600516006160071600816009160101601116012160131601416015160161601716018160191602016021160221602316024160251602616027160281602916030160311603216033160341603516036160371603816039160401604116042160431604416045160461604716048160491605016051160521605316054160551605616057160581605916060160611606216063160641606516066160671606816069160701607116072160731607416075160761607716078160791608016081160821608316084160851608616087160881608916090160911609216093160941609516096160971609816099161001610116102161031610416105161061610716108161091611016111161121611316114161151611616117161181611916120161211612216123161241612516126161271612816129161301613116132161331613416135161361613716138161391614016141161421614316144161451614616147161481614916150161511615216153161541615516156161571615816159161601616116162161631616416165161661616716168161691617016171161721617316174161751617616177161781617916180161811618216183161841618516186161871618816189161901619116192161931619416195161961619716198161991620016201162021620316204162051620616207162081620916210162111621216213162141621516216162171621816219162201622116222162231622416225162261622716228162291623016231162321623316234162351623616237162381623916240162411624216243162441624516246162471624816249162501625116252162531625416255162561625716258162591626016261162621626316264162651626616267162681626916270162711627216273162741627516276162771627816279162801628116282162831628416285162861628716288162891629016291162921629316294162951629616297162981629916300163011630216303163041630516306163071630816309163101631116312163131631416315163161631716318163191632016321163221632316324163251632616327163281632916330163311633216333163341633516336163371633816339163401634116342163431634416345163461634716348163491635016351163521635316354163551635616357163581635916360163611636216363163641636516366163671636816369163701637116372163731637416375163761637716378163791638016381163821638316384163851638616387163881638916390163911639216393163941639516396163971639816399164001640116402164031640416405164061640716408164091641016411164121641316414164151641616417164181641916420164211642216423164241642516426164271642816429164301643116432164331643416435164361643716438164391644016441164421644316444164451644616447164481644916450164511645216453164541645516456164571645816459164601646116462164631646416465164661646716468164691647016471164721647316474164751647616477164781647916480164811648216483164841648516486164871648816489164901649116492164931649416495164961649716498164991650016501165021650316504165051650616507165081650916510165111651216513165141651516516165171651816519165201652116522165231652416525165261652716528165291653016531165321653316534165351653616537165381653916540165411654216543165441654516546165471654816549165501655116552165531655416555165561655716558165591656016561165621656316564165651656616567165681656916570165711657216573165741657516576165771657816579165801658116582165831658416585165861658716588165891659016591165921659316594165951659616597165981659916600166011660216603166041660516606166071660816609166101661116612166131661416615166161661716618166191662016621166221662316624166251662616627166281662916630166311663216633166341663516636166371663816639166401664116642166431664416645166461664716648166491665016651166521665316654166551665616657166581665916660166611666216663166641666516666166671666816669166701667116672166731667416675166761667716678166791668016681166821668316684166851668616687166881668916690166911669216693166941669516696166971669816699167001670116702167031670416705167061670716708167091671016711167121671316714167151671616717167181671916720167211672216723167241672516726167271672816729167301673116732167331673416735167361673716738167391674016741167421674316744167451674616747167481674916750167511675216753167541675516756167571675816759167601676116762167631676416765167661676716768167691677016771167721677316774167751677616777167781677916780167811678216783167841678516786167871678816789167901679116792167931679416795167961679716798167991680016801168021680316804168051680616807168081680916810168111681216813168141681516816168171681816819168201682116822168231682416825168261682716828168291683016831168321683316834168351683616837168381683916840168411684216843168441684516846168471684816849168501685116852168531685416855168561685716858168591686016861168621686316864168651686616867168681686916870168711687216873168741687516876168771687816879168801688116882168831688416885168861688716888168891689016891168921689316894168951689616897168981689916900169011690216903169041690516906169071690816909169101691116912169131691416915169161691716918169191692016921169221692316924169251692616927169281692916930169311693216933169341693516936169371693816939169401694116942169431694416945169461694716948169491695016951169521695316954169551695616957169581695916960169611696216963169641696516966169671696816969169701697116972169731697416975169761697716978169791698016981169821698316984169851698616987169881698916990169911699216993169941699516996169971699816999170001700117002170031700417005170061700717008170091701017011170121701317014170151701617017170181701917020170211702217023170241702517026170271702817029170301703117032170331703417035170361703717038170391704017041170421704317044170451704617047170481704917050170511705217053170541705517056170571705817059170601706117062170631706417065170661706717068170691707017071170721707317074170751707617077170781707917080170811708217083170841708517086170871708817089170901709117092170931709417095170961709717098170991710017101171021710317104171051710617107171081710917110171111711217113171141711517116171171711817119171201712117122171231712417125171261712717128171291713017131171321713317134171351713617137171381713917140171411714217143171441714517146171471714817149171501715117152171531715417155171561715717158171591716017161171621716317164171651716617167171681716917170171711717217173171741717517176171771717817179171801718117182171831718417185171861718717188171891719017191171921719317194171951719617197171981719917200172011720217203172041720517206172071720817209172101721117212172131721417215172161721717218172191722017221172221722317224172251722617227172281722917230172311723217233172341723517236172371723817239172401724117242172431724417245172461724717248172491725017251172521725317254172551725617257172581725917260172611726217263172641726517266172671726817269172701727117272172731727417275172761727717278172791728017281172821728317284172851728617287172881728917290172911729217293172941729517296172971729817299173001730117302173031730417305173061730717308173091731017311173121731317314173151731617317173181731917320173211732217323173241732517326173271732817329173301733117332173331733417335173361733717338173391734017341173421734317344173451734617347173481734917350173511735217353173541735517356173571735817359173601736117362173631736417365173661736717368173691737017371173721737317374173751737617377173781737917380173811738217383173841738517386173871738817389173901739117392173931739417395173961739717398173991740017401174021740317404174051740617407174081740917410174111741217413174141741517416174171741817419174201742117422174231742417425174261742717428174291743017431174321743317434174351743617437174381743917440174411744217443174441744517446174471744817449174501745117452174531745417455174561745717458174591746017461174621746317464174651746617467174681746917470174711747217473174741747517476174771747817479174801748117482174831748417485174861748717488174891749017491174921749317494174951749617497174981749917500175011750217503175041750517506175071750817509175101751117512175131751417515175161751717518175191752017521175221752317524175251752617527175281752917530175311753217533175341753517536175371753817539175401754117542175431754417545175461754717548175491755017551175521755317554175551755617557175581755917560175611756217563175641756517566175671756817569175701757117572175731757417575175761757717578175791758017581175821758317584175851758617587175881758917590175911759217593175941759517596175971759817599176001760117602176031760417605176061760717608176091761017611176121761317614176151761617617176181761917620176211762217623176241762517626176271762817629176301763117632176331763417635176361763717638176391764017641176421764317644176451764617647176481764917650176511765217653176541765517656176571765817659176601766117662176631766417665176661766717668176691767017671176721767317674176751767617677176781767917680176811768217683176841768517686176871768817689176901769117692176931769417695176961769717698176991770017701177021770317704177051770617707177081770917710177111771217713177141771517716177171771817719177201772117722177231772417725177261772717728177291773017731177321773317734177351773617737177381773917740177411774217743177441774517746177471774817749177501775117752177531775417755177561775717758177591776017761177621776317764177651776617767177681776917770177711777217773177741777517776177771777817779177801778117782177831778417785177861778717788177891779017791177921779317794177951779617797177981779917800178011780217803178041780517806178071780817809178101781117812178131781417815178161781717818178191782017821178221782317824178251782617827178281782917830178311783217833178341783517836178371783817839178401784117842178431784417845178461784717848178491785017851178521785317854178551785617857178581785917860178611786217863178641786517866178671786817869178701787117872178731787417875178761787717878178791788017881178821788317884178851788617887178881788917890178911789217893178941789517896178971789817899179001790117902179031790417905179061790717908179091791017911179121791317914179151791617917179181791917920179211792217923179241792517926179271792817929179301793117932179331793417935179361793717938179391794017941179421794317944179451794617947179481794917950179511795217953179541795517956179571795817959179601796117962179631796417965179661796717968179691797017971179721797317974179751797617977179781797917980179811798217983179841798517986179871798817989179901799117992179931799417995179961799717998179991800018001180021800318004180051800618007180081800918010180111801218013180141801518016180171801818019180201802118022180231802418025180261802718028180291803018031180321803318034180351803618037180381803918040180411804218043180441804518046180471804818049180501805118052180531805418055180561805718058180591806018061180621806318064180651806618067180681806918070180711807218073180741807518076180771807818079180801808118082180831808418085180861808718088180891809018091180921809318094180951809618097180981809918100181011810218103181041810518106181071810818109181101811118112181131811418115181161811718118181191812018121181221812318124181251812618127181281812918130181311813218133181341813518136181371813818139181401814118142181431814418145181461814718148181491815018151181521815318154181551815618157181581815918160181611816218163181641816518166181671816818169181701817118172181731817418175181761817718178181791818018181181821818318184181851818618187181881818918190181911819218193181941819518196181971819818199182001820118202182031820418205182061820718208182091821018211182121821318214182151821618217182181821918220182211822218223182241822518226182271822818229182301823118232182331823418235182361823718238182391824018241182421824318244182451824618247182481824918250182511825218253182541825518256182571825818259182601826118262182631826418265182661826718268182691827018271182721827318274182751827618277182781827918280182811828218283182841828518286182871828818289182901829118292182931829418295182961829718298182991830018301183021830318304183051830618307183081830918310183111831218313183141831518316183171831818319183201832118322183231832418325183261832718328183291833018331183321833318334183351833618337183381833918340183411834218343183441834518346183471834818349183501835118352183531835418355183561835718358183591836018361183621836318364183651836618367183681836918370183711837218373183741837518376183771837818379183801838118382183831838418385183861838718388183891839018391183921839318394183951839618397183981839918400184011840218403184041840518406184071840818409184101841118412184131841418415184161841718418184191842018421184221842318424184251842618427184281842918430184311843218433184341843518436184371843818439184401844118442184431844418445184461844718448184491845018451184521845318454184551845618457184581845918460184611846218463184641846518466184671846818469184701847118472184731847418475184761847718478184791848018481184821848318484184851848618487184881848918490184911849218493184941849518496184971849818499185001850118502185031850418505185061850718508185091851018511185121851318514185151851618517185181851918520185211852218523185241852518526185271852818529185301853118532185331853418535185361853718538185391854018541185421854318544185451854618547185481854918550185511855218553185541855518556185571855818559185601856118562185631856418565185661856718568185691857018571185721857318574185751857618577185781857918580185811858218583185841858518586185871858818589185901859118592185931859418595185961859718598185991860018601186021860318604186051860618607186081860918610186111861218613186141861518616186171861818619186201862118622186231862418625186261862718628186291863018631186321863318634186351863618637186381863918640186411864218643186441864518646186471864818649186501865118652186531865418655186561865718658186591866018661186621866318664186651866618667186681866918670186711867218673186741867518676186771867818679186801868118682186831868418685186861868718688186891869018691186921869318694186951869618697186981869918700187011870218703187041870518706187071870818709187101871118712187131871418715187161871718718187191872018721187221872318724187251872618727187281872918730187311873218733187341873518736187371873818739187401874118742187431874418745187461874718748187491875018751187521875318754187551875618757187581875918760187611876218763187641876518766187671876818769187701877118772187731877418775187761877718778187791878018781187821878318784187851878618787187881878918790187911879218793187941879518796187971879818799188001880118802188031880418805188061880718808188091881018811188121881318814188151881618817188181881918820188211882218823188241882518826188271882818829188301883118832188331883418835188361883718838188391884018841188421884318844188451884618847188481884918850188511885218853188541885518856188571885818859188601886118862188631886418865188661886718868188691887018871188721887318874188751887618877188781887918880188811888218883188841888518886188871888818889188901889118892188931889418895188961889718898188991890018901189021890318904189051890618907189081890918910189111891218913189141891518916189171891818919189201892118922189231892418925189261892718928189291893018931189321893318934189351893618937189381893918940189411894218943189441894518946189471894818949189501895118952189531895418955189561895718958189591896018961189621896318964189651896618967189681896918970189711897218973189741897518976189771897818979189801898118982189831898418985189861898718988189891899018991189921899318994189951899618997189981899919000190011900219003190041900519006190071900819009190101901119012190131901419015190161901719018190191902019021190221902319024190251902619027190281902919030190311903219033190341903519036190371903819039190401904119042190431904419045190461904719048190491905019051190521905319054190551905619057190581905919060190611906219063190641906519066190671906819069190701907119072190731907419075190761907719078190791908019081190821908319084190851908619087190881908919090190911909219093190941909519096190971909819099191001910119102191031910419105191061910719108191091911019111191121911319114191151911619117191181911919120191211912219123191241912519126191271912819129191301913119132191331913419135191361913719138191391914019141191421914319144191451914619147191481914919150191511915219153191541915519156191571915819159191601916119162191631916419165191661916719168191691917019171191721917319174191751917619177191781917919180191811918219183191841918519186191871918819189191901919119192191931919419195191961919719198191991920019201192021920319204192051920619207192081920919210192111921219213192141921519216192171921819219192201922119222192231922419225192261922719228192291923019231192321923319234192351923619237192381923919240192411924219243192441924519246192471924819249192501925119252192531925419255192561925719258192591926019261192621926319264192651926619267192681926919270192711927219273192741927519276192771927819279192801928119282192831928419285192861928719288192891929019291192921929319294192951929619297192981929919300193011930219303193041930519306193071930819309193101931119312193131931419315193161931719318193191932019321193221932319324193251932619327193281932919330193311933219333193341933519336193371933819339193401934119342193431934419345193461934719348193491935019351193521935319354193551935619357193581935919360193611936219363193641936519366193671936819369193701937119372193731937419375193761937719378193791938019381193821938319384193851938619387193881938919390193911939219393193941939519396193971939819399194001940119402194031940419405194061940719408194091941019411194121941319414194151941619417194181941919420194211942219423194241942519426194271942819429194301943119432194331943419435194361943719438194391944019441194421944319444194451944619447194481944919450194511945219453194541945519456194571945819459194601946119462194631946419465194661946719468194691947019471194721947319474194751947619477194781947919480194811948219483194841948519486194871948819489194901949119492194931949419495194961949719498194991950019501195021950319504195051950619507195081950919510195111951219513195141951519516195171951819519195201952119522195231952419525195261952719528195291953019531195321953319534195351953619537195381953919540195411954219543195441954519546195471954819549195501955119552195531955419555195561955719558195591956019561195621956319564195651956619567195681956919570195711957219573195741957519576195771957819579195801958119582195831958419585195861958719588195891959019591195921959319594195951959619597195981959919600196011960219603196041960519606196071960819609196101961119612196131961419615196161961719618196191962019621196221962319624196251962619627196281962919630196311963219633196341963519636196371963819639196401964119642196431964419645196461964719648196491965019651196521965319654196551965619657196581965919660196611966219663196641966519666196671966819669196701967119672196731967419675196761967719678196791968019681196821968319684196851968619687196881968919690196911969219693196941969519696196971969819699197001970119702197031970419705197061970719708197091971019711197121971319714197151971619717197181971919720197211972219723197241972519726197271972819729197301973119732197331973419735197361973719738197391974019741197421974319744197451974619747197481974919750197511975219753197541975519756197571975819759197601976119762197631976419765197661976719768197691977019771197721977319774197751977619777197781977919780197811978219783197841978519786197871978819789197901979119792197931979419795197961979719798197991980019801198021980319804198051980619807198081980919810198111981219813198141981519816198171981819819198201982119822198231982419825198261982719828198291983019831198321983319834198351983619837198381983919840198411984219843198441984519846198471984819849198501985119852198531985419855198561985719858198591986019861198621986319864198651986619867198681986919870198711987219873198741987519876198771987819879198801988119882198831988419885198861988719888198891989019891198921989319894198951989619897198981989919900199011990219903199041990519906199071990819909199101991119912199131991419915199161991719918199191992019921199221992319924199251992619927199281992919930199311993219933199341993519936199371993819939199401994119942199431994419945199461994719948199491995019951199521995319954199551995619957199581995919960199611996219963199641996519966199671996819969199701997119972199731997419975199761997719978199791998019981199821998319984199851998619987199881998919990199911999219993199941999519996199971999819999200002000120002200032000420005200062000720008200092001020011200122001320014200152001620017200182001920020200212002220023200242002520026200272002820029200302003120032200332003420035200362003720038200392004020041200422004320044200452004620047200482004920050200512005220053200542005520056200572005820059200602006120062200632006420065200662006720068200692007020071200722007320074200752007620077200782007920080200812008220083200842008520086200872008820089200902009120092200932009420095200962009720098200992010020101201022010320104201052010620107201082010920110201112011220113201142011520116201172011820119201202012120122201232012420125201262012720128201292013020131201322013320134201352013620137201382013920140201412014220143201442014520146201472014820149201502015120152201532015420155201562015720158201592016020161201622016320164201652016620167201682016920170201712017220173201742017520176201772017820179201802018120182201832018420185201862018720188201892019020191201922019320194201952019620197201982019920200202012020220203202042020520206202072020820209202102021120212202132021420215202162021720218202192022020221202222022320224202252022620227202282022920230202312023220233202342023520236202372023820239202402024120242202432024420245202462024720248202492025020251202522025320254202552025620257202582025920260202612026220263202642026520266202672026820269202702027120272202732027420275202762027720278202792028020281202822028320284202852028620287202882028920290202912029220293202942029520296202972029820299203002030120302203032030420305203062030720308203092031020311203122031320314203152031620317203182031920320203212032220323203242032520326203272032820329203302033120332203332033420335203362033720338203392034020341203422034320344203452034620347203482034920350203512035220353203542035520356203572035820359203602036120362203632036420365203662036720368203692037020371203722037320374203752037620377203782037920380203812038220383203842038520386203872038820389203902039120392203932039420395203962039720398203992040020401204022040320404204052040620407204082040920410204112041220413204142041520416204172041820419204202042120422204232042420425204262042720428204292043020431204322043320434204352043620437204382043920440204412044220443204442044520446204472044820449204502045120452204532045420455204562045720458204592046020461204622046320464204652046620467204682046920470204712047220473204742047520476204772047820479204802048120482204832048420485204862048720488204892049020491204922049320494204952049620497204982049920500205012050220503205042050520506205072050820509205102051120512205132051420515205162051720518205192052020521205222052320524205252052620527205282052920530205312053220533205342053520536205372053820539205402054120542205432054420545205462054720548205492055020551205522055320554205552055620557205582055920560205612056220563205642056520566205672056820569205702057120572205732057420575205762057720578205792058020581205822058320584205852058620587205882058920590205912059220593205942059520596205972059820599206002060120602206032060420605206062060720608206092061020611206122061320614206152061620617206182061920620206212062220623206242062520626206272062820629206302063120632206332063420635206362063720638206392064020641206422064320644206452064620647206482064920650206512065220653206542065520656206572065820659206602066120662206632066420665206662066720668206692067020671206722067320674206752067620677206782067920680206812068220683206842068520686206872068820689206902069120692206932069420695206962069720698206992070020701207022070320704207052070620707207082070920710207112071220713207142071520716207172071820719207202072120722207232072420725207262072720728207292073020731207322073320734207352073620737207382073920740207412074220743207442074520746207472074820749207502075120752207532075420755207562075720758207592076020761207622076320764207652076620767207682076920770207712077220773207742077520776207772077820779207802078120782207832078420785207862078720788207892079020791207922079320794207952079620797207982079920800208012080220803208042080520806208072080820809208102081120812208132081420815208162081720818208192082020821208222082320824208252082620827208282082920830208312083220833208342083520836208372083820839208402084120842208432084420845208462084720848208492085020851208522085320854208552085620857208582085920860208612086220863208642086520866208672086820869208702087120872208732087420875208762087720878208792088020881208822088320884208852088620887208882088920890208912089220893208942089520896208972089820899209002090120902209032090420905209062090720908209092091020911209122091320914209152091620917209182091920920209212092220923209242092520926209272092820929209302093120932209332093420935209362093720938209392094020941209422094320944209452094620947209482094920950209512095220953209542095520956209572095820959209602096120962209632096420965209662096720968209692097020971209722097320974209752097620977209782097920980209812098220983209842098520986209872098820989209902099120992209932099420995209962099720998209992100021001210022100321004210052100621007210082100921010210112101221013210142101521016210172101821019210202102121022210232102421025210262102721028210292103021031210322103321034210352103621037210382103921040210412104221043210442104521046210472104821049210502105121052210532105421055210562105721058210592106021061210622106321064210652106621067210682106921070210712107221073210742107521076210772107821079210802108121082210832108421085210862108721088210892109021091210922109321094210952109621097210982109921100211012110221103211042110521106211072110821109211102111121112211132111421115211162111721118211192112021121211222112321124211252112621127211282112921130211312113221133211342113521136211372113821139211402114121142211432114421145211462114721148211492115021151211522115321154211552115621157211582115921160211612116221163211642116521166211672116821169211702117121172211732117421175211762117721178211792118021181211822118321184211852118621187211882118921190211912119221193211942119521196211972119821199212002120121202212032120421205212062120721208212092121021211212122121321214212152121621217212182121921220212212122221223212242122521226212272122821229212302123121232212332123421235212362123721238212392124021241212422124321244212452124621247212482124921250212512125221253212542125521256212572125821259212602126121262212632126421265212662126721268212692127021271212722127321274212752127621277212782127921280212812128221283212842128521286212872128821289212902129121292212932129421295212962129721298212992130021301213022130321304213052130621307213082130921310213112131221313213142131521316213172131821319213202132121322213232132421325213262132721328213292133021331213322133321334213352133621337213382133921340213412134221343213442134521346213472134821349213502135121352213532135421355213562135721358213592136021361213622136321364213652136621367213682136921370213712137221373213742137521376213772137821379213802138121382213832138421385213862138721388213892139021391213922139321394213952139621397213982139921400214012140221403214042140521406214072140821409214102141121412214132141421415214162141721418214192142021421214222142321424214252142621427214282142921430214312143221433214342143521436214372143821439214402144121442214432144421445214462144721448214492145021451214522145321454214552145621457214582145921460214612146221463214642146521466214672146821469214702147121472214732147421475214762147721478214792148021481214822148321484214852148621487214882148921490214912149221493214942149521496214972149821499215002150121502215032150421505215062150721508215092151021511215122151321514215152151621517215182151921520215212152221523215242152521526215272152821529215302153121532215332153421535215362153721538215392154021541215422154321544215452154621547215482154921550215512155221553215542155521556215572155821559215602156121562215632156421565215662156721568215692157021571215722157321574215752157621577215782157921580215812158221583215842158521586215872158821589215902159121592215932159421595215962159721598215992160021601216022160321604216052160621607216082160921610216112161221613216142161521616216172161821619216202162121622216232162421625216262162721628216292163021631216322163321634216352163621637216382163921640216412164221643216442164521646216472164821649216502165121652216532165421655216562165721658216592166021661216622166321664216652166621667216682166921670216712167221673216742167521676216772167821679216802168121682216832168421685216862168721688216892169021691216922169321694216952169621697216982169921700217012170221703217042170521706217072170821709217102171121712217132171421715217162171721718217192172021721217222172321724217252172621727217282172921730217312173221733217342173521736217372173821739217402174121742217432174421745217462174721748217492175021751217522175321754217552175621757217582175921760217612176221763217642176521766217672176821769217702177121772217732177421775217762177721778217792178021781217822178321784217852178621787217882178921790217912179221793217942179521796217972179821799218002180121802218032180421805218062180721808218092181021811218122181321814218152181621817218182181921820218212182221823218242182521826218272182821829218302183121832218332183421835218362183721838218392184021841218422184321844218452184621847218482184921850218512185221853218542185521856218572185821859218602186121862218632186421865218662186721868218692187021871218722187321874218752187621877218782187921880218812188221883218842188521886218872188821889218902189121892218932189421895218962189721898218992190021901219022190321904219052190621907219082190921910219112191221913219142191521916219172191821919219202192121922219232192421925219262192721928219292193021931219322193321934219352193621937219382193921940219412194221943219442194521946219472194821949219502195121952219532195421955219562195721958219592196021961219622196321964219652196621967219682196921970219712197221973219742197521976219772197821979219802198121982219832198421985219862198721988219892199021991219922199321994219952199621997219982199922000220012200222003220042200522006220072200822009220102201122012220132201422015220162201722018220192202022021220222202322024220252202622027220282202922030220312203222033220342203522036220372203822039220402204122042220432204422045220462204722048220492205022051220522205322054220552205622057220582205922060220612206222063220642206522066220672206822069220702207122072220732207422075220762207722078220792208022081220822208322084220852208622087220882208922090220912209222093220942209522096220972209822099221002210122102221032210422105221062210722108221092211022111221122211322114221152211622117221182211922120221212212222123221242212522126221272212822129221302213122132221332213422135221362213722138221392214022141221422214322144221452214622147221482214922150221512215222153221542215522156221572215822159221602216122162221632216422165221662216722168221692217022171221722217322174221752217622177221782217922180221812218222183221842218522186221872218822189221902219122192221932219422195221962219722198221992220022201222022220322204222052220622207222082220922210222112221222213222142221522216222172221822219222202222122222222232222422225222262222722228222292223022231222322223322234222352223622237222382223922240222412224222243222442224522246222472224822249222502225122252222532225422255222562225722258222592226022261222622226322264222652226622267222682226922270222712227222273222742227522276222772227822279222802228122282222832228422285222862228722288222892229022291222922229322294222952229622297222982229922300223012230222303223042230522306223072230822309223102231122312223132231422315223162231722318223192232022321223222232322324223252232622327223282232922330223312233222333223342233522336223372233822339223402234122342223432234422345223462234722348223492235022351223522235322354223552235622357223582235922360223612236222363223642236522366223672236822369223702237122372223732237422375223762237722378223792238022381223822238322384223852238622387223882238922390223912239222393223942239522396223972239822399224002240122402224032240422405224062240722408224092241022411224122241322414224152241622417224182241922420224212242222423224242242522426224272242822429224302243122432224332243422435224362243722438224392244022441224422244322444224452244622447224482244922450224512245222453224542245522456224572245822459224602246122462224632246422465224662246722468224692247022471224722247322474224752247622477224782247922480224812248222483224842248522486224872248822489224902249122492224932249422495224962249722498224992250022501225022250322504225052250622507225082250922510225112251222513225142251522516225172251822519225202252122522225232252422525225262252722528225292253022531225322253322534225352253622537225382253922540225412254222543225442254522546225472254822549225502255122552225532255422555225562255722558225592256022561225622256322564225652256622567225682256922570225712257222573225742257522576225772257822579225802258122582225832258422585225862258722588225892259022591225922259322594225952259622597225982259922600226012260222603226042260522606226072260822609226102261122612226132261422615226162261722618226192262022621226222262322624226252262622627226282262922630226312263222633226342263522636226372263822639226402264122642226432264422645226462264722648226492265022651226522265322654226552265622657226582265922660226612266222663226642266522666226672266822669226702267122672226732267422675226762267722678226792268022681226822268322684226852268622687226882268922690226912269222693226942269522696226972269822699227002270122702227032270422705227062270722708227092271022711227122271322714227152271622717227182271922720227212272222723227242272522726227272272822729227302273122732227332273422735227362273722738227392274022741227422274322744227452274622747227482274922750227512275222753227542275522756227572275822759227602276122762227632276422765227662276722768227692277022771227722277322774227752277622777227782277922780227812278222783227842278522786227872278822789227902279122792227932279422795227962279722798227992280022801228022280322804228052280622807228082280922810228112281222813228142281522816228172281822819228202282122822228232282422825228262282722828228292283022831228322283322834228352283622837228382283922840228412284222843228442284522846228472284822849228502285122852228532285422855228562285722858228592286022861228622286322864228652286622867228682286922870228712287222873228742287522876228772287822879228802288122882228832288422885228862288722888228892289022891228922289322894228952289622897228982289922900229012290222903229042290522906229072290822909229102291122912229132291422915229162291722918229192292022921229222292322924229252292622927229282292922930229312293222933229342293522936229372293822939229402294122942229432294422945229462294722948229492295022951229522295322954229552295622957229582295922960229612296222963229642296522966229672296822969229702297122972229732297422975229762297722978229792298022981229822298322984229852298622987229882298922990229912299222993229942299522996229972299822999230002300123002230032300423005230062300723008230092301023011230122301323014230152301623017230182301923020230212302223023230242302523026230272302823029230302303123032230332303423035230362303723038230392304023041230422304323044230452304623047230482304923050230512305223053230542305523056230572305823059230602306123062230632306423065230662306723068230692307023071230722307323074230752307623077230782307923080230812308223083230842308523086230872308823089230902309123092230932309423095230962309723098230992310023101231022310323104231052310623107231082310923110231112311223113231142311523116231172311823119231202312123122231232312423125231262312723128231292313023131231322313323134231352313623137231382313923140231412314223143231442314523146231472314823149231502315123152231532315423155231562315723158231592316023161231622316323164231652316623167231682316923170231712317223173231742317523176231772317823179231802318123182231832318423185231862318723188231892319023191231922319323194231952319623197231982319923200232012320223203232042320523206232072320823209232102321123212232132321423215232162321723218232192322023221232222322323224232252322623227232282322923230232312323223233232342323523236232372323823239232402324123242232432324423245232462324723248232492325023251232522325323254232552325623257232582325923260232612326223263232642326523266232672326823269232702327123272232732327423275232762327723278232792328023281232822328323284232852328623287232882328923290232912329223293232942329523296232972329823299233002330123302233032330423305233062330723308233092331023311233122331323314233152331623317233182331923320233212332223323233242332523326233272332823329233302333123332233332333423335233362333723338233392334023341233422334323344233452334623347233482334923350233512335223353233542335523356233572335823359233602336123362233632336423365233662336723368233692337023371233722337323374233752337623377233782337923380233812338223383233842338523386233872338823389233902339123392233932339423395233962339723398233992340023401234022340323404234052340623407234082340923410234112341223413234142341523416234172341823419234202342123422234232342423425234262342723428234292343023431234322343323434234352343623437234382343923440234412344223443234442344523446234472344823449234502345123452234532345423455234562345723458234592346023461234622346323464234652346623467234682346923470234712347223473234742347523476234772347823479234802348123482234832348423485234862348723488234892349023491234922349323494234952349623497234982349923500235012350223503235042350523506235072350823509235102351123512235132351423515235162351723518235192352023521235222352323524235252352623527235282352923530235312353223533235342353523536235372353823539235402354123542235432354423545235462354723548235492355023551235522355323554235552355623557235582355923560235612356223563235642356523566235672356823569235702357123572235732357423575235762357723578235792358023581235822358323584235852358623587235882358923590235912359223593235942359523596235972359823599236002360123602236032360423605236062360723608236092361023611236122361323614236152361623617236182361923620236212362223623236242362523626236272362823629236302363123632236332363423635236362363723638236392364023641236422364323644236452364623647236482364923650236512365223653236542365523656236572365823659236602366123662236632366423665236662366723668236692367023671236722367323674236752367623677236782367923680236812368223683236842368523686236872368823689236902369123692236932369423695236962369723698236992370023701237022370323704237052370623707237082370923710237112371223713237142371523716237172371823719237202372123722237232372423725237262372723728237292373023731237322373323734237352373623737237382373923740237412374223743237442374523746237472374823749237502375123752237532375423755237562375723758237592376023761237622376323764237652376623767237682376923770237712377223773237742377523776237772377823779237802378123782237832378423785237862378723788237892379023791237922379323794237952379623797237982379923800238012380223803238042380523806238072380823809238102381123812238132381423815238162381723818238192382023821238222382323824238252382623827238282382923830238312383223833238342383523836238372383823839238402384123842238432384423845238462384723848238492385023851238522385323854238552385623857238582385923860238612386223863238642386523866238672386823869238702387123872238732387423875238762387723878238792388023881238822388323884238852388623887238882388923890238912389223893238942389523896238972389823899239002390123902239032390423905239062390723908239092391023911239122391323914239152391623917239182391923920239212392223923239242392523926239272392823929239302393123932239332393423935239362393723938239392394023941239422394323944239452394623947239482394923950239512395223953239542395523956239572395823959239602396123962239632396423965239662396723968239692397023971239722397323974239752397623977239782397923980239812398223983239842398523986239872398823989239902399123992239932399423995239962399723998239992400024001240022400324004240052400624007240082400924010240112401224013240142401524016240172401824019240202402124022240232402424025240262402724028240292403024031240322403324034240352403624037240382403924040240412404224043240442404524046240472404824049240502405124052240532405424055240562405724058240592406024061240622406324064240652406624067240682406924070240712407224073240742407524076240772407824079240802408124082240832408424085240862408724088240892409024091240922409324094240952409624097240982409924100241012410224103241042410524106241072410824109241102411124112241132411424115241162411724118241192412024121241222412324124241252412624127241282412924130241312413224133241342413524136241372413824139241402414124142241432414424145241462414724148241492415024151241522415324154241552415624157241582415924160241612416224163241642416524166241672416824169241702417124172241732417424175241762417724178241792418024181241822418324184241852418624187241882418924190241912419224193241942419524196241972419824199242002420124202242032420424205242062420724208242092421024211242122421324214242152421624217242182421924220242212422224223242242422524226242272422824229242302423124232242332423424235242362423724238242392424024241242422424324244242452424624247242482424924250242512425224253242542425524256242572425824259242602426124262242632426424265242662426724268242692427024271242722427324274242752427624277242782427924280242812428224283242842428524286242872428824289242902429124292242932429424295242962429724298242992430024301243022430324304243052430624307243082430924310243112431224313243142431524316243172431824319243202432124322243232432424325243262432724328243292433024331243322433324334243352433624337243382433924340243412434224343243442434524346243472434824349243502435124352243532435424355243562435724358243592436024361243622436324364243652436624367243682436924370243712437224373243742437524376243772437824379243802438124382243832438424385243862438724388243892439024391243922439324394243952439624397243982439924400244012440224403244042440524406244072440824409244102441124412244132441424415244162441724418244192442024421244222442324424244252442624427244282442924430244312443224433244342443524436244372443824439244402444124442244432444424445244462444724448244492445024451244522445324454244552445624457244582445924460244612446224463244642446524466244672446824469244702447124472244732447424475244762447724478244792448024481244822448324484244852448624487244882448924490244912449224493244942449524496244972449824499245002450124502245032450424505245062450724508245092451024511245122451324514245152451624517245182451924520245212452224523245242452524526245272452824529245302453124532245332453424535245362453724538245392454024541245422454324544245452454624547245482454924550245512455224553245542455524556245572455824559245602456124562245632456424565245662456724568245692457024571245722457324574245752457624577245782457924580245812458224583245842458524586245872458824589245902459124592245932459424595245962459724598245992460024601246022460324604246052460624607246082460924610246112461224613246142461524616246172461824619246202462124622246232462424625246262462724628246292463024631246322463324634246352463624637246382463924640246412464224643246442464524646246472464824649246502465124652246532465424655246562465724658246592466024661246622466324664246652466624667246682466924670246712467224673246742467524676246772467824679246802468124682246832468424685246862468724688246892469024691246922469324694246952469624697246982469924700247012470224703247042470524706247072470824709247102471124712247132471424715247162471724718247192472024721247222472324724247252472624727247282472924730247312473224733247342473524736247372473824739247402474124742247432474424745247462474724748247492475024751247522475324754247552475624757247582475924760247612476224763247642476524766247672476824769247702477124772247732477424775247762477724778247792478024781247822478324784247852478624787247882478924790247912479224793247942479524796247972479824799248002480124802248032480424805248062480724808248092481024811248122481324814248152481624817248182481924820248212482224823248242482524826248272482824829248302483124832248332483424835248362483724838248392484024841248422484324844248452484624847248482484924850248512485224853248542485524856248572485824859248602486124862248632486424865248662486724868248692487024871248722487324874248752487624877248782487924880248812488224883248842488524886248872488824889248902489124892248932489424895248962489724898248992490024901249022490324904249052490624907249082490924910249112491224913249142491524916249172491824919249202492124922249232492424925249262492724928249292493024931249322493324934249352493624937249382493924940249412494224943249442494524946249472494824949249502495124952249532495424955249562495724958249592496024961249622496324964249652496624967249682496924970249712497224973249742497524976249772497824979249802498124982249832498424985249862498724988249892499024991249922499324994249952499624997249982499925000250012500225003250042500525006250072500825009250102501125012250132501425015250162501725018250192502025021250222502325024250252502625027250282502925030250312503225033250342503525036250372503825039250402504125042250432504425045250462504725048250492505025051250522505325054250552505625057250582505925060250612506225063250642506525066250672506825069250702507125072250732507425075250762507725078250792508025081250822508325084250852508625087250882508925090250912509225093250942509525096250972509825099251002510125102251032510425105251062510725108251092511025111251122511325114251152511625117251182511925120251212512225123251242512525126251272512825129251302513125132251332513425135251362513725138251392514025141251422514325144251452514625147251482514925150251512515225153251542515525156251572515825159251602516125162251632516425165251662516725168251692517025171251722517325174251752517625177251782517925180251812518225183251842518525186251872518825189251902519125192251932519425195251962519725198251992520025201252022520325204252052520625207252082520925210252112521225213252142521525216252172521825219252202522125222252232522425225252262522725228252292523025231252322523325234252352523625237252382523925240252412524225243252442524525246252472524825249252502525125252252532525425255252562525725258252592526025261252622526325264252652526625267252682526925270252712527225273252742527525276252772527825279252802528125282252832528425285252862528725288252892529025291252922529325294252952529625297252982529925300253012530225303253042530525306253072530825309253102531125312253132531425315253162531725318253192532025321253222532325324253252532625327253282532925330253312533225333253342533525336253372533825339253402534125342253432534425345253462534725348253492535025351253522535325354253552535625357253582535925360253612536225363253642536525366253672536825369253702537125372253732537425375253762537725378253792538025381253822538325384253852538625387253882538925390253912539225393253942539525396253972539825399254002540125402254032540425405254062540725408254092541025411254122541325414254152541625417254182541925420254212542225423254242542525426254272542825429254302543125432254332543425435254362543725438254392544025441254422544325444254452544625447254482544925450254512545225453254542545525456254572545825459254602546125462254632546425465254662546725468254692547025471254722547325474254752547625477254782547925480254812548225483254842548525486254872548825489254902549125492254932549425495254962549725498254992550025501255022550325504255052550625507255082550925510255112551225513255142551525516255172551825519255202552125522255232552425525255262552725528255292553025531255322553325534255352553625537255382553925540255412554225543255442554525546255472554825549255502555125552255532555425555255562555725558255592556025561255622556325564255652556625567255682556925570255712557225573255742557525576255772557825579255802558125582255832558425585255862558725588255892559025591255922559325594255952559625597255982559925600256012560225603256042560525606256072560825609256102561125612256132561425615256162561725618256192562025621256222562325624256252562625627256282562925630256312563225633256342563525636256372563825639256402564125642256432564425645256462564725648256492565025651256522565325654256552565625657256582565925660256612566225663256642566525666256672566825669256702567125672256732567425675256762567725678256792568025681256822568325684256852568625687256882568925690256912569225693256942569525696256972569825699257002570125702257032570425705257062570725708257092571025711257122571325714257152571625717257182571925720257212572225723257242572525726257272572825729257302573125732257332573425735257362573725738257392574025741257422574325744257452574625747257482574925750257512575225753257542575525756257572575825759257602576125762257632576425765257662576725768257692577025771257722577325774257752577625777257782577925780257812578225783257842578525786257872578825789257902579125792257932579425795257962579725798257992580025801258022580325804258052580625807258082580925810258112581225813258142581525816258172581825819258202582125822258232582425825258262582725828258292583025831258322583325834258352583625837258382583925840258412584225843258442584525846258472584825849258502585125852258532585425855258562585725858258592586025861258622586325864258652586625867258682586925870258712587225873258742587525876258772587825879258802588125882258832588425885258862588725888258892589025891258922589325894258952589625897258982589925900259012590225903259042590525906259072590825909259102591125912259132591425915259162591725918259192592025921259222592325924259252592625927259282592925930259312593225933259342593525936259372593825939259402594125942259432594425945259462594725948259492595025951259522595325954259552595625957259582595925960259612596225963259642596525966259672596825969259702597125972259732597425975259762597725978259792598025981259822598325984259852598625987259882598925990259912599225993259942599525996259972599825999260002600126002260032600426005260062600726008260092601026011260122601326014260152601626017260182601926020260212602226023260242602526026260272602826029260302603126032260332603426035260362603726038260392604026041260422604326044260452604626047260482604926050260512605226053260542605526056260572605826059260602606126062260632606426065260662606726068260692607026071260722607326074260752607626077260782607926080260812608226083260842608526086260872608826089260902609126092260932609426095260962609726098260992610026101261022610326104261052610626107261082610926110261112611226113261142611526116261172611826119261202612126122261232612426125261262612726128261292613026131261322613326134261352613626137261382613926140261412614226143261442614526146261472614826149261502615126152261532615426155261562615726158261592616026161261622616326164261652616626167261682616926170261712617226173261742617526176261772617826179261802618126182261832618426185261862618726188261892619026191261922619326194261952619626197261982619926200262012620226203262042620526206262072620826209262102621126212262132621426215262162621726218262192622026221262222622326224262252622626227262282622926230262312623226233262342623526236262372623826239262402624126242262432624426245262462624726248262492625026251262522625326254262552625626257262582625926260262612626226263262642626526266262672626826269262702627126272262732627426275262762627726278262792628026281262822628326284262852628626287262882628926290262912629226293262942629526296262972629826299263002630126302263032630426305263062630726308263092631026311263122631326314263152631626317263182631926320263212632226323263242632526326263272632826329263302633126332263332633426335263362633726338263392634026341263422634326344263452634626347263482634926350263512635226353263542635526356263572635826359263602636126362263632636426365263662636726368263692637026371263722637326374263752637626377263782637926380263812638226383263842638526386263872638826389263902639126392263932639426395263962639726398263992640026401264022640326404264052640626407264082640926410264112641226413264142641526416264172641826419264202642126422264232642426425264262642726428264292643026431264322643326434264352643626437264382643926440264412644226443264442644526446264472644826449264502645126452264532645426455264562645726458264592646026461264622646326464264652646626467264682646926470264712647226473264742647526476264772647826479264802648126482264832648426485264862648726488264892649026491264922649326494264952649626497264982649926500265012650226503265042650526506265072650826509265102651126512265132651426515265162651726518265192652026521265222652326524265252652626527265282652926530265312653226533265342653526536265372653826539265402654126542265432654426545265462654726548265492655026551265522655326554265552655626557265582655926560265612656226563265642656526566265672656826569265702657126572265732657426575265762657726578265792658026581265822658326584265852658626587265882658926590265912659226593265942659526596265972659826599266002660126602266032660426605266062660726608266092661026611266122661326614266152661626617266182661926620266212662226623266242662526626266272662826629266302663126632266332663426635266362663726638266392664026641266422664326644266452664626647266482664926650266512665226653266542665526656266572665826659266602666126662266632666426665266662666726668266692667026671266722667326674266752667626677266782667926680266812668226683266842668526686266872668826689266902669126692266932669426695266962669726698266992670026701267022670326704267052670626707267082670926710267112671226713267142671526716267172671826719267202672126722267232672426725267262672726728267292673026731267322673326734267352673626737267382673926740267412674226743267442674526746267472674826749267502675126752267532675426755267562675726758267592676026761267622676326764267652676626767267682676926770267712677226773267742677526776267772677826779267802678126782267832678426785267862678726788267892679026791267922679326794267952679626797267982679926800268012680226803268042680526806268072680826809268102681126812268132681426815268162681726818268192682026821268222682326824268252682626827268282682926830268312683226833268342683526836268372683826839268402684126842268432684426845268462684726848268492685026851268522685326854268552685626857268582685926860268612686226863268642686526866268672686826869268702687126872268732687426875268762687726878268792688026881268822688326884268852688626887268882688926890268912689226893268942689526896268972689826899269002690126902269032690426905269062690726908269092691026911269122691326914269152691626917269182691926920269212692226923269242692526926269272692826929269302693126932269332693426935269362693726938269392694026941269422694326944269452694626947269482694926950269512695226953269542695526956269572695826959269602696126962269632696426965269662696726968269692697026971269722697326974269752697626977269782697926980269812698226983269842698526986269872698826989269902699126992269932699426995269962699726998269992700027001270022700327004270052700627007270082700927010270112701227013270142701527016270172701827019270202702127022270232702427025270262702727028270292703027031270322703327034270352703627037270382703927040270412704227043270442704527046270472704827049270502705127052270532705427055270562705727058270592706027061270622706327064270652706627067270682706927070270712707227073270742707527076270772707827079270802708127082270832708427085270862708727088270892709027091270922709327094270952709627097270982709927100271012710227103271042710527106271072710827109271102711127112271132711427115271162711727118271192712027121271222712327124271252712627127271282712927130271312713227133271342713527136271372713827139271402714127142271432714427145271462714727148271492715027151271522715327154271552715627157271582715927160271612716227163271642716527166271672716827169271702717127172271732717427175271762717727178271792718027181271822718327184271852718627187271882718927190271912719227193271942719527196271972719827199272002720127202272032720427205272062720727208272092721027211272122721327214272152721627217272182721927220272212722227223272242722527226272272722827229272302723127232272332723427235272362723727238272392724027241272422724327244272452724627247272482724927250272512725227253272542725527256272572725827259272602726127262272632726427265272662726727268272692727027271272722727327274272752727627277272782727927280272812728227283272842728527286272872728827289272902729127292272932729427295272962729727298272992730027301273022730327304273052730627307273082730927310273112731227313273142731527316273172731827319273202732127322273232732427325273262732727328273292733027331273322733327334273352733627337273382733927340273412734227343273442734527346273472734827349273502735127352273532735427355273562735727358273592736027361273622736327364273652736627367273682736927370273712737227373273742737527376273772737827379273802738127382273832738427385273862738727388273892739027391273922739327394273952739627397273982739927400274012740227403274042740527406274072740827409274102741127412274132741427415274162741727418274192742027421274222742327424274252742627427274282742927430274312743227433274342743527436274372743827439274402744127442274432744427445274462744727448274492745027451274522745327454274552745627457274582745927460274612746227463274642746527466274672746827469274702747127472274732747427475274762747727478274792748027481274822748327484274852748627487274882748927490274912749227493274942749527496274972749827499275002750127502275032750427505275062750727508275092751027511275122751327514275152751627517275182751927520275212752227523275242752527526275272752827529275302753127532275332753427535275362753727538275392754027541275422754327544275452754627547275482754927550275512755227553275542755527556275572755827559275602756127562275632756427565275662756727568275692757027571275722757327574275752757627577275782757927580275812758227583275842758527586275872758827589275902759127592275932759427595275962759727598275992760027601276022760327604276052760627607276082760927610276112761227613276142761527616276172761827619276202762127622276232762427625276262762727628276292763027631276322763327634276352763627637276382763927640276412764227643276442764527646276472764827649276502765127652276532765427655276562765727658276592766027661276622766327664276652766627667276682766927670276712767227673276742767527676276772767827679276802768127682276832768427685276862768727688276892769027691276922769327694276952769627697276982769927700277012770227703277042770527706277072770827709277102771127712277132771427715277162771727718277192772027721277222772327724277252772627727277282772927730277312773227733277342773527736277372773827739277402774127742277432774427745277462774727748277492775027751277522775327754277552775627757277582775927760277612776227763277642776527766277672776827769277702777127772277732777427775277762777727778277792778027781277822778327784277852778627787277882778927790277912779227793277942779527796277972779827799278002780127802278032780427805278062780727808278092781027811278122781327814278152781627817278182781927820278212782227823278242782527826278272782827829278302783127832278332783427835278362783727838278392784027841278422784327844278452784627847278482784927850278512785227853278542785527856278572785827859278602786127862278632786427865278662786727868278692787027871278722787327874278752787627877278782787927880278812788227883278842788527886278872788827889278902789127892278932789427895278962789727898278992790027901279022790327904279052790627907279082790927910279112791227913279142791527916279172791827919279202792127922279232792427925279262792727928279292793027931279322793327934279352793627937279382793927940279412794227943279442794527946279472794827949279502795127952279532795427955279562795727958279592796027961279622796327964279652796627967279682796927970279712797227973279742797527976279772797827979279802798127982279832798427985279862798727988279892799027991279922799327994279952799627997279982799928000280012800228003280042800528006280072800828009280102801128012280132801428015280162801728018280192802028021280222802328024280252802628027280282802928030280312803228033280342803528036280372803828039280402804128042280432804428045280462804728048280492805028051280522805328054280552805628057280582805928060280612806228063280642806528066280672806828069280702807128072280732807428075280762807728078280792808028081280822808328084280852808628087280882808928090280912809228093280942809528096280972809828099281002810128102281032810428105281062810728108281092811028111281122811328114281152811628117281182811928120281212812228123281242812528126281272812828129281302813128132281332813428135281362813728138281392814028141281422814328144281452814628147281482814928150281512815228153281542815528156281572815828159281602816128162281632816428165281662816728168281692817028171281722817328174281752817628177281782817928180281812818228183281842818528186281872818828189281902819128192281932819428195281962819728198281992820028201282022820328204282052820628207282082820928210282112821228213282142821528216282172821828219282202822128222282232822428225282262822728228282292823028231282322823328234282352823628237282382823928240282412824228243282442824528246282472824828249282502825128252282532825428255282562825728258282592826028261282622826328264282652826628267282682826928270282712827228273282742827528276282772827828279282802828128282282832828428285282862828728288282892829028291282922829328294282952829628297282982829928300283012830228303283042830528306283072830828309283102831128312283132831428315283162831728318283192832028321283222832328324283252832628327283282832928330283312833228333283342833528336283372833828339283402834128342283432834428345283462834728348283492835028351283522835328354283552835628357283582835928360283612836228363283642836528366283672836828369283702837128372283732837428375283762837728378283792838028381283822838328384283852838628387283882838928390283912839228393283942839528396283972839828399284002840128402284032840428405284062840728408284092841028411284122841328414284152841628417284182841928420284212842228423284242842528426284272842828429284302843128432284332843428435284362843728438284392844028441284422844328444284452844628447284482844928450284512845228453284542845528456284572845828459284602846128462284632846428465284662846728468284692847028471284722847328474284752847628477284782847928480284812848228483284842848528486284872848828489284902849128492284932849428495284962849728498284992850028501285022850328504285052850628507285082850928510285112851228513285142851528516285172851828519285202852128522285232852428525285262852728528285292853028531285322853328534285352853628537285382853928540285412854228543285442854528546285472854828549285502855128552285532855428555285562855728558285592856028561285622856328564285652856628567285682856928570285712857228573285742857528576285772857828579285802858128582285832858428585285862858728588285892859028591285922859328594285952859628597285982859928600286012860228603286042860528606286072860828609286102861128612286132861428615286162861728618286192862028621286222862328624286252862628627286282862928630286312863228633286342863528636286372863828639286402864128642286432864428645286462864728648286492865028651286522865328654286552865628657286582865928660286612866228663286642866528666286672866828669286702867128672286732867428675286762867728678286792868028681286822868328684286852868628687286882868928690286912869228693286942869528696286972869828699287002870128702287032870428705287062870728708287092871028711287122871328714287152871628717287182871928720287212872228723287242872528726287272872828729287302873128732287332873428735287362873728738287392874028741287422874328744287452874628747287482874928750287512875228753287542875528756287572875828759287602876128762287632876428765287662876728768287692877028771287722877328774287752877628777287782877928780287812878228783287842878528786287872878828789287902879128792287932879428795287962879728798287992880028801288022880328804288052880628807288082880928810288112881228813288142881528816288172881828819288202882128822288232882428825288262882728828288292883028831288322883328834288352883628837288382883928840288412884228843288442884528846288472884828849288502885128852288532885428855288562885728858288592886028861288622886328864288652886628867288682886928870288712887228873288742887528876288772887828879288802888128882288832888428885288862888728888288892889028891288922889328894288952889628897288982889928900289012890228903289042890528906289072890828909289102891128912289132891428915289162891728918289192892028921289222892328924289252892628927289282892928930289312893228933289342893528936289372893828939289402894128942289432894428945289462894728948289492895028951289522895328954289552895628957289582895928960289612896228963289642896528966289672896828969289702897128972289732897428975289762897728978289792898028981289822898328984289852898628987289882898928990289912899228993289942899528996289972899828999290002900129002290032900429005290062900729008290092901029011290122901329014290152901629017290182901929020290212902229023290242902529026290272902829029290302903129032290332903429035290362903729038290392904029041290422904329044290452904629047290482904929050290512905229053290542905529056290572905829059290602906129062290632906429065290662906729068290692907029071290722907329074290752907629077290782907929080290812908229083290842908529086290872908829089290902909129092290932909429095290962909729098290992910029101291022910329104291052910629107291082910929110291112911229113291142911529116291172911829119291202912129122291232912429125291262912729128291292913029131291322913329134291352913629137291382913929140291412914229143291442914529146291472914829149291502915129152291532915429155291562915729158291592916029161291622916329164291652916629167291682916929170291712917229173291742917529176291772917829179291802918129182291832918429185291862918729188291892919029191291922919329194291952919629197291982919929200292012920229203292042920529206292072920829209292102921129212292132921429215292162921729218292192922029221292222922329224292252922629227292282922929230292312923229233292342923529236292372923829239292402924129242292432924429245292462924729248292492925029251292522925329254292552925629257292582925929260292612926229263292642926529266292672926829269292702927129272292732927429275292762927729278292792928029281292822928329284292852928629287292882928929290292912929229293292942929529296292972929829299293002930129302293032930429305293062930729308293092931029311293122931329314293152931629317293182931929320293212932229323293242932529326293272932829329293302933129332293332933429335293362933729338293392934029341293422934329344293452934629347293482934929350293512935229353293542935529356293572935829359293602936129362293632936429365293662936729368293692937029371293722937329374293752937629377293782937929380293812938229383293842938529386293872938829389293902939129392293932939429395293962939729398293992940029401294022940329404294052940629407294082940929410294112941229413294142941529416294172941829419294202942129422294232942429425294262942729428294292943029431294322943329434294352943629437294382943929440294412944229443294442944529446294472944829449294502945129452294532945429455294562945729458294592946029461294622946329464294652946629467294682946929470294712947229473294742947529476294772947829479294802948129482294832948429485294862948729488294892949029491294922949329494294952949629497294982949929500295012950229503295042950529506295072950829509295102951129512295132951429515295162951729518295192952029521295222952329524295252952629527295282952929530295312953229533295342953529536295372953829539295402954129542295432954429545295462954729548295492955029551295522955329554295552955629557295582955929560295612956229563295642956529566295672956829569295702957129572295732957429575295762957729578295792958029581295822958329584295852958629587295882958929590295912959229593295942959529596295972959829599296002960129602296032960429605296062960729608296092961029611296122961329614296152961629617296182961929620296212962229623296242962529626296272962829629296302963129632296332963429635296362963729638296392964029641296422964329644296452964629647296482964929650296512965229653296542965529656296572965829659296602966129662296632966429665296662966729668296692967029671296722967329674296752967629677296782967929680296812968229683296842968529686296872968829689296902969129692296932969429695296962969729698296992970029701297022970329704297052970629707297082970929710297112971229713297142971529716297172971829719297202972129722297232972429725297262972729728297292973029731297322973329734297352973629737297382973929740297412974229743297442974529746297472974829749297502975129752297532975429755297562975729758297592976029761297622976329764297652976629767 |
- <?xml version="1.0"?>
- <!--
- 22x18 upperbody detector (see the detailed description below).
- //////////////////////////////////////////////////////////////////////////
- | Contributors License Agreement
- | IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
- | By downloading, copying, installing or using the software you agree
- | to this license.
- | If you do not agree to this license, do not download, install,
- | copy or use the software.
- |
- | Copyright (c) 2004, Hannes Kruppa and Bernt Schiele (ETH Zurich, Switzerland).
- | All rights reserved.
- |
- | Redistribution and use in source and binary forms, with or without
- | modification, are permitted provided that the following conditions are
- | met:
- |
- | * Redistributions of source code must retain the above copyright
- | notice, this list of conditions and the following disclaimer.
- | * Redistributions in binary form must reproduce the above
- | copyright notice, this list of conditions and the following
- | disclaimer in the documentation and/or other materials provided
- | with the distribution.
- | * The name of Contributor may not used to endorse or promote products
- | derived from this software without specific prior written permission.
- |
- | THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
- | "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
- | LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
- | A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
- | CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
- | EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
- | PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
- | PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
- | LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
- | NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
- | SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. Back to
- | Top
- //////////////////////////////////////////////////////////////////////////
- "Haar"-based Detectors For Pedestrian Detection
- ===============================================
- by Hannes Kruppa and Bernt Schiele, ETH Zurich, Switzerland
- This archive provides the following three detectors:
- - upper body detector (most fun, useful in many scenarios!)
- - lower body detector
- - full body detector
- These detectors have been successfully applied to pedestrian detection
- in still images. They can be directly passed as parameters to the
- program HaarFaceDetect.
- NOTE: These detectors deal with frontal and backside views but not
- with side views (also see "Known limitations" below).
- RESEARCHERS:
- If you are using any of the detectors or involved ideas please cite
- this paper (available at www.vision.ethz.ch/publications/):
- @InProceedings{Kruppa03-bmvc,
- author = "Hannes Kruppa, Modesto Castrillon-Santana and Bernt Schiele",
- title = "Fast and Robust Face Finding via Local Context."
- booktitle = "Joint IEEE International Workshop on Visual Surveillance and Performance Evaluation of Tracking and Surveillance"
- year = "2003",
- month = "October"
- }
- COMMERCIAL:
- If you have any commercial interest in this work please contact
- hkruppa@inf.ethz.ch
- ADDITIONAL INFORMATION
- ======================
- Check out the demo movie, e.g. using mplayer or any (Windows/Linux-) player
- that can play back .mpg movies.
- Under Linux that's:
- > ffplay demo.mpg
- or:
- > mplayer demo.mpg
- The movie shows a person walking towards the camera in a realistic
- indoor setting. Using ffplay or mplayer you can pause and continue the
- movie by pressing the space bar.
- Detections coming from the different detectors are visualized using
- different line styles:
- upper body : dotted line
- lower body : dashed line
- full body : solid line
- You will notice that successful detections containing the target do
- not sit tightly on the body but also include some of the background
- left and right. This is not a bug but accurately reflects the
- employed training data which also includes portions of the background
- to ensure proper silhouette representation. If you want to get a
- feeling for the training data check out the CBCL data set:
- http://www.ai.mit.edu/projects/cbcl/software-datasets/PedestrianData.html
- There is also a small number of false alarms in this sequence.
- NOTE: This is per frame detection, not tracking (which is also one of
- the reasons why it is not mislead by the person's shadow on the back
- wall).
- On an Intel Xeon 1.7GHz machine the detectors operate at something
- between 6Hz to 14 Hz (on 352 x 288 frames per second) depending on the
- detector. The detectors work as well on much lower image resolutions
- which is always an interesting possibility for speed-ups or
- "coarse-to-fine" search strategies.
- Additional information e.g. on training parameters, detector
- combination, detecting other types of objects (e.g. cars) etc. is
- available in my PhD thesis report (available end of June). Check out
- www.vision.ethz.ch/kruppa/
- KNOWN LIMITATIONS
- ==================
- 1) the detectors only support frontal and back views but not sideviews.
- Sideviews are trickier and it makes a lot of sense to include additional
- modalities for their detection, e.g. motion information. I recommend
- Viola and Jones' ICCV 2003 paper if this further interests you.
- 2) dont expect these detectors to be as accurate as a frontal face detector.
- A frontal face as a pattern is pretty distinct with respect to other
- patterns occuring in the world (i.e. image "background"). This is not so
- for upper, lower and especially full bodies, because they have to rely
- on fragile silhouette information rather than internal (facial) features.
- Still, we found especially the upper body detector to perform amazingly well.
- In contrast to a face detector these detectors will also work at very low
- image resolutions
- Acknowledgements
- ================
- Thanks to Martin Spengler, ETH Zurich, for providing the demo movie.
- -->
- <opencv_storage>
- <haarcascade_upperbody type_id="opencv-haar-classifier">
- <size>22 18</size>
- <stages>
- <_>
- <!-- stage 0 -->
- <trees>
- <_>
- <!-- tree 0 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>5 5 12 6 -1.</_>
- <_>9 5 4 6 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0136960297822952</threshold>
- <left_val>0.4507646858692169</left_val>
- <right_val>-0.4217903017997742</right_val></_></_>
- <_>
- <!-- tree 1 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>7 13 10 4 -1.</_>
- <_>7 15 10 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0124414497986436</threshold>
- <left_val>0.1649325042963028</left_val>
- <right_val>-0.7479348778724670</right_val></_></_>
- <_>
- <!-- tree 2 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>3 14 9 4 -1.</_>
- <_>6 14 3 4 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-2.7094660326838493e-003</threshold>
- <left_val>0.3100470006465912</left_val>
- <right_val>-0.3761714100837708</right_val></_></_>
- <_>
- <!-- tree 3 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>15 6 5 6 -1.</_>
- <_>15 6 5 3 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-0.1000801026821137</threshold>
- <left_val>0.7618219852447510</left_val>
- <right_val>-0.0745569765567780</right_val></_></_>
- <_>
- <!-- tree 4 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 1 22 14 -1.</_>
- <_>11 1 11 14 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.2511411905288696</threshold>
- <left_val>-0.6415402889251709</left_val>
- <right_val>0.1513922065496445</right_val></_></_>
- <_>
- <!-- tree 5 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>1 11 20 4 -1.</_>
- <_>6 11 10 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.1051065027713776</threshold>
- <left_val>0.7145937085151672</left_val>
- <right_val>-0.1449857950210571</right_val></_></_>
- <_>
- <!-- tree 6 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>7 6 6 5 -1.</_>
- <_>7 6 3 5 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-0.0884480178356171</threshold>
- <left_val>0.7577317953109741</left_val>
- <right_val>-0.0685868933796883</right_val></_></_>
- <_>
- <!-- tree 7 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>5 13 12 4 -1.</_>
- <_>11 13 6 2 2.</_>
- <_>5 15 6 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0108749102801085</threshold>
- <left_val>0.1461060941219330</left_val>
- <right_val>-0.5426371097564697</right_val></_></_>
- <_>
- <!-- tree 8 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>7 12 8 6 -1.</_>
- <_>7 12 4 3 2.</_>
- <_>11 15 4 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0126905702054501</threshold>
- <left_val>0.1167458966374397</left_val>
- <right_val>-0.4964945912361145</right_val></_></_>
- <_>
- <!-- tree 9 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>20 0 2 18 -1.</_>
- <_>20 9 2 9 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0321983993053436</threshold>
- <left_val>-0.3852939009666443</left_val>
- <right_val>0.0984379723668098</right_val></_></_>
- <_>
- <!-- tree 10 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>8 6 6 12 -1.</_>
- <_>10 6 2 12 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-3.4077179152518511e-003</threshold>
- <left_val>0.2520087063312531</left_val>
- <right_val>-0.2238254994153976</right_val></_></_>
- <_>
- <!-- tree 11 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>8 5 6 6 -1.</_>
- <_>10 5 2 6 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0303243901580572</threshold>
- <left_val>-0.1053444966673851</left_val>
- <right_val>0.6573541760444641</right_val></_></_>
- <_>
- <!-- tree 12 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>5 15 12 2 -1.</_>
- <_>5 16 12 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>4.1930507868528366e-003</threshold>
- <left_val>0.1287239938974381</left_val>
- <right_val>-0.5316066145896912</right_val></_></_>
- <_>
- <!-- tree 13 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>20 0 2 18 -1.</_>
- <_>20 9 2 9 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0805014073848724</threshold>
- <left_val>0.0416966602206230</left_val>
- <right_val>-0.7212303280830383</right_val></_></_>
- <_>
- <!-- tree 14 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 0 2 18 -1.</_>
- <_>0 9 2 9 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0348220802843571</threshold>
- <left_val>-0.4975110888481140</left_val>
- <right_val>0.1395993977785111</right_val></_></_>
- <_>
- <!-- tree 15 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>13 7 6 4 -1.</_>
- <_>13 7 6 2 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>7.5519368983805180e-003</threshold>
- <left_val>-0.0921476781368256</left_val>
- <right_val>0.1129434034228325</right_val></_></_>
- <_>
- <!-- tree 16 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>2 14 7 4 -1.</_>
- <_>2 16 7 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0175721403211355</threshold>
- <left_val>-0.5678442716598511</left_val>
- <right_val>0.0935728102922440</right_val></_></_>
- <_>
- <!-- tree 17 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>13 7 7 4 -1.</_>
- <_>13 7 7 2 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>5.2012042142450809e-003</threshold>
- <left_val>-0.0792380794882774</left_val>
- <right_val>0.0618789605796337</right_val></_></_>
- <_>
- <!-- tree 18 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>4 6 4 12 -1.</_>
- <_>4 10 4 4 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0307989194989204</threshold>
- <left_val>-0.5665851235389710</left_val>
- <right_val>0.0952714905142784</right_val></_></_>
- <_>
- <!-- tree 19 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>8 4 6 10 -1.</_>
- <_>11 4 3 5 2.</_>
- <_>8 9 3 5 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-1.3465429656207561e-003</threshold>
- <left_val>0.2401147037744522</left_val>
- <right_val>-0.2602663934230804</right_val></_></_></trees>
- <stage_threshold>-1.1264339685440063</stage_threshold>
- <parent>-1</parent>
- <next>-1</next></_>
- <_>
- <!-- stage 1 -->
- <trees>
- <_>
- <!-- tree 0 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>6 8 6 10 -1.</_>
- <_>6 8 3 5 2.</_>
- <_>9 13 3 5 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>1.9108939450234175e-003</threshold>
- <left_val>-0.4624095857143402</left_val>
- <right_val>0.3061217069625855</right_val></_></_>
- <_>
- <!-- tree 1 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>11 12 6 6 -1.</_>
- <_>11 15 6 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>9.5464065670967102e-003</threshold>
- <left_val>0.0919561386108398</left_val>
- <right_val>-0.5350117087364197</right_val></_></_>
- <_>
- <!-- tree 2 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>1 15 8 3 -1.</_>
- <_>5 15 4 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0434028096497059</threshold>
- <left_val>0.5681784152984619</left_val>
- <right_val>-0.1128493025898933</right_val></_></_>
- <_>
- <!-- tree 3 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>6 9 10 4 -1.</_>
- <_>6 11 10 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0503860302269459</threshold>
- <left_val>-0.0803169310092926</left_val>
- <right_val>0.7352185845375061</right_val></_></_>
- <_>
- <!-- tree 4 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>11 5 8 3 -1.</_>
- <_>10 6 8 1 3.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-6.8480317713692784e-004</threshold>
- <left_val>0.2579864859580994</left_val>
- <right_val>-0.2804940938949585</right_val></_></_>
- <_>
- <!-- tree 5 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 13 22 5 -1.</_>
- <_>0 13 11 5 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.1154804974794388</threshold>
- <left_val>0.0920655727386475</left_val>
- <right_val>-0.7555689215660095</right_val></_></_>
- <_>
- <!-- tree 6 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>2 13 14 3 -1.</_>
- <_>9 13 7 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-1.9348369678482413e-003</threshold>
- <left_val>0.2944079041481018</left_val>
- <right_val>-0.2410271018743515</right_val></_></_>
- <_>
- <!-- tree 7 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>11 5 2 10 -1.</_>
- <_>11 5 1 10 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-0.0435288101434708</threshold>
- <left_val>0.4920296967029572</left_val>
- <right_val>-0.0396501012146473</right_val></_></_>
- <_>
- <!-- tree 8 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>11 5 10 2 -1.</_>
- <_>11 5 10 1 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-0.0302181504666805</threshold>
- <left_val>0.7722792029380798</left_val>
- <right_val>-0.0867865234613419</right_val></_></_>
- <_>
- <!-- tree 9 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>14 0 8 8 -1.</_>
- <_>18 0 4 4 2.</_>
- <_>14 4 4 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0245365891605616</threshold>
- <left_val>0.0959448218345642</left_val>
- <right_val>-0.4864296913146973</right_val></_></_>
- <_>
- <!-- tree 10 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>5 0 3 10 -1.</_>
- <_>5 5 3 5 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0239589903503656</threshold>
- <left_val>0.1043784022331238</left_val>
- <right_val>-0.5121983885765076</right_val></_></_>
- <_>
- <!-- tree 11 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>16 0 3 12 -1.</_>
- <_>16 6 3 6 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0253708306699991</threshold>
- <left_val>-0.3198154866695404</left_val>
- <right_val>0.0914865732192993</right_val></_></_>
- <_>
- <!-- tree 12 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>3 3 12 4 -1.</_>
- <_>3 3 6 2 2.</_>
- <_>9 5 6 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-1.8606419907882810e-003</threshold>
- <left_val>0.2278396934270859</left_val>
- <right_val>-0.2430797070264816</right_val></_></_>
- <_>
- <!-- tree 13 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>2 2 20 3 -1.</_>
- <_>7 2 10 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0225508008152246</threshold>
- <left_val>0.0692075565457344</left_val>
- <right_val>-0.3005428016185761</right_val></_></_>
- <_>
- <!-- tree 14 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>11 7 3 8 -1.</_>
- <_>11 7 3 4 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-0.0497520901262760</threshold>
- <left_val>-0.6107804775238037</left_val>
- <right_val>0.0944727733731270</right_val></_></_>
- <_>
- <!-- tree 15 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>4 9 18 3 -1.</_>
- <_>4 10 18 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0266023892909288</threshold>
- <left_val>0.5958176851272583</left_val>
- <right_val>-0.0920460522174835</right_val></_></_>
- <_>
- <!-- tree 16 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>3 3 16 14 -1.</_>
- <_>3 3 8 7 2.</_>
- <_>11 10 8 7 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.1076000034809113</threshold>
- <left_val>0.1027851998806000</left_val>
- <right_val>-0.5430337190628052</right_val></_></_>
- <_>
- <!-- tree 17 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>7 14 8 4 -1.</_>
- <_>7 14 4 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0176906995475292</threshold>
- <left_val>0.0660571381449699</left_val>
- <right_val>-0.6321390867233276</right_val></_></_>
- <_>
- <!-- tree 18 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>10 7 4 7 -1.</_>
- <_>10 7 2 7 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-0.0624099187552929</threshold>
- <left_val>0.6872419714927673</left_val>
- <right_val>-0.0670705586671829</right_val></_></_>
- <_>
- <!-- tree 19 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>11 9 6 5 -1.</_>
- <_>11 9 3 5 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-1.9801619928330183e-003</threshold>
- <left_val>0.0944115519523621</left_val>
- <right_val>-0.0878194868564606</right_val></_></_>
- <_>
- <!-- tree 20 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 6 22 4 -1.</_>
- <_>11 6 11 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0636684298515320</threshold>
- <left_val>0.1153173968195915</left_val>
- <right_val>-0.4812976121902466</right_val></_></_>
- <_>
- <!-- tree 21 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>14 6 6 12 -1.</_>
- <_>17 6 3 6 2.</_>
- <_>14 12 3 6 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0307978298515081</threshold>
- <left_val>0.3585476875305176</left_val>
- <right_val>-0.1259379982948303</right_val></_></_>
- <_>
- <!-- tree 22 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>4 14 6 4 -1.</_>
- <_>4 16 6 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-1.8353419727645814e-004</threshold>
- <left_val>0.1478839963674545</left_val>
- <right_val>-0.2854681015014648</right_val></_></_>
- <_>
- <!-- tree 23 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>12 14 6 4 -1.</_>
- <_>12 16 6 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>1.7074620118364692e-003</threshold>
- <left_val>0.0799296572804451</left_val>
- <right_val>-0.2523337006568909</right_val></_></_>
- <_>
- <!-- tree 24 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>4 14 6 4 -1.</_>
- <_>4 16 6 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0153251998126507</threshold>
- <left_val>-0.5771185755729675</left_val>
- <right_val>0.0989083275198936</right_val></_></_>
- <_>
- <!-- tree 25 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>10 6 6 6 -1.</_>
- <_>12 6 2 6 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0413891896605492</threshold>
- <left_val>-0.0655507966876030</left_val>
- <right_val>0.5736380219459534</right_val></_></_>
- <_>
- <!-- tree 26 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>9 0 11 3 -1.</_>
- <_>8 1 11 1 3.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-4.5577771379612386e-004</threshold>
- <left_val>0.2259308993816376</left_val>
- <right_val>-0.1910558044910431</right_val></_></_>
- <_>
- <!-- tree 27 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>7 0 12 4 -1.</_>
- <_>13 0 6 2 2.</_>
- <_>7 2 6 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0134556898847222</threshold>
- <left_val>-0.4023393094539642</left_val>
- <right_val>0.0864776223897934</right_val></_></_>
- <_>
- <!-- tree 28 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>6 6 6 6 -1.</_>
- <_>8 6 2 6 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0379783995449543</threshold>
- <left_val>0.5525758862495422</left_val>
- <right_val>-0.0815410166978836</right_val></_></_>
- <_>
- <!-- tree 29 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>15 5 3 8 -1.</_>
- <_>15 9 3 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0171975009143353</threshold>
- <left_val>-0.1836300939321518</left_val>
- <right_val>0.0519998706877232</right_val></_></_>
- <_>
- <!-- tree 30 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>5 2 12 7 -1.</_>
- <_>9 2 4 7 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-1.2581580085679889e-003</threshold>
- <left_val>0.1883004009723663</left_val>
- <right_val>-0.2572666108608246</right_val></_></_>
- <_>
- <!-- tree 31 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>5 5 12 4 -1.</_>
- <_>9 5 4 4 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0677251070737839</threshold>
- <left_val>-0.0809564515948296</left_val>
- <right_val>0.7180324196815491</right_val></_></_>
- <_>
- <!-- tree 32 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>7 3 4 7 -1.</_>
- <_>7 3 2 7 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>0.0354894287884235</threshold>
- <left_val>0.1006807014346123</left_val>
- <right_val>-0.5377414226531982</right_val></_></_></trees>
- <stage_threshold>-1.1226719617843628</stage_threshold>
- <parent>0</parent>
- <next>-1</next></_>
- <_>
- <!-- stage 2 -->
- <trees>
- <_>
- <!-- tree 0 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>2 14 6 4 -1.</_>
- <_>5 14 3 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-5.3695798851549625e-003</threshold>
- <left_val>0.2747949957847595</left_val>
- <right_val>-0.3417896032333374</right_val></_></_>
- <_>
- <!-- tree 1 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>11 4 6 6 -1.</_>
- <_>13 4 2 6 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>6.2695867381989956e-004</threshold>
- <left_val>-0.0986466333270073</left_val>
- <right_val>0.1072842031717300</right_val></_></_>
- <_>
- <!-- tree 2 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>5 14 12 4 -1.</_>
- <_>5 14 6 2 2.</_>
- <_>11 16 6 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0164842698723078</threshold>
- <left_val>-0.6497290730476379</left_val>
- <right_val>0.0960377529263496</right_val></_></_>
- <_>
- <!-- tree 3 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>3 12 16 6 -1.</_>
- <_>11 12 8 3 2.</_>
- <_>3 15 8 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0221040993928909</threshold>
- <left_val>-0.4598448872566223</left_val>
- <right_val>0.1630463004112244</right_val></_></_>
- <_>
- <!-- tree 4 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>1 11 20 4 -1.</_>
- <_>6 11 10 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.1190413981676102</threshold>
- <left_val>-0.0996003970503807</left_val>
- <right_val>0.7372975945472717</right_val></_></_>
- <_>
- <!-- tree 5 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>9 0 10 10 -1.</_>
- <_>14 0 5 5 2.</_>
- <_>9 5 5 5 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-2.0222070161253214e-003</threshold>
- <left_val>0.2102926969528198</left_val>
- <right_val>-0.2457713037729263</right_val></_></_>
- <_>
- <!-- tree 6 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>8 8 4 6 -1.</_>
- <_>8 8 2 6 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>0.0675003528594971</threshold>
- <left_val>-0.1246778964996338</left_val>
- <right_val>0.5765423178672791</right_val></_></_>
- <_>
- <!-- tree 7 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>1 7 20 11 -1.</_>
- <_>1 7 10 11 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.1965593993663788</threshold>
- <left_val>-0.6089174747467041</left_val>
- <right_val>0.0996720567345619</right_val></_></_>
- <_>
- <!-- tree 8 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>9 0 12 3 -1.</_>
- <_>9 0 6 3 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>0.0494311712682247</threshold>
- <left_val>0.1375274956226349</left_val>
- <right_val>-0.4558086991310120</right_val></_></_>
- <_>
- <!-- tree 9 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>13 0 6 6 -1.</_>
- <_>13 0 3 6 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0233800895512104</threshold>
- <left_val>0.0471418909728527</left_val>
- <right_val>-0.3502770960330963</right_val></_></_>
- <_>
- <!-- tree 10 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>5 0 12 8 -1.</_>
- <_>5 2 12 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>1.3998650247231126e-003</threshold>
- <left_val>-0.2064304947853088</left_val>
- <right_val>0.2432229965925217</right_val></_></_>
- <_>
- <!-- tree 11 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>14 0 8 6 -1.</_>
- <_>18 0 4 3 2.</_>
- <_>14 3 4 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0114326896145940</threshold>
- <left_val>0.0551873706281185</left_val>
- <right_val>-0.3261989951133728</right_val></_></_>
- <_>
- <!-- tree 12 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>7 6 8 6 -1.</_>
- <_>9 6 4 6 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0487750694155693</threshold>
- <left_val>-0.0689925104379654</left_val>
- <right_val>0.7117180824279785</right_val></_></_>
- <_>
- <!-- tree 13 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>11 3 6 6 -1.</_>
- <_>13 3 2 6 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0652840211987495</threshold>
- <left_val>3.7155740428715944e-003</left_val>
- <right_val>0.5931897163391113</right_val></_></_>
- <_>
- <!-- tree 14 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>5 3 6 6 -1.</_>
- <_>7 3 2 6 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>6.1603228095918894e-004</threshold>
- <left_val>-0.2327252030372620</left_val>
- <right_val>0.2044153064489365</right_val></_></_>
- <_>
- <!-- tree 15 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>13 0 8 6 -1.</_>
- <_>17 0 4 3 2.</_>
- <_>13 3 4 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0105274999514222</threshold>
- <left_val>-0.3177379071712494</left_val>
- <right_val>0.1017130985856056</right_val></_></_>
- <_>
- <!-- tree 16 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 0 8 6 -1.</_>
- <_>0 0 4 3 2.</_>
- <_>4 3 4 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0162313394248486</threshold>
- <left_val>0.0917341932654381</left_val>
- <right_val>-0.4714300930500031</right_val></_></_>
- <_>
- <!-- tree 17 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>7 0 10 6 -1.</_>
- <_>12 0 5 3 2.</_>
- <_>7 3 5 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>3.8958500954322517e-004</threshold>
- <left_val>-0.1299754977226257</left_val>
- <right_val>0.1347548961639404</right_val></_></_>
- <_>
- <!-- tree 18 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 15 22 2 -1.</_>
- <_>11 15 11 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0441656894981861</threshold>
- <left_val>-0.6033102869987488</left_val>
- <right_val>0.0647668763995171</right_val></_></_>
- <_>
- <!-- tree 19 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>5 14 12 4 -1.</_>
- <_>5 15 12 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0136632099747658</threshold>
- <left_val>-0.5276284217834473</left_val>
- <right_val>0.0634857416152954</right_val></_></_>
- <_>
- <!-- tree 20 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>5 13 6 4 -1.</_>
- <_>5 15 6 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-8.8231859263032675e-004</threshold>
- <left_val>0.1451025009155273</left_val>
- <right_val>-0.2784520089626312</right_val></_></_>
- <_>
- <!-- tree 21 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>3 9 17 3 -1.</_>
- <_>3 10 17 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0278191901743412</threshold>
- <left_val>0.4364086985588074</left_val>
- <right_val>-0.0851918607950211</right_val></_></_>
- <_>
- <!-- tree 22 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>3 8 16 10 -1.</_>
- <_>3 8 8 5 2.</_>
- <_>11 13 8 5 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0625609904527664</threshold>
- <left_val>0.1002788990736008</left_val>
- <right_val>-0.4223591983318329</right_val></_></_>
- <_>
- <!-- tree 23 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>9 0 10 6 -1.</_>
- <_>14 0 5 3 2.</_>
- <_>9 3 5 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-4.4808178790844977e-004</threshold>
- <left_val>0.1485148966312408</left_val>
- <right_val>-0.1773128956556320</right_val></_></_>
- <_>
- <!-- tree 24 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>3 0 12 4 -1.</_>
- <_>3 0 6 2 2.</_>
- <_>9 2 6 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0213631801307201</threshold>
- <left_val>-0.6133446097373962</left_val>
- <right_val>0.0605393983423710</right_val></_></_>
- <_>
- <!-- tree 25 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>4 10 14 3 -1.</_>
- <_>4 10 7 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0691223293542862</threshold>
- <left_val>-0.8684576153755188</left_val>
- <right_val>0.0393477492034435</right_val></_></_>
- <_>
- <!-- tree 26 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>1 14 11 4 -1.</_>
- <_>1 16 11 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0305428393185139</threshold>
- <left_val>-0.6402171850204468</left_val>
- <right_val>0.0495938211679459</right_val></_></_>
- <_>
- <!-- tree 27 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>7 0 12 6 -1.</_>
- <_>13 0 6 3 2.</_>
- <_>7 3 6 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0101011600345373</threshold>
- <left_val>-0.1619915068149567</left_val>
- <right_val>0.0572568997740746</right_val></_></_>
- <_>
- <!-- tree 28 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>3 0 10 6 -1.</_>
- <_>3 0 5 3 2.</_>
- <_>8 3 5 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-2.2010109387338161e-004</threshold>
- <left_val>0.2135093063116074</left_val>
- <right_val>-0.2019899934530258</right_val></_></_></trees>
- <stage_threshold>-1.0127470493316650</stage_threshold>
- <parent>1</parent>
- <next>-1</next></_>
- <_>
- <!-- stage 3 -->
- <trees>
- <_>
- <!-- tree 0 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>6 0 10 3 -1.</_>
- <_>6 0 5 3 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>5.7967850007116795e-003</threshold>
- <left_val>-0.3384417891502380</left_val>
- <right_val>0.2506627142429352</right_val></_></_>
- <_>
- <!-- tree 1 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>14 8 6 4 -1.</_>
- <_>14 8 6 2 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>0.0637951791286469</threshold>
- <left_val>-0.0421116203069687</left_val>
- <right_val>0.3574657142162323</right_val></_></_>
- <_>
- <!-- tree 2 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 2 5 16 -1.</_>
- <_>0 10 5 8 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0643320381641388</threshold>
- <left_val>-0.5066078901290894</left_val>
- <right_val>0.1171773970127106</right_val></_></_>
- <_>
- <!-- tree 3 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 3 22 5 -1.</_>
- <_>0 3 11 5 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.1157428994774818</threshold>
- <left_val>-0.5667849779129028</left_val>
- <right_val>0.0958809033036232</right_val></_></_>
- <_>
- <!-- tree 4 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>6 15 8 3 -1.</_>
- <_>10 15 4 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-3.9005130529403687e-003</threshold>
- <left_val>-0.4149822890758514</left_val>
- <right_val>0.1485832035541534</right_val></_></_>
- <_>
- <!-- tree 5 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>15 0 2 14 -1.</_>
- <_>15 0 1 14 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>0.0125129297375679</threshold>
- <left_val>0.0536966696381569</left_val>
- <right_val>-0.1416396051645279</right_val></_></_>
- <_>
- <!-- tree 6 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>7 0 14 2 -1.</_>
- <_>7 0 14 1 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>1.5871099894866347e-003</threshold>
- <left_val>-0.2596234083175659</left_val>
- <right_val>0.1941833049058914</right_val></_></_>
- <_>
- <!-- tree 7 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>1 11 20 5 -1.</_>
- <_>6 11 10 5 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.1629112064838409</threshold>
- <left_val>-0.0612437687814236</left_val>
- <right_val>0.7856721282005310</right_val></_></_>
- <_>
- <!-- tree 8 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>5 3 12 9 -1.</_>
- <_>9 6 4 3 9.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.3325822055339813</threshold>
- <left_val>0.7802013158798218</left_val>
- <right_val>-0.0440364591777325</right_val></_></_>
- <_>
- <!-- tree 9 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>10 1 12 3 -1.</_>
- <_>14 1 4 3 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0102888997644186</threshold>
- <left_val>-0.1528968065977097</left_val>
- <right_val>0.0620962306857109</right_val></_></_>
- <_>
- <!-- tree 10 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 1 12 3 -1.</_>
- <_>4 1 4 3 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0289560295641422</threshold>
- <left_val>0.0847077965736389</left_val>
- <right_val>-0.4782071113586426</right_val></_></_>
- <_>
- <!-- tree 11 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>14 12 4 6 -1.</_>
- <_>14 12 2 6 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-3.2221511355601251e-004</threshold>
- <left_val>0.1395125985145569</left_val>
- <right_val>-0.1881939023733139</right_val></_></_>
- <_>
- <!-- tree 12 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 10 22 7 -1.</_>
- <_>11 10 11 7 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.1583528965711594</threshold>
- <left_val>0.0666678100824356</left_val>
- <right_val>-0.5457236170768738</right_val></_></_>
- <_>
- <!-- tree 13 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>11 2 4 11 -1.</_>
- <_>11 2 2 11 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-0.0425843112170696</threshold>
- <left_val>0.2704033851623535</left_val>
- <right_val>-0.0566545091569424</right_val></_></_>
- <_>
- <!-- tree 14 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>3 14 16 4 -1.</_>
- <_>3 14 8 2 2.</_>
- <_>11 16 8 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0275051407516003</threshold>
- <left_val>0.0492711588740349</left_val>
- <right_val>-0.7315763831138611</right_val></_></_>
- <_>
- <!-- tree 15 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>12 12 6 6 -1.</_>
- <_>14 12 2 6 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0868797004222870</threshold>
- <left_val>-0.0175324007868767</left_val>
- <right_val>0.8678265213966370</right_val></_></_>
- <_>
- <!-- tree 16 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>4 12 6 6 -1.</_>
- <_>6 12 2 6 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-2.0130439661443233e-003</threshold>
- <left_val>0.1659394055604935</left_val>
- <right_val>-0.2526623010635376</right_val></_></_>
- <_>
- <!-- tree 17 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>11 14 6 4 -1.</_>
- <_>11 16 6 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>4.2330170981585979e-004</threshold>
- <left_val>0.0942235514521599</left_val>
- <right_val>-0.2462970018386841</right_val></_></_>
- <_>
- <!-- tree 18 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 0 12 4 -1.</_>
- <_>0 0 6 2 2.</_>
- <_>6 2 6 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0151944998651743</threshold>
- <left_val>0.0736956372857094</left_val>
- <right_val>-0.5006862282752991</right_val></_></_>
- <_>
- <!-- tree 19 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>15 11 4 6 -1.</_>
- <_>15 11 2 6 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-6.1203669756650925e-003</threshold>
- <left_val>0.2138189971446991</left_val>
- <right_val>-0.1673810034990311</right_val></_></_>
- <_>
- <!-- tree 20 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>3 11 4 6 -1.</_>
- <_>5 11 2 6 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0206602402031422</threshold>
- <left_val>-0.0806361585855484</left_val>
- <right_val>0.5782834887504578</right_val></_></_>
- <_>
- <!-- tree 21 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>18 5 4 7 -1.</_>
- <_>18 5 2 7 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-0.0603982508182526</threshold>
- <left_val>-0.6341177225112915</left_val>
- <right_val>0.0508990101516247</right_val></_></_>
- <_>
- <!-- tree 22 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>4 5 7 4 -1.</_>
- <_>4 5 7 2 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>0.0353864803910255</threshold>
- <left_val>0.0731911510229111</left_val>
- <right_val>-0.5642666220664978</right_val></_></_>
- <_>
- <!-- tree 23 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>9 6 12 3 -1.</_>
- <_>13 6 4 3 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0659978389739990</threshold>
- <left_val>0.3283380866050720</left_val>
- <right_val>-0.0263102594763041</right_val></_></_>
- <_>
- <!-- tree 24 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>1 6 12 3 -1.</_>
- <_>5 6 4 3 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>1.1004590196534991e-003</threshold>
- <left_val>-0.2311460971832275</left_val>
- <right_val>0.2020651996135712</right_val></_></_>
- <_>
- <!-- tree 25 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 0 22 10 -1.</_>
- <_>11 0 11 5 2.</_>
- <_>0 5 11 5 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0844881534576416</threshold>
- <left_val>0.0745898410677910</left_val>
- <right_val>-0.4371033906936646</right_val></_></_>
- <_>
- <!-- tree 26 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>2 4 14 3 -1.</_>
- <_>2 5 14 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0292359907180071</threshold>
- <left_val>0.6506476998329163</left_val>
- <right_val>-0.0545318387448788</right_val></_></_>
- <_>
- <!-- tree 27 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>13 3 8 6 -1.</_>
- <_>17 3 4 3 2.</_>
- <_>13 6 4 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0339169502258301</threshold>
- <left_val>-0.2880434989929199</left_val>
- <right_val>0.0321728810667992</right_val></_></_>
- <_>
- <!-- tree 28 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>4 14 14 4 -1.</_>
- <_>4 14 7 2 2.</_>
- <_>11 16 7 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-7.9108700156211853e-003</threshold>
- <left_val>-0.3366037905216217</left_val>
- <right_val>0.1010069027543068</right_val></_></_>
- <_>
- <!-- tree 29 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>11 2 4 11 -1.</_>
- <_>11 2 2 11 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>0.0519304312765598</threshold>
- <left_val>0.0329209603369236</left_val>
- <right_val>-0.1317653059959412</right_val></_></_>
- <_>
- <!-- tree 30 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>11 2 11 4 -1.</_>
- <_>11 2 11 2 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-0.0685861036181450</threshold>
- <left_val>0.5215355753898621</left_val>
- <right_val>-0.0667185783386230</right_val></_></_>
- <_>
- <!-- tree 31 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>10 7 12 3 -1.</_>
- <_>10 7 6 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-1.9451669650152326e-003</threshold>
- <left_val>0.1539679020643234</left_val>
- <right_val>-0.1989576071500778</right_val></_></_>
- <_>
- <!-- tree 32 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>9 7 4 6 -1.</_>
- <_>9 7 2 6 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>0.0713662281632423</threshold>
- <left_val>-0.0829271599650383</left_val>
- <right_val>0.4529233872890472</right_val></_></_>
- <_>
- <!-- tree 33 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>3 11 16 6 -1.</_>
- <_>11 11 8 3 2.</_>
- <_>3 14 8 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0266242399811745</threshold>
- <left_val>-0.4400973916053772</left_val>
- <right_val>0.1026711985468864</right_val></_></_>
- <_>
- <!-- tree 34 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>1 3 8 6 -1.</_>
- <_>1 3 4 3 2.</_>
- <_>5 6 4 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0252660606056452</threshold>
- <left_val>0.0557992011308670</left_val>
- <right_val>-0.5556933879852295</right_val></_></_>
- <_>
- <!-- tree 35 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>5 4 12 3 -1.</_>
- <_>5 5 12 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>5.5255689658224583e-003</threshold>
- <left_val>-0.1364029943943024</left_val>
- <right_val>0.2825520038604736</right_val></_></_>
- <_>
- <!-- tree 36 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>7 14 8 4 -1.</_>
- <_>11 14 4 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-2.9929999727755785e-003</threshold>
- <left_val>-0.3242157101631165</left_val>
- <right_val>0.1212206035852432</right_val></_></_>
- <_>
- <!-- tree 37 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>7 3 15 3 -1.</_>
- <_>7 4 15 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0221921093761921</threshold>
- <left_val>-0.0607410185039043</left_val>
- <right_val>0.4347316026687622</right_val></_></_>
- <_>
- <!-- tree 38 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>6 8 6 4 -1.</_>
- <_>6 8 6 2 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-9.4268741086125374e-003</threshold>
- <left_val>-0.3345840871334076</left_val>
- <right_val>0.1002969965338707</right_val></_></_>
- <_>
- <!-- tree 39 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>10 7 12 3 -1.</_>
- <_>10 7 6 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>3.4395330585539341e-003</threshold>
- <left_val>-0.0838299095630646</left_val>
- <right_val>0.1792594045400620</right_val></_></_>
- <_>
- <!-- tree 40 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 7 12 3 -1.</_>
- <_>6 7 6 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-3.2996390946209431e-003</threshold>
- <left_val>0.1999042928218842</left_val>
- <right_val>-0.2106847018003464</right_val></_></_>
- <_>
- <!-- tree 41 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>7 7 9 4 -1.</_>
- <_>10 7 3 4 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0261521507054567</threshold>
- <left_val>-0.0806674063205719</left_val>
- <right_val>0.3558126986026764</right_val></_></_></trees>
- <stage_threshold>-1.0684469938278198</stage_threshold>
- <parent>2</parent>
- <next>-1</next></_>
- <_>
- <!-- stage 4 -->
- <trees>
- <_>
- <!-- tree 0 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>6 2 4 16 -1.</_>
- <_>6 10 4 8 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0227926503866911</threshold>
- <left_val>0.4072526097297669</left_val>
- <right_val>-0.3360992074012756</right_val></_></_>
- <_>
- <!-- tree 1 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>8 4 6 6 -1.</_>
- <_>10 4 2 6 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-5.7334620505571365e-003</threshold>
- <left_val>0.2688218951225281</left_val>
- <right_val>-0.2277535051107407</right_val></_></_>
- <_>
- <!-- tree 2 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>1 11 20 3 -1.</_>
- <_>6 11 10 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0969412028789520</threshold>
- <left_val>-0.0809050127863884</left_val>
- <right_val>0.7432873845100403</right_val></_></_>
- <_>
- <!-- tree 3 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>14 9 6 8 -1.</_>
- <_>17 9 3 4 2.</_>
- <_>14 13 3 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0282889995723963</threshold>
- <left_val>0.4561010897159576</left_val>
- <right_val>-0.0610963404178619</right_val></_></_>
- <_>
- <!-- tree 4 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>11 0 9 4 -1.</_>
- <_>11 0 9 2 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>3.8522849790751934e-003</threshold>
- <left_val>-0.2524180114269257</left_val>
- <right_val>0.2090710997581482</right_val></_></_>
- <_>
- <!-- tree 5 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>11 10 6 8 -1.</_>
- <_>14 10 3 4 2.</_>
- <_>11 14 3 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>2.3100129328668118e-003</threshold>
- <left_val>-0.1471340060234070</left_val>
- <right_val>0.1546038985252380</right_val></_></_>
- <_>
- <!-- tree 6 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>5 16 12 2 -1.</_>
- <_>5 17 12 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>1.1361920041963458e-003</threshold>
- <left_val>0.1768047958612442</left_val>
- <right_val>-0.3053728938102722</right_val></_></_>
- <_>
- <!-- tree 7 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>5 9 14 4 -1.</_>
- <_>5 11 14 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0249628908932209</threshold>
- <left_val>-0.1265290975570679</left_val>
- <right_val>0.3744265139102936</right_val></_></_>
- <_>
- <!-- tree 8 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>2 9 6 8 -1.</_>
- <_>2 9 3 4 2.</_>
- <_>5 13 3 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-5.8984099887311459e-003</threshold>
- <left_val>0.2673898935317993</left_val>
- <right_val>-0.1776257008314133</right_val></_></_>
- <_>
- <!-- tree 9 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>15 8 6 4 -1.</_>
- <_>15 8 3 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0118049001321197</threshold>
- <left_val>0.0660779774188995</left_val>
- <right_val>-0.3348213136196137</right_val></_></_>
- <_>
- <!-- tree 10 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>1 8 6 4 -1.</_>
- <_>4 8 3 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>6.4400159753859043e-003</threshold>
- <left_val>0.1099480018019676</left_val>
- <right_val>-0.3630348145961762</right_val></_></_>
- <_>
- <!-- tree 11 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>13 5 8 5 -1.</_>
- <_>13 5 4 5 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-0.0894073694944382</threshold>
- <left_val>-0.4358046054840088</left_val>
- <right_val>0.0149443103000522</right_val></_></_>
- <_>
- <!-- tree 12 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>11 5 9 2 -1.</_>
- <_>11 5 9 1 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-0.0314042307436466</threshold>
- <left_val>0.6952344775199890</left_val>
- <right_val>-0.0548542886972427</right_val></_></_>
- <_>
- <!-- tree 13 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>12 6 9 12 -1.</_>
- <_>15 10 3 4 9.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.1460794955492020</threshold>
- <left_val>-0.2565006017684937</left_val>
- <right_val>0.0569565407931805</right_val></_></_>
- <_>
- <!-- tree 14 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>5 10 6 8 -1.</_>
- <_>5 10 3 4 2.</_>
- <_>8 14 3 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>2.1142649929970503e-003</threshold>
- <left_val>-0.2498755007982254</left_val>
- <right_val>0.1679255962371826</right_val></_></_>
- <_>
- <!-- tree 15 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>9 5 5 12 -1.</_>
- <_>9 8 5 6 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0151193598285317</threshold>
- <left_val>-0.3017987012863159</left_val>
- <right_val>0.1039358973503113</right_val></_></_>
- <_>
- <!-- tree 16 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>11 5 9 2 -1.</_>
- <_>11 5 9 1 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>0.0256209596991539</threshold>
- <left_val>-0.0748213008046150</left_val>
- <right_val>0.5360078215599060</right_val></_></_>
- <_>
- <!-- tree 17 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>5 0 15 12 -1.</_>
- <_>10 4 5 4 9.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.1441780030727387</threshold>
- <left_val>-0.2049089968204498</left_val>
- <right_val>0.0744577869772911</right_val></_></_>
- <_>
- <!-- tree 18 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>1 13 8 5 -1.</_>
- <_>5 13 4 5 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0259547792375088</threshold>
- <left_val>-0.0905748680233955</left_val>
- <right_val>0.4844220876693726</right_val></_></_>
- <_>
- <!-- tree 19 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>14 8 6 4 -1.</_>
- <_>14 8 3 4 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-0.0211307201534510</threshold>
- <left_val>-0.2268981039524078</left_val>
- <right_val>0.0648760572075844</right_val></_></_>
- <_>
- <!-- tree 20 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>8 8 4 6 -1.</_>
- <_>8 8 4 3 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>0.0164744593203068</threshold>
- <left_val>0.1076800003647804</left_val>
- <right_val>-0.3657059967517853</right_val></_></_>
- <_>
- <!-- tree 21 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>7 0 12 9 -1.</_>
- <_>11 3 4 3 9.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.1092215031385422</threshold>
- <left_val>0.0568273514509201</left_val>
- <right_val>-0.3472855985164642</right_val></_></_>
- <_>
- <!-- tree 22 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>7 13 6 4 -1.</_>
- <_>7 15 6 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-7.4581061198841780e-005</threshold>
- <left_val>0.1390427052974701</left_val>
- <right_val>-0.2594260871410370</right_val></_></_>
- <_>
- <!-- tree 23 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>10 7 6 10 -1.</_>
- <_>13 7 3 5 2.</_>
- <_>10 12 3 5 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0277536008507013</threshold>
- <left_val>0.3811129927635193</left_val>
- <right_val>-0.0428961291909218</right_val></_></_>
- <_>
- <!-- tree 24 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>6 7 6 10 -1.</_>
- <_>6 7 3 5 2.</_>
- <_>9 12 3 5 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0327214300632477</threshold>
- <left_val>-0.0908721536397934</left_val>
- <right_val>0.3928917944431305</right_val></_></_>
- <_>
- <!-- tree 25 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>7 0 12 2 -1.</_>
- <_>7 0 6 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>5.5606258101761341e-003</threshold>
- <left_val>0.0840022489428520</left_val>
- <right_val>-0.1939603984355927</right_val></_></_>
- <_>
- <!-- tree 26 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>2 0 18 9 -1.</_>
- <_>2 3 18 3 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.1071029007434845</threshold>
- <left_val>-0.5898147225379944</left_val>
- <right_val>0.0568627603352070</right_val></_></_>
- <_>
- <!-- tree 27 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>12 2 6 15 -1.</_>
- <_>12 2 3 15 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-8.0517623573541641e-003</threshold>
- <left_val>0.1179059967398644</left_val>
- <right_val>-0.1159565970301628</right_val></_></_>
- <_>
- <!-- tree 28 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>4 2 6 15 -1.</_>
- <_>7 2 3 15 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.1385001987218857</threshold>
- <left_val>-0.9080532193183899</left_val>
- <right_val>0.0414113588631153</right_val></_></_>
- <_>
- <!-- tree 29 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>7 12 12 4 -1.</_>
- <_>7 13 12 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0286209192126989</threshold>
- <left_val>0.0199285894632339</left_val>
- <right_val>-0.7369766235351563</right_val></_></_>
- <_>
- <!-- tree 30 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>4 4 4 14 -1.</_>
- <_>4 4 2 7 2.</_>
- <_>6 11 2 7 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0262089706957340</threshold>
- <left_val>-0.0615775510668755</left_val>
- <right_val>0.6089993119239807</right_val></_></_>
- <_>
- <!-- tree 31 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>12 6 9 12 -1.</_>
- <_>15 10 3 4 9.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0265270397067070</threshold>
- <left_val>0.0571938604116440</left_val>
- <right_val>-0.0629923269152641</right_val></_></_>
- <_>
- <!-- tree 32 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>1 6 9 12 -1.</_>
- <_>4 10 3 4 9.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0446224883198738</threshold>
- <left_val>-0.3331815004348755</left_val>
- <right_val>0.0932145714759827</right_val></_></_>
- <_>
- <!-- tree 33 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>13 6 8 12 -1.</_>
- <_>17 6 4 6 2.</_>
- <_>13 12 4 6 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0142831197008491</threshold>
- <left_val>0.1912523061037064</left_val>
- <right_val>-0.1153056994080544</right_val></_></_>
- <_>
- <!-- tree 34 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>7 14 8 3 -1.</_>
- <_>11 14 4 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-1.9681209232658148e-003</threshold>
- <left_val>-0.3129512071609497</left_val>
- <right_val>0.0996828079223633</right_val></_></_>
- <_>
- <!-- tree 35 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>5 5 12 3 -1.</_>
- <_>9 5 4 3 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0528510808944702</threshold>
- <left_val>-0.0589195489883423</left_val>
- <right_val>0.5788791179656982</right_val></_></_>
- <_>
- <!-- tree 36 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>10 0 2 18 -1.</_>
- <_>10 6 2 6 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-6.3711861148476601e-003</threshold>
- <left_val>0.1918219029903412</left_val>
- <right_val>-0.1909454017877579</right_val></_></_>
- <_>
- <!-- tree 37 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>4 14 14 2 -1.</_>
- <_>4 14 7 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-6.4727910794317722e-003</threshold>
- <left_val>-0.2472103983163834</left_val>
- <right_val>0.1225292980670929</right_val></_></_>
- <_>
- <!-- tree 38 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>3 0 6 4 -1.</_>
- <_>6 0 3 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0166909899562597</threshold>
- <left_val>-0.4917466044425964</left_val>
- <right_val>0.0503151006996632</right_val></_></_>
- <_>
- <!-- tree 39 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>13 12 6 4 -1.</_>
- <_>13 12 3 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0148824099451303</threshold>
- <left_val>0.1964661031961441</left_val>
- <right_val>-0.0582503899931908</right_val></_></_>
- <_>
- <!-- tree 40 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>1 0 8 4 -1.</_>
- <_>5 0 4 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0175297092646360</threshold>
- <left_val>0.0763574987649918</left_val>
- <right_val>-0.3655926883220673</right_val></_></_>
- <_>
- <!-- tree 41 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>7 9 14 4 -1.</_>
- <_>14 9 7 2 2.</_>
- <_>7 11 7 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0422213897109032</threshold>
- <left_val>-0.0315604917705059</left_val>
- <right_val>0.3601126968860626</right_val></_></_>
- <_>
- <!-- tree 42 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>1 0 8 18 -1.</_>
- <_>1 0 4 9 2.</_>
- <_>5 9 4 9 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0655817463994026</threshold>
- <left_val>0.3433471024036408</left_val>
- <right_val>-0.0885569602251053</right_val></_></_>
- <_>
- <!-- tree 43 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>13 8 6 4 -1.</_>
- <_>13 8 3 4 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>0.0167032107710838</threshold>
- <left_val>0.0482100397348404</left_val>
- <right_val>-0.1527362018823624</right_val></_></_>
- <_>
- <!-- tree 44 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>9 8 4 6 -1.</_>
- <_>9 8 4 3 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-6.9328742101788521e-003</threshold>
- <left_val>-0.3057363927364349</left_val>
- <right_val>0.1182114034891129</right_val></_></_></trees>
- <stage_threshold>-1.1520069837570190</stage_threshold>
- <parent>3</parent>
- <next>-1</next></_>
- <_>
- <!-- stage 5 -->
- <trees>
- <_>
- <!-- tree 0 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>3 13 6 4 -1.</_>
- <_>6 13 3 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-6.3434438779950142e-003</threshold>
- <left_val>0.3384028077125549</left_val>
- <right_val>-0.3347485065460205</right_val></_></_>
- <_>
- <!-- tree 1 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>11 4 6 7 -1.</_>
- <_>13 4 2 7 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>5.2472548559308052e-003</threshold>
- <left_val>-0.0935965329408646</left_val>
- <right_val>0.1679117977619171</right_val></_></_>
- <_>
- <!-- tree 2 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>6 8 6 4 -1.</_>
- <_>6 8 3 4 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-0.0365850888192654</threshold>
- <left_val>0.5367609858512878</left_val>
- <right_val>-0.0854335278272629</right_val></_></_>
- <_>
- <!-- tree 3 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>10 7 12 5 -1.</_>
- <_>13 7 6 5 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>5.3153699263930321e-003</threshold>
- <left_val>-0.1280411928892136</left_val>
- <right_val>0.1444391012191773</right_val></_></_>
- <_>
- <!-- tree 4 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>3 5 12 3 -1.</_>
- <_>9 5 6 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-3.9569609798491001e-003</threshold>
- <left_val>0.1860544979572296</left_val>
- <right_val>-0.2231141030788422</right_val></_></_>
- <_>
- <!-- tree 5 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>13 5 4 6 -1.</_>
- <_>13 8 4 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0339654199779034</threshold>
- <left_val>0.0278357099741697</left_val>
- <right_val>-0.5120338797569275</right_val></_></_>
- <_>
- <!-- tree 6 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>5 5 4 6 -1.</_>
- <_>5 8 4 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0148528795689344</threshold>
- <left_val>-0.4681495130062103</left_val>
- <right_val>0.1135156005620956</right_val></_></_>
- <_>
- <!-- tree 7 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>13 12 6 6 -1.</_>
- <_>15 12 2 6 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-2.9641329310834408e-003</threshold>
- <left_val>0.2659179866313934</left_val>
- <right_val>-0.2818377017974854</right_val></_></_>
- <_>
- <!-- tree 8 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>10 2 4 10 -1.</_>
- <_>10 2 4 5 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-0.1079559028148651</threshold>
- <left_val>-0.5752769708633423</left_val>
- <right_val>0.1099163964390755</right_val></_></_>
- <_>
- <!-- tree 9 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>13 12 6 6 -1.</_>
- <_>15 12 2 6 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0212376005947590</threshold>
- <left_val>-0.1045159026980400</left_val>
- <right_val>0.4661377072334290</right_val></_></_>
- <_>
- <!-- tree 10 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>3 12 6 6 -1.</_>
- <_>5 12 2 6 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0261896401643753</threshold>
- <left_val>0.4254482090473175</left_val>
- <right_val>-0.0922789126634598</right_val></_></_>
- <_>
- <!-- tree 11 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>11 12 6 6 -1.</_>
- <_>11 14 6 2 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0350105613470078</threshold>
- <left_val>-0.7180119752883911</left_val>
- <right_val>0.0728772506117821</right_val></_></_>
- <_>
- <!-- tree 12 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>5 12 8 6 -1.</_>
- <_>5 12 4 3 2.</_>
- <_>9 15 4 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>1.5026619621494319e-005</threshold>
- <left_val>-0.2719976007938385</left_val>
- <right_val>0.1068215966224670</right_val></_></_>
- <_>
- <!-- tree 13 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>5 11 12 6 -1.</_>
- <_>11 11 6 3 2.</_>
- <_>5 14 6 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0277602504938841</threshold>
- <left_val>-0.5018569231033325</left_val>
- <right_val>0.1011821031570435</right_val></_></_>
- <_>
- <!-- tree 14 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 9 22 8 -1.</_>
- <_>0 9 11 4 2.</_>
- <_>11 13 11 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0374391786754131</threshold>
- <left_val>-0.3714151978492737</left_val>
- <right_val>0.0837090387940407</right_val></_></_>
- <_>
- <!-- tree 15 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>6 9 13 3 -1.</_>
- <_>6 10 13 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0141522595658898</threshold>
- <left_val>0.3098280131816864</left_val>
- <right_val>-0.0737676620483398</right_val></_></_>
- <_>
- <!-- tree 16 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 2 8 6 -1.</_>
- <_>0 2 4 3 2.</_>
- <_>4 5 4 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0123310796916485</threshold>
- <left_val>-0.3950768113136292</left_val>
- <right_val>0.0832151770591736</right_val></_></_>
- <_>
- <!-- tree 17 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>4 9 16 3 -1.</_>
- <_>4 10 16 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>2.6666349731385708e-003</threshold>
- <left_val>-0.1377612948417664</left_val>
- <right_val>0.2424568980932236</right_val></_></_>
- <_>
- <!-- tree 18 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>4 9 12 3 -1.</_>
- <_>4 10 12 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-2.9443199746310711e-003</threshold>
- <left_val>0.2446078062057495</left_val>
- <right_val>-0.1393789052963257</right_val></_></_>
- <_>
- <!-- tree 19 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>16 2 5 16 -1.</_>
- <_>16 10 5 8 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.1578892022371292</threshold>
- <left_val>-0.5683224201202393</left_val>
- <right_val>0.0361407212913036</right_val></_></_>
- <_>
- <!-- tree 20 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>6 13 7 4 -1.</_>
- <_>6 15 7 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>2.1553030237555504e-003</threshold>
- <left_val>0.0836605578660965</left_val>
- <right_val>-0.4138025939464569</right_val></_></_>
- <_>
- <!-- tree 21 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>1 7 20 8 -1.</_>
- <_>11 7 10 4 2.</_>
- <_>1 11 10 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0853670910000801</threshold>
- <left_val>-0.5705329179763794</left_val>
- <right_val>0.0529956594109535</right_val></_></_>
- <_>
- <!-- tree 22 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>5 2 12 3 -1.</_>
- <_>5 3 12 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>3.4761740826070309e-003</threshold>
- <left_val>-0.1218981966376305</left_val>
- <right_val>0.2655329108238220</right_val></_></_>
- <_>
- <!-- tree 23 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>13 13 6 4 -1.</_>
- <_>13 15 6 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0241042207926512</threshold>
- <left_val>-0.5231543779373169</left_val>
- <right_val>0.0255056601017714</right_val></_></_>
- <_>
- <!-- tree 24 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>1 0 5 8 -1.</_>
- <_>1 4 5 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0307291503995657</threshold>
- <left_val>-0.4673540890216827</left_val>
- <right_val>0.0708444267511368</right_val></_></_>
- <_>
- <!-- tree 25 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>5 0 13 8 -1.</_>
- <_>5 4 13 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-1.1937420349568129e-003</threshold>
- <left_val>0.1459686011075974</left_val>
- <right_val>-0.2308627068996429</right_val></_></_>
- <_>
- <!-- tree 26 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>9 1 4 8 -1.</_>
- <_>9 5 4 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0323041006922722</threshold>
- <left_val>-0.0653509274125099</left_val>
- <right_val>0.5509138107299805</right_val></_></_>
- <_>
- <!-- tree 27 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>11 2 8 8 -1.</_>
- <_>9 4 8 4 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>0.1495549976825714</threshold>
- <left_val>0.0150020895525813</left_val>
- <right_val>-0.8940045237541199</right_val></_></_>
- <_>
- <!-- tree 28 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>11 2 8 8 -1.</_>
- <_>13 4 4 8 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-4.7254669480025768e-003</threshold>
- <left_val>0.1485746055841446</left_val>
- <right_val>-0.2101994007825851</right_val></_></_>
- <_>
- <!-- tree 29 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>8 0 14 4 -1.</_>
- <_>15 0 7 2 2.</_>
- <_>8 2 7 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0363607183098793</threshold>
- <left_val>0.0285479500889778</left_val>
- <right_val>-0.6366893053054810</right_val></_></_>
- <_>
- <!-- tree 30 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 10 12 4 -1.</_>
- <_>0 10 6 2 2.</_>
- <_>6 12 6 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0271099992096424</threshold>
- <left_val>0.4966191053390503</left_val>
- <right_val>-0.0736615732312202</right_val></_></_>
- <_>
- <!-- tree 31 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>8 0 14 4 -1.</_>
- <_>15 0 7 2 2.</_>
- <_>8 2 7 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-9.5398407429456711e-003</threshold>
- <left_val>-0.1938468068838120</left_val>
- <right_val>0.0585070811212063</right_val></_></_>
- <_>
- <!-- tree 32 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>3 4 16 14 -1.</_>
- <_>7 4 8 14 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.1054198965430260</threshold>
- <left_val>-0.0747857317328453</left_val>
- <right_val>0.4378111064434052</right_val></_></_>
- <_>
- <!-- tree 33 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>13 13 6 4 -1.</_>
- <_>13 15 6 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>6.3801761716604233e-003</threshold>
- <left_val>0.0539715290069580</left_val>
- <right_val>-0.3382979035377502</right_val></_></_>
- <_>
- <!-- tree 34 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>3 13 6 4 -1.</_>
- <_>3 15 6 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0227598492056131</threshold>
- <left_val>-0.5937489867210388</left_val>
- <right_val>0.0480465292930603</right_val></_></_>
- <_>
- <!-- tree 35 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>11 5 2 10 -1.</_>
- <_>11 5 1 10 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-0.0173237491399050</threshold>
- <left_val>-0.1603469997644424</left_val>
- <right_val>0.0151871601119637</right_val></_></_>
- <_>
- <!-- tree 36 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>11 5 10 2 -1.</_>
- <_>11 5 10 1 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>0.0298544093966484</threshold>
- <left_val>-0.0656982436776161</left_val>
- <right_val>0.4505734145641327</right_val></_></_>
- <_>
- <!-- tree 37 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>4 0 18 4 -1.</_>
- <_>13 0 9 2 2.</_>
- <_>4 2 9 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0232698395848274</threshold>
- <left_val>0.0388054996728897</left_val>
- <right_val>-0.3535487949848175</right_val></_></_>
- <_>
- <!-- tree 38 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>6 5 4 6 -1.</_>
- <_>6 5 2 6 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>0.0408338718116283</threshold>
- <left_val>0.0494048409163952</left_val>
- <right_val>-0.5622245073318481</right_val></_></_>
- <_>
- <!-- tree 39 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>16 6 6 6 -1.</_>
- <_>14 8 6 2 3.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-0.1249888986349106</threshold>
- <left_val>0.6776366829872131</left_val>
- <right_val>-0.0154849402606487</right_val></_></_>
- <_>
- <!-- tree 40 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>6 6 6 6 -1.</_>
- <_>8 8 2 6 3.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-0.0655793771147728</threshold>
- <left_val>0.6736323237419128</left_val>
- <right_val>-0.0452696904540062</right_val></_></_>
- <_>
- <!-- tree 41 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>4 0 18 12 -1.</_>
- <_>4 0 9 12 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.3790175914764404</threshold>
- <left_val>-0.4985372126102448</left_val>
- <right_val>0.0239552296698093</right_val></_></_>
- <_>
- <!-- tree 42 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 12 8 6 -1.</_>
- <_>2 12 4 6 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>2.9792459681630135e-003</threshold>
- <left_val>-0.1843641996383667</left_val>
- <right_val>0.1626583039760590</right_val></_></_>
- <_>
- <!-- tree 43 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>7 12 8 6 -1.</_>
- <_>7 12 4 6 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0138036599382758</threshold>
- <left_val>0.0636982172727585</left_val>
- <right_val>-0.4338980019092560</right_val></_></_>
- <_>
- <!-- tree 44 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>7 6 3 12 -1.</_>
- <_>8 6 1 12 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>3.5606899764388800e-003</threshold>
- <left_val>-0.1145507022738457</left_val>
- <right_val>0.2361861020326614</right_val></_></_>
- <_>
- <!-- tree 45 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>15 5 6 6 -1.</_>
- <_>15 5 3 6 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>8.8772783055901527e-003</threshold>
- <left_val>0.0864168405532837</left_val>
- <right_val>-0.1759098023176193</right_val></_></_></trees>
- <stage_threshold>-1.0648390054702759</stage_threshold>
- <parent>4</parent>
- <next>-1</next></_>
- <_>
- <!-- stage 6 -->
- <trees>
- <_>
- <!-- tree 0 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>2 12 8 3 -1.</_>
- <_>6 12 4 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-6.7344820126891136e-003</threshold>
- <left_val>0.3075858950614929</left_val>
- <right_val>-0.2976179122924805</right_val></_></_>
- <_>
- <!-- tree 1 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>2 6 18 3 -1.</_>
- <_>8 6 6 3 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0139028802514076</threshold>
- <left_val>0.2040069997310638</left_val>
- <right_val>-0.2296725064516068</right_val></_></_>
- <_>
- <!-- tree 2 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 11 22 2 -1.</_>
- <_>11 11 11 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0419635511934757</threshold>
- <left_val>-0.5657541155815125</left_val>
- <right_val>0.0867454931139946</right_val></_></_>
- <_>
- <!-- tree 3 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>10 14 6 4 -1.</_>
- <_>10 16 6 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-5.9794791013700888e-005</threshold>
- <left_val>0.1583261042833328</left_val>
- <right_val>-0.2310905009508133</right_val></_></_>
- <_>
- <!-- tree 4 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>3 12 6 4 -1.</_>
- <_>6 12 3 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>8.4739532321691513e-003</threshold>
- <left_val>-0.1150123029947281</left_val>
- <right_val>0.3975858986377716</right_val></_></_>
- <_>
- <!-- tree 5 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>14 0 4 12 -1.</_>
- <_>14 0 4 6 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-0.0653170570731163</threshold>
- <left_val>-0.2388727962970734</left_val>
- <right_val>0.1139170974493027</right_val></_></_>
- <_>
- <!-- tree 6 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>5 10 6 4 -1.</_>
- <_>8 10 3 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-4.2358501814305782e-003</threshold>
- <left_val>0.2233722060918808</left_val>
- <right_val>-0.2421883940696716</right_val></_></_>
- <_>
- <!-- tree 7 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>1 12 20 6 -1.</_>
- <_>11 12 10 3 2.</_>
- <_>1 15 10 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0462292991578579</threshold>
- <left_val>0.0968374013900757</left_val>
- <right_val>-0.5342770218849182</right_val></_></_>
- <_>
- <!-- tree 8 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>5 15 12 3 -1.</_>
- <_>9 15 4 3 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>5.2246701670810580e-005</threshold>
- <left_val>-0.2418936043977737</left_val>
- <right_val>0.1593236029148102</right_val></_></_>
- <_>
- <!-- tree 9 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>13 1 3 10 -1.</_>
- <_>13 6 3 5 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0414200909435749</threshold>
- <left_val>-0.3404498100280762</left_val>
- <right_val>0.0437124818563461</right_val></_></_>
- <_>
- <!-- tree 10 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>9 0 10 4 -1.</_>
- <_>9 0 5 4 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-0.0102242799475789</threshold>
- <left_val>-0.2475239038467407</left_val>
- <right_val>0.1551253050565720</right_val></_></_>
- <_>
- <!-- tree 11 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>13 1 3 10 -1.</_>
- <_>13 6 3 5 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0685812085866928</threshold>
- <left_val>9.7173796966671944e-003</left_val>
- <right_val>-0.6182122230529785</right_val></_></_>
- <_>
- <!-- tree 12 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>6 1 3 10 -1.</_>
- <_>6 6 3 5 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0407003015279770</threshold>
- <left_val>-0.6028478741645813</left_val>
- <right_val>0.0709630697965622</right_val></_></_>
- <_>
- <!-- tree 13 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>11 4 10 4 -1.</_>
- <_>11 4 10 2 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-0.0899986997246742</threshold>
- <left_val>0.4666472077369690</left_val>
- <right_val>-0.0485498905181885</right_val></_></_>
- <_>
- <!-- tree 14 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 10 20 8 -1.</_>
- <_>0 10 10 4 2.</_>
- <_>10 14 10 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0153073603287339</threshold>
- <left_val>0.1478367000818253</left_val>
- <right_val>-0.2711460888385773</right_val></_></_>
- <_>
- <!-- tree 15 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>15 11 6 7 -1.</_>
- <_>17 11 2 7 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>3.7016849964857101e-003</threshold>
- <left_val>-0.1515340954065323</left_val>
- <right_val>0.2093140929937363</right_val></_></_>
- <_>
- <!-- tree 16 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>4 14 9 4 -1.</_>
- <_>4 16 9 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0319370999932289</threshold>
- <left_val>-0.7233225703239441</left_val>
- <right_val>0.0374201610684395</right_val></_></_>
- <_>
- <!-- tree 17 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>15 0 6 8 -1.</_>
- <_>15 4 6 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0474939085543156</threshold>
- <left_val>0.0490000918507576</left_val>
- <right_val>-0.4830318987369537</right_val></_></_>
- <_>
- <!-- tree 18 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>1 11 6 7 -1.</_>
- <_>3 11 2 7 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>4.4620381668210030e-003</threshold>
- <left_val>-0.1769831925630570</left_val>
- <right_val>0.1982091069221497</right_val></_></_>
- <_>
- <!-- tree 19 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>12 6 8 4 -1.</_>
- <_>12 6 8 2 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-8.1284176558256149e-003</threshold>
- <left_val>0.1122218966484070</left_val>
- <right_val>-0.0508055202662945</right_val></_></_>
- <_>
- <!-- tree 20 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>11 2 6 2 -1.</_>
- <_>11 2 6 1 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-0.0125960195437074</threshold>
- <left_val>0.4388906061649323</left_val>
- <right_val>-0.0828989520668983</right_val></_></_>
- <_>
- <!-- tree 21 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>11 0 11 8 -1.</_>
- <_>11 4 11 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-1.0689930059015751e-003</threshold>
- <left_val>0.0687660872936249</left_val>
- <right_val>-0.0826670080423355</right_val></_></_>
- <_>
- <!-- tree 22 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 1 22 6 -1.</_>
- <_>0 1 11 3 2.</_>
- <_>11 4 11 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0482130907475948</threshold>
- <left_val>-0.4667134881019592</left_val>
- <right_val>0.0743107125163078</right_val></_></_>
- <_>
- <!-- tree 23 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>11 6 3 12 -1.</_>
- <_>12 6 1 12 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-2.3418650380335748e-004</threshold>
- <left_val>0.0887251421809196</left_val>
- <right_val>-0.1091964021325111</right_val></_></_>
- <_>
- <!-- tree 24 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 1 14 7 -1.</_>
- <_>7 1 7 7 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.1009500026702881</threshold>
- <left_val>0.0554442703723907</left_val>
- <right_val>-0.5520536899566650</right_val></_></_>
- <_>
- <!-- tree 25 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>16 8 4 6 -1.</_>
- <_>16 8 2 6 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>0.0323404110968113</threshold>
- <left_val>0.0497627407312393</left_val>
- <right_val>-0.3663640022277832</right_val></_></_>
- <_>
- <!-- tree 26 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>1 11 20 7 -1.</_>
- <_>6 11 10 7 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.1769921034574509</threshold>
- <left_val>-0.0737656429409981</left_val>
- <right_val>0.5430079102516174</right_val></_></_>
- <_>
- <!-- tree 27 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>13 12 4 6 -1.</_>
- <_>13 15 4 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-1.8634319712873548e-004</threshold>
- <left_val>0.0957186669111252</left_val>
- <right_val>-0.1821410953998566</right_val></_></_>
- <_>
- <!-- tree 28 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 3 13 3 -1.</_>
- <_>0 4 13 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>6.6473139449954033e-003</threshold>
- <left_val>-0.1217313036322594</left_val>
- <right_val>0.3033103942871094</right_val></_></_>
- <_>
- <!-- tree 29 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>6 3 12 3 -1.</_>
- <_>6 4 12 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-9.9276658147573471e-003</threshold>
- <left_val>0.3263852000236511</left_val>
- <right_val>-0.0885337069630623</right_val></_></_>
- <_>
- <!-- tree 30 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 4 22 10 -1.</_>
- <_>0 4 11 5 2.</_>
- <_>11 9 11 5 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0525870993733406</threshold>
- <left_val>0.1130395010113716</left_val>
- <right_val>-0.3343687057495117</right_val></_></_>
- <_>
- <!-- tree 31 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>14 3 8 4 -1.</_>
- <_>14 3 8 2 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>4.9553681164979935e-003</threshold>
- <left_val>-0.1318328976631165</left_val>
- <right_val>0.0976148098707199</right_val></_></_>
- <_>
- <!-- tree 32 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>5 5 12 6 -1.</_>
- <_>5 5 6 3 2.</_>
- <_>11 8 6 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0238176602870226</threshold>
- <left_val>-0.4102765023708344</left_val>
- <right_val>0.0848498120903969</right_val></_></_>
- <_>
- <!-- tree 33 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>11 6 6 6 -1.</_>
- <_>13 6 2 6 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0113637801259756</threshold>
- <left_val>0.1887442022562027</left_val>
- <right_val>-0.0835364162921906</right_val></_></_>
- <_>
- <!-- tree 34 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>9 4 4 13 -1.</_>
- <_>10 4 2 13 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-1.9515539752319455e-003</threshold>
- <left_val>0.1898508965969086</left_val>
- <right_val>-0.1777677983045578</right_val></_></_>
- <_>
- <!-- tree 35 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>11 3 3 13 -1.</_>
- <_>12 3 1 13 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0135766696184874</threshold>
- <left_val>0.2097575962543488</left_val>
- <right_val>-0.0371154509484768</right_val></_></_>
- <_>
- <!-- tree 36 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>9 5 4 6 -1.</_>
- <_>11 5 2 6 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0164668206125498</threshold>
- <left_val>-0.0823494121432304</left_val>
- <right_val>0.3804722130298615</right_val></_></_>
- <_>
- <!-- tree 37 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>7 2 12 15 -1.</_>
- <_>11 7 4 5 9.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.1013626009225845</threshold>
- <left_val>-0.1163323000073433</left_val>
- <right_val>0.0678049102425575</right_val></_></_>
- <_>
- <!-- tree 38 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>3 2 12 15 -1.</_>
- <_>7 7 4 5 9.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.1024843007326126</threshold>
- <left_val>-0.2885020971298218</left_val>
- <right_val>0.1213968023657799</right_val></_></_>
- <_>
- <!-- tree 39 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>5 2 12 12 -1.</_>
- <_>9 6 4 4 9.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.2871756851673126</threshold>
- <left_val>0.4693514108657837</left_val>
- <right_val>-0.0829543098807335</right_val></_></_>
- <_>
- <!-- tree 40 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>8 5 4 12 -1.</_>
- <_>8 8 4 6 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0508129782974720</threshold>
- <left_val>0.0553938783705235</left_val>
- <right_val>-0.6238328218460083</right_val></_></_>
- <_>
- <!-- tree 41 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>8 9 8 7 -1.</_>
- <_>10 9 4 7 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0910634174942970</threshold>
- <left_val>-0.0233795605599880</left_val>
- <right_val>0.4715529978275299</right_val></_></_>
- <_>
- <!-- tree 42 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>6 9 8 7 -1.</_>
- <_>8 9 4 7 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0518453381955624</threshold>
- <left_val>-0.6903154253959656</left_val>
- <right_val>0.0454541184008121</right_val></_></_>
- <_>
- <!-- tree 43 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 4 22 14 -1.</_>
- <_>11 4 11 7 2.</_>
- <_>0 11 11 7 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.1503123939037323</threshold>
- <left_val>0.0459067113697529</left_val>
- <right_val>-0.5206773877143860</right_val></_></_>
- <_>
- <!-- tree 44 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>2 12 18 6 -1.</_>
- <_>2 14 18 2 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0415963195264339</threshold>
- <left_val>0.0537062995135784</left_val>
- <right_val>-0.4878216981887817</right_val></_></_></trees>
- <stage_threshold>-0.9506993293762207</stage_threshold>
- <parent>5</parent>
- <next>-1</next></_>
- <_>
- <!-- stage 7 -->
- <trees>
- <_>
- <!-- tree 0 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>6 5 6 5 -1.</_>
- <_>9 5 3 5 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-5.9847710654139519e-003</threshold>
- <left_val>0.2785896062850952</left_val>
- <right_val>-0.3092339038848877</right_val></_></_>
- <_>
- <!-- tree 1 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>11 14 9 4 -1.</_>
- <_>14 14 3 4 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-3.9032639469951391e-003</threshold>
- <left_val>0.2225704938173294</left_val>
- <right_val>-0.2892822921276093</right_val></_></_>
- <_>
- <!-- tree 2 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>6 14 6 4 -1.</_>
- <_>6 16 6 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-2.2362179151969030e-005</threshold>
- <left_val>0.1408437043428421</left_val>
- <right_val>-0.3014316856861115</right_val></_></_>
- <_>
- <!-- tree 3 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>15 6 6 5 -1.</_>
- <_>15 6 3 5 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-0.0911670029163361</threshold>
- <left_val>-0.6760801076889038</left_val>
- <right_val>0.0560408197343349</right_val></_></_>
- <_>
- <!-- tree 4 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>7 6 5 6 -1.</_>
- <_>7 6 5 3 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>0.0527556389570236</threshold>
- <left_val>0.0746887475252151</left_val>
- <right_val>-0.6325625777244568</right_val></_></_>
- <_>
- <!-- tree 5 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>13 12 8 6 -1.</_>
- <_>13 12 4 6 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0694585368037224</threshold>
- <left_val>-0.1175492033362389</left_val>
- <right_val>0.6386364102363586</right_val></_></_>
- <_>
- <!-- tree 6 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>6 10 10 8 -1.</_>
- <_>6 12 10 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-4.8209438100457191e-003</threshold>
- <left_val>0.2922593057155609</left_val>
- <right_val>-0.1387241035699844</right_val></_></_>
- <_>
- <!-- tree 7 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>2 13 18 2 -1.</_>
- <_>2 13 9 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0321567505598068</threshold>
- <left_val>0.0755752399563789</left_val>
- <right_val>-0.5792791247367859</right_val></_></_>
- <_>
- <!-- tree 8 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>1 15 8 3 -1.</_>
- <_>5 15 4 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0442984700202942</threshold>
- <left_val>0.4022681117057800</left_val>
- <right_val>-0.1026460975408554</right_val></_></_>
- <_>
- <!-- tree 9 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>14 7 6 4 -1.</_>
- <_>14 7 6 2 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-7.0452108047902584e-003</threshold>
- <left_val>0.1512849926948547</left_val>
- <right_val>-0.0567258708178997</right_val></_></_>
- <_>
- <!-- tree 10 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>10 0 7 2 -1.</_>
- <_>10 0 7 1 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>5.1606830675154924e-004</threshold>
- <left_val>-0.2302210032939911</left_val>
- <right_val>0.1634387969970703</right_val></_></_>
- <_>
- <!-- tree 11 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>17 8 4 6 -1.</_>
- <_>17 8 4 3 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-0.0615283586084843</threshold>
- <left_val>0.2555904090404511</left_val>
- <right_val>-0.0467515103518963</right_val></_></_>
- <_>
- <!-- tree 12 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>2 0 15 9 -1.</_>
- <_>7 3 5 3 9.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0513678118586540</threshold>
- <left_val>-0.2475582957267761</left_val>
- <right_val>0.1430545002222061</right_val></_></_>
- <_>
- <!-- tree 13 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>9 3 4 6 -1.</_>
- <_>9 6 4 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>9.0107098221778870e-003</threshold>
- <left_val>-0.1064876988530159</left_val>
- <right_val>0.3127186000347138</right_val></_></_>
- <_>
- <!-- tree 14 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>3 0 16 12 -1.</_>
- <_>3 6 16 6 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0223522596061230</threshold>
- <left_val>0.1549421995878220</left_val>
- <right_val>-0.3173629045486450</right_val></_></_>
- <_>
- <!-- tree 15 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>11 0 3 10 -1.</_>
- <_>11 0 3 5 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>0.0314938910305500</threshold>
- <left_val>0.0720375329256058</left_val>
- <right_val>-0.2894667088985443</right_val></_></_>
- <_>
- <!-- tree 16 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 3 22 14 -1.</_>
- <_>11 3 11 14 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0520644597709179</threshold>
- <left_val>-0.2708202004432678</left_val>
- <right_val>0.1226018965244293</right_val></_></_>
- <_>
- <!-- tree 17 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>10 3 6 7 -1.</_>
- <_>12 3 2 7 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-6.1549381352961063e-003</threshold>
- <left_val>0.1644295006990433</left_val>
- <right_val>-0.1065777987241745</right_val></_></_>
- <_>
- <!-- tree 18 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>11 1 11 4 -1.</_>
- <_>10 2 11 2 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>3.0305041000247002e-003</threshold>
- <left_val>-0.1523413956165314</left_val>
- <right_val>0.2044637948274612</right_val></_></_>
- <_>
- <!-- tree 19 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>14 7 6 4 -1.</_>
- <_>14 7 6 2 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-6.8027540110051632e-003</threshold>
- <left_val>0.0714481472969055</left_val>
- <right_val>-0.0414583012461662</right_val></_></_>
- <_>
- <!-- tree 20 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>5 5 4 12 -1.</_>
- <_>5 11 4 6 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0686475336551666</threshold>
- <left_val>-0.0528335385024548</left_val>
- <right_val>0.5763890147209168</right_val></_></_>
- <_>
- <!-- tree 21 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>2 6 20 9 -1.</_>
- <_>2 6 10 9 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0928830802440643</threshold>
- <left_val>-0.2623670995235443</left_val>
- <right_val>0.0824258103966713</right_val></_></_>
- <_>
- <!-- tree 22 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>1 9 18 3 -1.</_>
- <_>7 9 6 3 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-5.2907038480043411e-003</threshold>
- <left_val>0.1409045010805130</left_val>
- <right_val>-0.2205065041780472</right_val></_></_>
- <_>
- <!-- tree 23 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>11 6 6 6 -1.</_>
- <_>13 6 2 6 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>1.5640209894627333e-003</threshold>
- <left_val>-0.1014354974031448</left_val>
- <right_val>0.1302697062492371</right_val></_></_>
- <_>
- <!-- tree 24 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>8 13 6 4 -1.</_>
- <_>11 13 3 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0107526201754808</threshold>
- <left_val>0.0915153622627258</left_val>
- <right_val>-0.3213397860527039</right_val></_></_>
- <_>
- <!-- tree 25 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>10 14 6 4 -1.</_>
- <_>10 14 3 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0211063604801893</threshold>
- <left_val>-0.2741023004055023</left_val>
- <right_val>9.1773197054862976e-003</right_val></_></_>
- <_>
- <!-- tree 26 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>5 6 6 6 -1.</_>
- <_>7 6 2 6 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>4.8663117922842503e-003</threshold>
- <left_val>-0.1525872051715851</left_val>
- <right_val>0.1971106976270676</right_val></_></_>
- <_>
- <!-- tree 27 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>15 0 3 8 -1.</_>
- <_>16 1 1 8 3.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>0.0653964728116989</threshold>
- <left_val>6.5921088680624962e-003</left_val>
- <right_val>-0.6434308886528015</right_val></_></_>
- <_>
- <!-- tree 28 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>5 8 12 3 -1.</_>
- <_>9 8 4 3 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>4.4902609661221504e-003</threshold>
- <left_val>-0.1037724986672401</left_val>
- <right_val>0.2800520956516266</right_val></_></_>
- <_>
- <!-- tree 29 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>2 7 18 4 -1.</_>
- <_>2 9 18 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0466148406267166</threshold>
- <left_val>0.0547158494591713</left_val>
- <right_val>-0.5217915177345276</right_val></_></_>
- <_>
- <!-- tree 30 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>11 1 10 4 -1.</_>
- <_>11 1 5 4 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>0.1159745007753372</threshold>
- <left_val>0.0396139994263649</left_val>
- <right_val>-0.6478490233421326</right_val></_></_>
- <_>
- <!-- tree 31 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>15 0 3 8 -1.</_>
- <_>16 1 1 8 3.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>5.7222661562263966e-003</threshold>
- <left_val>-0.0548381693661213</left_val>
- <right_val>0.1282801926136017</right_val></_></_>
- <_>
- <!-- tree 32 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>7 0 8 3 -1.</_>
- <_>6 1 8 1 3.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-0.0416332595050335</threshold>
- <left_val>-0.8066583871841431</left_val>
- <right_val>0.0359422899782658</right_val></_></_>
- <_>
- <!-- tree 33 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>10 0 12 4 -1.</_>
- <_>16 0 6 2 2.</_>
- <_>10 2 6 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0472523905336857</threshold>
- <left_val>-0.7919319272041321</left_val>
- <right_val>0.0127373700961471</right_val></_></_>
- <_>
- <!-- tree 34 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>5 2 12 3 -1.</_>
- <_>5 3 12 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-1.6451090341433883e-003</threshold>
- <left_val>0.2037672996520996</left_val>
- <right_val>-0.1323063969612122</right_val></_></_>
- <_>
- <!-- tree 35 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>8 2 14 3 -1.</_>
- <_>8 3 14 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>2.5758889969438314e-003</threshold>
- <left_val>-0.0635034069418907</left_val>
- <right_val>0.1353008002042770</right_val></_></_>
- <_>
- <!-- tree 36 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 0 12 4 -1.</_>
- <_>0 0 6 2 2.</_>
- <_>6 2 6 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0207585897296667</threshold>
- <left_val>0.0472869798541069</left_val>
- <right_val>-0.5821200013160706</right_val></_></_>
- <_>
- <!-- tree 37 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>8 0 14 4 -1.</_>
- <_>15 0 7 2 2.</_>
- <_>8 2 7 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0286014806479216</threshold>
- <left_val>-0.4122197031974793</left_val>
- <right_val>0.0242109801620245</right_val></_></_>
- <_>
- <!-- tree 38 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 5 8 6 -1.</_>
- <_>0 5 4 3 2.</_>
- <_>4 8 4 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0286915805190802</threshold>
- <left_val>-0.5540468096733093</left_val>
- <right_val>0.0450686290860176</right_val></_></_>
- <_>
- <!-- tree 39 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>14 14 6 4 -1.</_>
- <_>14 14 3 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-2.6637869887053967e-003</threshold>
- <left_val>0.1257023066282272</left_val>
- <right_val>-0.1631949990987778</right_val></_></_>
- <_>
- <!-- tree 40 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>6 12 10 4 -1.</_>
- <_>11 12 5 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-4.4750720262527466e-003</threshold>
- <left_val>-0.2713806927204132</left_val>
- <right_val>0.1029310002923012</right_val></_></_>
- <_>
- <!-- tree 41 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>14 6 6 6 -1.</_>
- <_>12 8 6 2 3.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>0.0409370996057987</threshold>
- <left_val>-0.0320654697716236</left_val>
- <right_val>0.1309264004230499</right_val></_></_>
- <_>
- <!-- tree 42 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>8 6 6 6 -1.</_>
- <_>10 8 2 6 3.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>0.0758271813392639</threshold>
- <left_val>-0.0512215197086334</left_val>
- <right_val>0.5659629702568054</right_val></_></_></trees>
- <stage_threshold>-0.8504595160484314</stage_threshold>
- <parent>6</parent>
- <next>-1</next></_>
- <_>
- <!-- stage 8 -->
- <trees>
- <_>
- <!-- tree 0 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>2 8 6 10 -1.</_>
- <_>2 8 3 5 2.</_>
- <_>5 13 3 5 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-4.2669968679547310e-003</threshold>
- <left_val>0.1770441979169846</left_val>
- <right_val>-0.2826541960239410</right_val></_></_>
- <_>
- <!-- tree 1 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>11 3 4 9 -1.</_>
- <_>12 4 2 9 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-0.0225779395550489</threshold>
- <left_val>0.2365795969963074</left_val>
- <right_val>-0.0423263683915138</right_val></_></_>
- <_>
- <!-- tree 2 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>2 0 12 4 -1.</_>
- <_>2 0 6 2 2.</_>
- <_>8 2 6 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-9.8107997328042984e-003</threshold>
- <left_val>-0.3856830894947052</left_val>
- <right_val>0.0909823030233383</right_val></_></_>
- <_>
- <!-- tree 3 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>11 5 3 9 -1.</_>
- <_>12 6 1 9 3.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>3.8510379381477833e-003</threshold>
- <left_val>-0.1027040034532547</left_val>
- <right_val>0.1926759034395218</right_val></_></_>
- <_>
- <!-- tree 4 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>11 3 9 4 -1.</_>
- <_>10 4 9 2 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-2.0688450895249844e-003</threshold>
- <left_val>0.1665657013654709</left_val>
- <right_val>-0.2139438986778259</right_val></_></_>
- <_>
- <!-- tree 5 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>13 13 8 5 -1.</_>
- <_>13 13 4 5 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0583685003221035</threshold>
- <left_val>0.3483357131481171</left_val>
- <right_val>-0.0806054621934891</right_val></_></_>
- <_>
- <!-- tree 6 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>1 13 8 5 -1.</_>
- <_>5 13 4 5 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0562909208238125</threshold>
- <left_val>-0.0616179890930653</left_val>
- <right_val>0.6942182779312134</right_val></_></_>
- <_>
- <!-- tree 7 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>7 13 8 3 -1.</_>
- <_>7 13 4 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>5.5776340886950493e-003</threshold>
- <left_val>0.0783748626708984</left_val>
- <right_val>-0.4076493084430695</right_val></_></_>
- <_>
- <!-- tree 8 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>8 13 6 4 -1.</_>
- <_>11 13 3 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>5.0974669866263866e-003</threshold>
- <left_val>0.1500179022550583</left_val>
- <right_val>-0.2762084901332855</right_val></_></_>
- <_>
- <!-- tree 9 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>11 7 3 8 -1.</_>
- <_>12 8 1 8 3.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>0.0241340193897486</threshold>
- <left_val>-0.0376859717071056</left_val>
- <right_val>0.4011130928993225</right_val></_></_>
- <_>
- <!-- tree 10 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>5 1 6 8 -1.</_>
- <_>7 1 2 8 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>2.6251180097460747e-003</threshold>
- <left_val>-0.1898688971996307</left_val>
- <right_val>0.1666657030582428</right_val></_></_>
- <_>
- <!-- tree 11 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>14 14 6 4 -1.</_>
- <_>14 16 6 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0231797192245722</threshold>
- <left_val>-0.6080746054649353</left_val>
- <right_val>0.0330169312655926</right_val></_></_>
- <_>
- <!-- tree 12 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>11 7 8 3 -1.</_>
- <_>10 8 8 1 3.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-1.7960369586944580e-003</threshold>
- <left_val>0.1832838952541351</left_val>
- <right_val>-0.1630056053400040</right_val></_></_>
- <_>
- <!-- tree 13 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>12 3 3 12 -1.</_>
- <_>8 7 3 4 3.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>0.1132725030183792</threshold>
- <left_val>0.0163923595100641</left_val>
- <right_val>-0.3852145075798035</right_val></_></_>
- <_>
- <!-- tree 14 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>8 5 5 6 -1.</_>
- <_>8 8 5 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0111209303140640</threshold>
- <left_val>-0.2678939104080200</left_val>
- <right_val>0.1203088015317917</right_val></_></_>
- <_>
- <!-- tree 15 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>11 3 8 4 -1.</_>
- <_>11 3 8 2 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>8.9298561215400696e-003</threshold>
- <left_val>-0.0647662431001663</left_val>
- <right_val>0.0524467006325722</right_val></_></_>
- <_>
- <!-- tree 16 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>7 5 8 6 -1.</_>
- <_>9 5 4 6 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0302645191550255</threshold>
- <left_val>-0.0533437095582485</left_val>
- <right_val>0.4917060136795044</right_val></_></_>
- <_>
- <!-- tree 17 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>11 4 6 6 -1.</_>
- <_>9 6 6 2 3.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>0.1303624063730240</threshold>
- <left_val>9.9123492836952209e-003</left_val>
- <right_val>-0.8077524900436401</right_val></_></_>
- <_>
- <!-- tree 18 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>11 4 6 6 -1.</_>
- <_>13 6 2 6 3.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-4.8941900022327900e-003</threshold>
- <left_val>0.1415328979492188</left_val>
- <right_val>-0.2422267943620682</right_val></_></_>
- <_>
- <!-- tree 19 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>12 8 6 4 -1.</_>
- <_>12 8 3 4 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-0.0180093497037888</threshold>
- <left_val>-0.1835270971059799</left_val>
- <right_val>0.0537842698395252</right_val></_></_>
- <_>
- <!-- tree 20 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>5 15 8 3 -1.</_>
- <_>9 15 4 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>6.3028637669049203e-005</threshold>
- <left_val>-0.2083622068166733</left_val>
- <right_val>0.1386117935180664</right_val></_></_>
- <_>
- <!-- tree 21 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 5 22 13 -1.</_>
- <_>0 5 11 13 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.3812729120254517</threshold>
- <left_val>-0.7652782201766968</left_val>
- <right_val>0.0345780998468399</right_val></_></_>
- <_>
- <!-- tree 22 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>2 12 9 6 -1.</_>
- <_>5 12 3 6 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0161685701459646</threshold>
- <left_val>-0.0785770490765572</left_val>
- <right_val>0.3608635067939758</right_val></_></_>
- <_>
- <!-- tree 23 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>19 1 3 10 -1.</_>
- <_>19 6 3 5 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0207253806293011</threshold>
- <left_val>-0.3290519118309021</left_val>
- <right_val>0.0816933363676071</right_val></_></_>
- <_>
- <!-- tree 24 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>5 14 12 4 -1.</_>
- <_>5 16 12 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-1.4763489889446646e-004</threshold>
- <left_val>0.1044917032122612</left_val>
- <right_val>-0.2762413918972015</right_val></_></_>
- <_>
- <!-- tree 25 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>10 14 10 4 -1.</_>
- <_>10 16 10 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0169591698795557</threshold>
- <left_val>-0.2415079027414322</left_val>
- <right_val>0.0545696802437305</right_val></_></_>
- <_>
- <!-- tree 26 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>1 3 14 3 -1.</_>
- <_>1 4 14 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0152211003005505</threshold>
- <left_val>0.4103314876556397</left_val>
- <right_val>-0.0683332532644272</right_val></_></_>
- <_>
- <!-- tree 27 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>3 14 16 4 -1.</_>
- <_>11 14 8 2 2.</_>
- <_>3 16 8 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-9.6041243523359299e-003</threshold>
- <left_val>-0.3356964886188507</left_val>
- <right_val>0.0862504914402962</right_val></_></_>
- <_>
- <!-- tree 28 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 14 6 4 -1.</_>
- <_>3 14 3 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-1.6476860037073493e-003</threshold>
- <left_val>0.1623633056879044</left_val>
- <right_val>-0.1904449015855789</right_val></_></_>
- <_>
- <!-- tree 29 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>10 1 11 4 -1.</_>
- <_>10 3 11 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.1070583984255791</threshold>
- <left_val>-0.8676710724830627</left_val>
- <right_val>7.3941340669989586e-003</right_val></_></_>
- <_>
- <!-- tree 30 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>1 1 11 4 -1.</_>
- <_>1 3 11 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0188181605190039</threshold>
- <left_val>-0.3687911033630371</left_val>
- <right_val>0.0688466429710388</right_val></_></_>
- <_>
- <!-- tree 31 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>9 3 6 6 -1.</_>
- <_>9 5 6 2 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-5.6142187677323818e-003</threshold>
- <left_val>0.1732203960418701</left_val>
- <right_val>-0.1251447051763535</right_val></_></_>
- <_>
- <!-- tree 32 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>4 5 12 3 -1.</_>
- <_>4 6 12 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>7.3969298973679543e-003</threshold>
- <left_val>-0.0854673683643341</left_val>
- <right_val>0.3202716112136841</right_val></_></_>
- <_>
- <!-- tree 33 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>12 0 7 6 -1.</_>
- <_>12 3 7 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>9.4870915636420250e-003</threshold>
- <left_val>0.0631684064865112</left_val>
- <right_val>-0.2091891020536423</right_val></_></_>
- <_>
- <!-- tree 34 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>1 3 16 4 -1.</_>
- <_>1 4 16 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>1.8458140548318624e-003</threshold>
- <left_val>-0.1543627977371216</left_val>
- <right_val>0.1851702034473419</right_val></_></_>
- <_>
- <!-- tree 35 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>4 9 15 3 -1.</_>
- <_>4 10 15 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0197473596781492</threshold>
- <left_val>0.3307111859321594</left_val>
- <right_val>-0.0767758488655090</right_val></_></_>
- <_>
- <!-- tree 36 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>2 4 18 6 -1.</_>
- <_>2 4 9 3 2.</_>
- <_>11 7 9 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0324211604893208</threshold>
- <left_val>0.0820211321115494</left_val>
- <right_val>-0.4014750123023987</right_val></_></_>
- <_>
- <!-- tree 37 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>13 5 4 13 -1.</_>
- <_>14 5 2 13 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>2.9075390193611383e-003</threshold>
- <left_val>-0.0771740376949310</left_val>
- <right_val>0.1062069982290268</right_val></_></_>
- <_>
- <!-- tree 38 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>4 6 6 4 -1.</_>
- <_>4 8 6 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0151893598958850</threshold>
- <left_val>0.0603638999164104</left_val>
- <right_val>-0.4136523902416229</right_val></_></_>
- <_>
- <!-- tree 39 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>8 7 6 5 -1.</_>
- <_>8 7 3 5 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0306837391108274</threshold>
- <left_val>0.4347062110900879</left_val>
- <right_val>-0.0593813210725784</right_val></_></_>
- <_>
- <!-- tree 40 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>10 8 4 6 -1.</_>
- <_>10 8 4 3 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-0.0109734497964382</threshold>
- <left_val>-0.2953523099422455</left_val>
- <right_val>0.0855164676904678</right_val></_></_>
- <_>
- <!-- tree 41 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>6 12 12 4 -1.</_>
- <_>6 12 6 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0395403616130352</threshold>
- <left_val>-0.2876588106155396</left_val>
- <right_val>0.0344729684293270</right_val></_></_>
- <_>
- <!-- tree 42 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>3 11 10 3 -1.</_>
- <_>8 11 5 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0379358716309071</threshold>
- <left_val>0.3819986879825592</left_val>
- <right_val>-0.0853647664189339</right_val></_></_>
- <_>
- <!-- tree 43 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>12 2 3 12 -1.</_>
- <_>12 2 3 6 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>0.0306698102504015</threshold>
- <left_val>0.0447380989789963</left_val>
- <right_val>-0.1770364046096802</right_val></_></_>
- <_>
- <!-- tree 44 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 2 14 16 -1.</_>
- <_>7 2 7 16 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.1719450950622559</threshold>
- <left_val>-0.0592141784727573</left_val>
- <right_val>0.4929103851318359</right_val></_></_>
- <_>
- <!-- tree 45 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>1 5 20 4 -1.</_>
- <_>6 5 10 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-6.7055500112473965e-003</threshold>
- <left_val>0.1641025990247726</left_val>
- <right_val>-0.2182646989822388</right_val></_></_>
- <_>
- <!-- tree 46 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 1 18 15 -1.</_>
- <_>9 1 9 15 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.3857786953449249</threshold>
- <left_val>-0.6717677116394043</left_val>
- <right_val>0.0423495918512344</right_val></_></_>
- <_>
- <!-- tree 47 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>15 2 6 8 -1.</_>
- <_>15 4 6 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0272130407392979</threshold>
- <left_val>0.0122661497443914</left_val>
- <right_val>-0.2295421063899994</right_val></_></_>
- <_>
- <!-- tree 48 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>4 14 13 4 -1.</_>
- <_>4 15 13 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0192949809134007</threshold>
- <left_val>-0.5837343931198120</left_val>
- <right_val>0.0383809991180897</right_val></_></_>
- <_>
- <!-- tree 49 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>11 2 3 12 -1.</_>
- <_>12 2 1 12 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>7.6792249456048012e-003</threshold>
- <left_val>-0.0474903509020805</left_val>
- <right_val>0.1596446037292481</right_val></_></_>
- <_>
- <!-- tree 50 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 16 15 2 -1.</_>
- <_>0 17 15 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>6.0242269682930782e-005</threshold>
- <left_val>-0.1173423975706101</left_val>
- <right_val>0.1823665052652359</right_val></_></_>
- <_>
- <!-- tree 51 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>12 14 6 4 -1.</_>
- <_>12 16 6 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-6.6498141677584499e-005</threshold>
- <left_val>0.0747451409697533</left_val>
- <right_val>-0.1698943972587585</right_val></_></_>
- <_>
- <!-- tree 52 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>5 13 12 4 -1.</_>
- <_>5 14 12 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>4.3275849893689156e-003</threshold>
- <left_val>0.0737897977232933</left_val>
- <right_val>-0.2844434976577759</right_val></_></_>
- <_>
- <!-- tree 53 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>12 12 6 6 -1.</_>
- <_>12 14 6 2 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0331404693424702</threshold>
- <left_val>-0.4060660898685455</left_val>
- <right_val>0.0100287301465869</right_val></_></_>
- <_>
- <!-- tree 54 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 9 15 3 -1.</_>
- <_>0 10 15 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>9.9181402474641800e-003</threshold>
- <left_val>-0.0793397873640060</left_val>
- <right_val>0.2819001078605652</right_val></_></_>
- <_>
- <!-- tree 55 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>6 9 14 3 -1.</_>
- <_>6 10 14 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-2.3577339015901089e-003</threshold>
- <left_val>0.1530122011899948</left_val>
- <right_val>-0.1047597974538803</right_val></_></_>
- <_>
- <!-- tree 56 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>4 12 7 6 -1.</_>
- <_>4 14 7 2 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0262008197605610</threshold>
- <left_val>-0.5418503284454346</left_val>
- <right_val>0.0443692505359650</right_val></_></_>
- <_>
- <!-- tree 57 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>6 6 10 6 -1.</_>
- <_>11 6 5 3 2.</_>
- <_>6 9 5 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0473286584019661</threshold>
- <left_val>0.0188977494835854</left_val>
- <right_val>-0.8266593217849731</right_val></_></_></trees>
- <stage_threshold>-0.9125220179557800</stage_threshold>
- <parent>7</parent>
- <next>-1</next></_>
- <_>
- <!-- stage 9 -->
- <trees>
- <_>
- <!-- tree 0 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>3 0 16 2 -1.</_>
- <_>3 0 8 2 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>0.0299217198044062</threshold>
- <left_val>-0.3231500089168549</left_val>
- <right_val>0.5109282135963440</right_val></_></_>
- <_>
- <!-- tree 1 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>5 9 12 9 -1.</_>
- <_>5 12 12 3 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0561476089060307</threshold>
- <left_val>-0.1257440000772476</left_val>
- <right_val>0.6674917936325073</right_val></_></_>
- <_>
- <!-- tree 2 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>6 9 10 6 -1.</_>
- <_>6 12 10 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0137598495930433</threshold>
- <left_val>0.4069119095802307</left_val>
- <right_val>-0.2107529938220978</right_val></_></_>
- <_>
- <!-- tree 3 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>7 4 8 6 -1.</_>
- <_>7 6 8 2 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-4.3788701295852661e-003</threshold>
- <left_val>0.2794013917446137</left_val>
- <right_val>-0.2095545977354050</right_val></_></_>
- <_>
- <!-- tree 4 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>6 5 3 12 -1.</_>
- <_>6 11 3 6 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0192088894546032</threshold>
- <left_val>-0.0898006930947304</left_val>
- <right_val>0.5093656182289124</right_val></_></_>
- <_>
- <!-- tree 5 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>12 12 6 6 -1.</_>
- <_>14 12 2 6 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-8.9393591042608023e-004</threshold>
- <left_val>0.1070362031459808</left_val>
- <right_val>-0.1229420006275177</right_val></_></_>
- <_>
- <!-- tree 6 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>6 15 8 3 -1.</_>
- <_>10 15 4 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-6.2918022740632296e-004</threshold>
- <left_val>-0.3784793019294739</left_val>
- <right_val>0.1300881952047348</right_val></_></_>
- <_>
- <!-- tree 7 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>4 13 14 4 -1.</_>
- <_>4 15 14 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-1.6248769825324416e-003</threshold>
- <left_val>0.1775002032518387</left_val>
- <right_val>-0.2781121134757996</right_val></_></_>
- <_>
- <!-- tree 8 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>10 4 11 3 -1.</_>
- <_>9 5 11 1 3.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-4.6151960268616676e-003</threshold>
- <left_val>0.2407151013612747</left_val>
- <right_val>-0.1426901072263718</right_val></_></_>
- <_>
- <!-- tree 9 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>11 4 4 9 -1.</_>
- <_>12 5 2 9 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>0.0571628287434578</threshold>
- <left_val>-0.0184748694300652</left_val>
- <right_val>0.4508605897426605</right_val></_></_>
- <_>
- <!-- tree 10 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 8 13 3 -1.</_>
- <_>0 9 13 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-3.8265369366854429e-003</threshold>
- <left_val>0.2595176100730896</left_val>
- <right_val>-0.1145515963435173</right_val></_></_>
- <_>
- <!-- tree 11 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>13 2 6 10 -1.</_>
- <_>16 2 3 5 2.</_>
- <_>13 7 3 5 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0452351905405521</threshold>
- <left_val>-0.3384900987148285</left_val>
- <right_val>0.0345389507710934</right_val></_></_>
- <_>
- <!-- tree 12 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>3 2 6 10 -1.</_>
- <_>3 2 3 5 2.</_>
- <_>6 7 3 5 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>3.8135750219225883e-003</threshold>
- <left_val>0.1133399978280067</left_val>
- <right_val>-0.2762039005756378</right_val></_></_>
- <_>
- <!-- tree 13 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>11 2 4 11 -1.</_>
- <_>11 2 2 11 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>0.0451082587242126</threshold>
- <left_val>0.0286020506173372</left_val>
- <right_val>-0.1583766937255859</right_val></_></_>
- <_>
- <!-- tree 14 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>4 2 12 3 -1.</_>
- <_>4 3 12 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-2.7794970665127039e-003</threshold>
- <left_val>0.2889742851257324</left_val>
- <right_val>-0.1082272008061409</right_val></_></_>
- <_>
- <!-- tree 15 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>12 1 4 12 -1.</_>
- <_>12 1 2 12 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>5.6366869248449802e-003</threshold>
- <left_val>-0.1018479019403458</left_val>
- <right_val>0.0787871032953262</right_val></_></_>
- <_>
- <!-- tree 16 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>11 2 11 4 -1.</_>
- <_>11 2 11 2 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-0.0529868192970753</threshold>
- <left_val>0.5296499729156494</left_val>
- <right_val>-0.0655433535575867</right_val></_></_>
- <_>
- <!-- tree 17 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>11 0 4 9 -1.</_>
- <_>11 0 2 9 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>0.0747378915548325</threshold>
- <left_val>0.0263206604868174</left_val>
- <right_val>-0.3048720955848694</right_val></_></_>
- <_>
- <!-- tree 18 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>11 0 9 4 -1.</_>
- <_>11 0 9 2 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>4.1559520177543163e-003</threshold>
- <left_val>-0.2297717034816742</left_val>
- <right_val>0.1566217988729477</right_val></_></_>
- <_>
- <!-- tree 19 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>16 2 6 10 -1.</_>
- <_>19 2 3 5 2.</_>
- <_>16 7 3 5 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-2.9388200491666794e-003</threshold>
- <left_val>-0.1691641062498093</left_val>
- <right_val>0.0969966724514961</right_val></_></_>
- <_>
- <!-- tree 20 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>11 0 6 3 -1.</_>
- <_>10 1 6 1 3.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-0.0130655104294419</threshold>
- <left_val>0.4025856852531433</left_val>
- <right_val>-0.0716143697500229</right_val></_></_>
- <_>
- <!-- tree 21 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>11 0 3 8 -1.</_>
- <_>12 1 1 8 3.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-0.0349282510578632</threshold>
- <left_val>-0.4944998919963837</left_val>
- <right_val>0.0225478205829859</right_val></_></_>
- <_>
- <!-- tree 22 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>11 0 8 3 -1.</_>
- <_>10 1 8 1 3.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>2.1728971041738987e-003</threshold>
- <left_val>-0.1555256992578507</left_val>
- <right_val>0.2013621926307678</right_val></_></_>
- <_>
- <!-- tree 23 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>17 1 4 12 -1.</_>
- <_>19 1 2 6 2.</_>
- <_>17 7 2 6 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0143873495981097</threshold>
- <left_val>0.0363481007516384</left_val>
- <right_val>-0.2946861982345581</right_val></_></_>
- <_>
- <!-- tree 24 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>8 4 6 4 -1.</_>
- <_>8 6 6 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>6.7830132320523262e-003</threshold>
- <left_val>-0.0822483524680138</left_val>
- <right_val>0.3385750055313110</right_val></_></_>
- <_>
- <!-- tree 25 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>8 5 8 5 -1.</_>
- <_>8 5 4 5 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0728838369250298</threshold>
- <left_val>-0.3457767069339752</left_val>
- <right_val>0.0196013208478689</right_val></_></_>
- <_>
- <!-- tree 26 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>8 4 6 13 -1.</_>
- <_>10 4 2 13 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-4.5158518478274345e-003</threshold>
- <left_val>0.1705949008464813</left_val>
- <right_val>-0.1974281966686249</right_val></_></_>
- <_>
- <!-- tree 27 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>16 3 6 8 -1.</_>
- <_>19 3 3 4 2.</_>
- <_>16 7 3 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0137420799583197</threshold>
- <left_val>-0.2121434956789017</left_val>
- <right_val>0.0339536890387535</right_val></_></_>
- <_>
- <!-- tree 28 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 3 6 8 -1.</_>
- <_>0 3 3 4 2.</_>
- <_>3 7 3 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>7.8056701458990574e-003</threshold>
- <left_val>0.0714266970753670</left_val>
- <right_val>-0.3422398865222931</right_val></_></_>
- <_>
- <!-- tree 29 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>10 9 12 4 -1.</_>
- <_>16 9 6 2 2.</_>
- <_>10 11 6 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0216499902307987</threshold>
- <left_val>-0.0619250498712063</left_val>
- <right_val>0.3726766109466553</right_val></_></_>
- <_>
- <!-- tree 30 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>1 2 9 12 -1.</_>
- <_>4 6 3 4 9.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0677066370844841</threshold>
- <left_val>-0.3030416071414948</left_val>
- <right_val>0.0943575873970985</right_val></_></_>
- <_>
- <!-- tree 31 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>15 12 4 6 -1.</_>
- <_>15 12 2 6 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-2.1855749655514956e-003</threshold>
- <left_val>0.1083177030086517</left_val>
- <right_val>-0.1553054004907608</right_val></_></_>
- <_>
- <!-- tree 32 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>5 15 12 3 -1.</_>
- <_>11 15 6 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-2.5483060162514448e-003</threshold>
- <left_val>-0.2410344034433365</left_val>
- <right_val>0.0929162874817848</right_val></_></_>
- <_>
- <!-- tree 33 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>2 16 20 2 -1.</_>
- <_>2 16 10 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0672078132629395</threshold>
- <left_val>-0.6625934839248657</left_val>
- <right_val>0.0160746499896050</right_val></_></_>
- <_>
- <!-- tree 34 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>1 8 10 6 -1.</_>
- <_>1 8 5 3 2.</_>
- <_>6 11 5 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0477993711829185</threshold>
- <left_val>-0.0444126389920712</left_val>
- <right_val>0.6056978702545166</right_val></_></_>
- <_>
- <!-- tree 35 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>6 3 16 14 -1.</_>
- <_>14 3 8 7 2.</_>
- <_>6 10 8 7 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0911784172058105</threshold>
- <left_val>0.2476149052381516</left_val>
- <right_val>-0.0347624011337757</right_val></_></_>
- <_>
- <!-- tree 36 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>1 4 6 8 -1.</_>
- <_>1 4 3 4 2.</_>
- <_>4 8 3 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-3.8592480123043060e-003</threshold>
- <left_val>-0.2536674141883850</left_val>
- <right_val>0.1019499972462654</right_val></_></_>
- <_>
- <!-- tree 37 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>7 2 12 4 -1.</_>
- <_>7 3 12 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>2.4100970476865768e-003</threshold>
- <left_val>-0.1213397011160851</left_val>
- <right_val>0.1976791024208069</right_val></_></_>
- <_>
- <!-- tree 38 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>1 9 6 9 -1.</_>
- <_>4 9 3 9 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-5.3831469267606735e-003</threshold>
- <left_val>0.1710394024848938</left_val>
- <right_val>-0.1618983000516892</right_val></_></_>
- <_>
- <!-- tree 39 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>12 14 10 4 -1.</_>
- <_>12 14 5 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>9.1004222631454468e-003</threshold>
- <left_val>-0.0609215497970581</left_val>
- <right_val>0.1769524961709976</right_val></_></_>
- <_>
- <!-- tree 40 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>2 12 12 5 -1.</_>
- <_>5 12 6 5 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>2.2724110167473555e-003</threshold>
- <left_val>-0.0904769673943520</left_val>
- <right_val>0.2744063138961792</right_val></_></_>
- <_>
- <!-- tree 41 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>15 12 6 6 -1.</_>
- <_>17 12 2 6 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0806215628981590</threshold>
- <left_val>-0.8804556727409363</left_val>
- <right_val>0.0171932391822338</right_val></_></_>
- <_>
- <!-- tree 42 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>1 12 6 6 -1.</_>
- <_>3 12 2 6 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>3.8965709973126650e-003</threshold>
- <left_val>-0.1703792065382004</left_val>
- <right_val>0.1797958016395569</right_val></_></_>
- <_>
- <!-- tree 43 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>8 12 6 6 -1.</_>
- <_>10 12 2 6 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-4.3093641288578510e-003</threshold>
- <left_val>-0.2938205003738403</left_val>
- <right_val>0.0863174721598625</right_val></_></_></trees>
- <stage_threshold>-1.1653599739074707</stage_threshold>
- <parent>8</parent>
- <next>-1</next></_>
- <_>
- <!-- stage 10 -->
- <trees>
- <_>
- <!-- tree 0 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>5 2 12 16 -1.</_>
- <_>5 10 12 8 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0631161928176880</threshold>
- <left_val>0.5551251769065857</left_val>
- <right_val>-0.3599770963191986</right_val></_></_>
- <_>
- <!-- tree 1 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>4 2 18 14 -1.</_>
- <_>4 9 18 7 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0843502879142761</threshold>
- <left_val>-0.1253127008676529</left_val>
- <right_val>0.5356768965721130</right_val></_></_>
- <_>
- <!-- tree 2 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>5 4 12 14 -1.</_>
- <_>5 11 12 7 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.2139073014259338</threshold>
- <left_val>0.7515686154365540</left_val>
- <right_val>-0.0882708728313446</right_val></_></_>
- <_>
- <!-- tree 3 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>2 5 20 8 -1.</_>
- <_>7 5 10 8 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0297449808567762</threshold>
- <left_val>0.2010620981454849</left_val>
- <right_val>-0.1210668981075287</right_val></_></_>
- <_>
- <!-- tree 4 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>8 0 10 7 -1.</_>
- <_>8 0 5 7 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-0.1198768019676209</threshold>
- <left_val>0.6469219923019409</left_val>
- <right_val>-0.0777476131916046</right_val></_></_>
- <_>
- <!-- tree 5 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>12 0 5 8 -1.</_>
- <_>12 0 5 4 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>3.0843529384583235e-003</threshold>
- <left_val>-0.0630676373839378</left_val>
- <right_val>0.0778890773653984</right_val></_></_>
- <_>
- <!-- tree 6 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>7 4 6 13 -1.</_>
- <_>10 4 3 13 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-4.5560211874544621e-003</threshold>
- <left_val>0.1897227019071579</left_val>
- <right_val>-0.1992907971143723</right_val></_></_>
- <_>
- <!-- tree 7 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>7 14 8 4 -1.</_>
- <_>7 16 8 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>4.4629329931922257e-004</threshold>
- <left_val>0.1405158936977387</left_val>
- <right_val>-0.3029241859912872</right_val></_></_>
- <_>
- <!-- tree 8 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>8 0 3 12 -1.</_>
- <_>9 0 1 12 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-6.4954371191561222e-003</threshold>
- <left_val>0.3194229006767273</left_val>
- <right_val>-0.1107200011610985</right_val></_></_>
- <_>
- <!-- tree 9 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>11 6 3 12 -1.</_>
- <_>12 6 1 12 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-2.1751760505139828e-003</threshold>
- <left_val>0.1647725999355316</left_val>
- <right_val>-0.0804247781634331</right_val></_></_>
- <_>
- <!-- tree 10 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>4 0 3 12 -1.</_>
- <_>4 4 3 4 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>6.5875840373337269e-003</threshold>
- <left_val>0.1471655070781708</left_val>
- <right_val>-0.3019815087318420</right_val></_></_>
- <_>
- <!-- tree 11 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>11 3 3 15 -1.</_>
- <_>12 3 1 15 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0207012090831995</threshold>
- <left_val>-0.0429966896772385</left_val>
- <right_val>0.4012382030487061</right_val></_></_>
- <_>
- <!-- tree 12 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>5 12 7 6 -1.</_>
- <_>5 14 7 2 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>2.5877119041979313e-003</threshold>
- <left_val>0.1263054013252258</left_val>
- <right_val>-0.2751812040805817</right_val></_></_>
- <_>
- <!-- tree 13 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>11 6 3 12 -1.</_>
- <_>12 6 1 12 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0105450795963407</threshold>
- <left_val>0.1963762938976288</left_val>
- <right_val>-0.0397727787494659</right_val></_></_>
- <_>
- <!-- tree 14 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>8 6 3 12 -1.</_>
- <_>9 6 1 12 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>6.2396968714892864e-003</threshold>
- <left_val>-0.0835634097456932</left_val>
- <right_val>0.3665548861026764</right_val></_></_>
- <_>
- <!-- tree 15 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>5 16 12 2 -1.</_>
- <_>5 16 6 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0144586702808738</threshold>
- <left_val>0.0633016973733902</left_val>
- <right_val>-0.5849890708923340</right_val></_></_>
- <_>
- <!-- tree 16 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>1 12 20 6 -1.</_>
- <_>6 12 10 6 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0312634408473969</threshold>
- <left_val>-0.1067527011036873</left_val>
- <right_val>0.3485285937786102</right_val></_></_>
- <_>
- <!-- tree 17 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>8 11 9 4 -1.</_>
- <_>11 11 3 4 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>1.4865349512547255e-003</threshold>
- <left_val>0.1370967030525208</left_val>
- <right_val>-0.1373165994882584</right_val></_></_>
- <_>
- <!-- tree 18 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>5 11 9 4 -1.</_>
- <_>8 11 3 4 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-1.7898039368446916e-004</threshold>
- <left_val>0.1783964931964874</left_val>
- <right_val>-0.2575171887874603</right_val></_></_>
- <_>
- <!-- tree 19 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>11 6 9 12 -1.</_>
- <_>14 10 3 4 9.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0777144730091095</threshold>
- <left_val>0.0570818483829498</left_val>
- <right_val>-0.2427340000867844</right_val></_></_>
- <_>
- <!-- tree 20 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>2 6 9 12 -1.</_>
- <_>5 10 3 4 9.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0222282707691193</threshold>
- <left_val>0.1459379047155380</left_val>
- <right_val>-0.2099460959434509</right_val></_></_>
- <_>
- <!-- tree 21 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>5 9 12 2 -1.</_>
- <_>5 10 12 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>1.6969949938356876e-003</threshold>
- <left_val>-0.1441888958215714</left_val>
- <right_val>0.2737540900707245</right_val></_></_>
- <_>
- <!-- tree 22 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 3 16 3 -1.</_>
- <_>4 3 8 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0200234707444906</threshold>
- <left_val>-0.3755624890327454</left_val>
- <right_val>0.0816276967525482</right_val></_></_>
- <_>
- <!-- tree 23 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>11 6 3 12 -1.</_>
- <_>12 6 1 12 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>3.8644319865852594e-003</threshold>
- <left_val>-0.0644904300570488</left_val>
- <right_val>0.1592168956995010</right_val></_></_>
- <_>
- <!-- tree 24 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 2 14 3 -1.</_>
- <_>0 3 14 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-3.0527650378644466e-003</threshold>
- <left_val>0.2675152122974396</left_val>
- <right_val>-0.1053185015916824</right_val></_></_>
- <_>
- <!-- tree 25 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>10 2 12 3 -1.</_>
- <_>10 3 12 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>5.6112320162355900e-003</threshold>
- <left_val>-0.0685677304863930</left_val>
- <right_val>0.2123499065637589</right_val></_></_>
- <_>
- <!-- tree 26 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>5 14 12 3 -1.</_>
- <_>11 14 6 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>4.6622268855571747e-003</threshold>
- <left_val>0.1425414979457855</left_val>
- <right_val>-0.2089271992444992</right_val></_></_>
- <_>
- <!-- tree 27 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>8 13 8 3 -1.</_>
- <_>8 13 4 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>2.4710448924452066e-003</threshold>
- <left_val>0.0726143866777420</left_val>
- <right_val>-0.1883390992879868</right_val></_></_>
- <_>
- <!-- tree 28 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>9 2 4 8 -1.</_>
- <_>9 6 4 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0126550002023578</threshold>
- <left_val>-0.0836052596569061</left_val>
- <right_val>0.4326224029064179</right_val></_></_>
- <_>
- <!-- tree 29 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>15 1 3 11 -1.</_>
- <_>16 2 1 11 3.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-0.0177245195955038</threshold>
- <left_val>0.1743223071098328</left_val>
- <right_val>-0.0284798201173544</right_val></_></_>
- <_>
- <!-- tree 30 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>8 1 10 4 -1.</_>
- <_>7 2 10 2 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-7.2321272455155849e-004</threshold>
- <left_val>0.1534397006034851</left_val>
- <right_val>-0.2401217967271805</right_val></_></_>
- <_>
- <!-- tree 31 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>5 5 15 3 -1.</_>
- <_>5 6 15 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-6.2155709601938725e-003</threshold>
- <left_val>0.2516668140888214</left_val>
- <right_val>-0.0855198875069618</right_val></_></_>
- <_>
- <!-- tree 32 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>5 1 9 5 -1.</_>
- <_>8 1 3 5 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0416327714920044</threshold>
- <left_val>0.0505938008427620</left_val>
- <right_val>-0.6096544265747070</right_val></_></_>
- <_>
- <!-- tree 33 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>14 0 4 18 -1.</_>
- <_>15 0 2 18 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0239183008670807</threshold>
- <left_val>-0.0368096604943275</left_val>
- <right_val>0.3905547857284546</right_val></_></_>
- <_>
- <!-- tree 34 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>6 0 5 16 -1.</_>
- <_>6 8 5 8 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-7.4353138916194439e-003</threshold>
- <left_val>0.1501857936382294</left_val>
- <right_val>-0.1862781941890717</right_val></_></_>
- <_>
- <!-- tree 35 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>12 4 4 8 -1.</_>
- <_>12 8 4 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0205714497715235</threshold>
- <left_val>-0.2857455909252167</left_val>
- <right_val>0.0483023785054684</right_val></_></_>
- <_>
- <!-- tree 36 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>11 4 10 2 -1.</_>
- <_>11 4 10 1 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-7.3831980116665363e-003</threshold>
- <left_val>0.3668056130409241</left_val>
- <right_val>-0.0960677564144135</right_val></_></_>
- <_>
- <!-- tree 37 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>10 0 12 3 -1.</_>
- <_>14 0 4 3 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>9.7222924232482910e-003</threshold>
- <left_val>0.0638980194926262</left_val>
- <right_val>-0.1726257950067520</right_val></_></_>
- <_>
- <!-- tree 38 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 2 20 13 -1.</_>
- <_>5 2 10 13 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0218076296150684</threshold>
- <left_val>0.1802726984024048</left_val>
- <right_val>-0.1910911947488785</right_val></_></_>
- <_>
- <!-- tree 39 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>12 4 4 8 -1.</_>
- <_>12 8 4 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0581476688385010</threshold>
- <left_val>8.5709961131215096e-003</left_val>
- <right_val>-0.4625082910060883</right_val></_></_>
- <_>
- <!-- tree 40 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>6 4 4 8 -1.</_>
- <_>6 8 4 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-9.4539504498243332e-003</threshold>
- <left_val>-0.2890872955322266</left_val>
- <right_val>0.1142157018184662</right_val></_></_>
- <_>
- <!-- tree 41 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>11 6 3 12 -1.</_>
- <_>12 6 1 12 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0210807099938393</threshold>
- <left_val>0.3757005035877228</left_val>
- <right_val>-0.0255910307168961</right_val></_></_>
- <_>
- <!-- tree 42 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>8 6 3 12 -1.</_>
- <_>9 6 1 12 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-4.0629571303725243e-003</threshold>
- <left_val>0.2714667022228241</left_val>
- <right_val>-0.1084538027644157</right_val></_></_>
- <_>
- <!-- tree 43 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>7 1 14 2 -1.</_>
- <_>7 1 7 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.1282662004232407</threshold>
- <left_val>1.</left_val>
- <right_val>-1.0962430387735367e-003</right_val></_></_></trees>
- <stage_threshold>-0.9428492784500122</stage_threshold>
- <parent>9</parent>
- <next>-1</next></_>
- <_>
- <!-- stage 11 -->
- <trees>
- <_>
- <!-- tree 0 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>4 8 14 10 -1.</_>
- <_>4 13 14 5 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.1266229003667831</threshold>
- <left_val>0.6226822137832642</left_val>
- <right_val>-0.1481045931577683</right_val></_></_>
- <_>
- <!-- tree 1 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>11 14 9 4 -1.</_>
- <_>14 14 3 4 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-7.0846290327608585e-003</threshold>
- <left_val>0.2013377994298935</left_val>
- <right_val>-0.1772895008325577</right_val></_></_>
- <_>
- <!-- tree 2 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>1 7 17 8 -1.</_>
- <_>1 11 17 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.1145920008420944</threshold>
- <left_val>-0.0889758467674255</left_val>
- <right_val>0.5739554166793823</right_val></_></_>
- <_>
- <!-- tree 3 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>10 12 7 6 -1.</_>
- <_>10 15 7 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>3.3472150098532438e-003</threshold>
- <left_val>0.0757082030177116</left_val>
- <right_val>-0.2822217941284180</right_val></_></_>
- <_>
- <!-- tree 4 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>10 1 8 9 -1.</_>
- <_>10 1 4 9 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>0.0519242286682129</threshold>
- <left_val>-0.1394848972558975</left_val>
- <right_val>0.2568109035491943</right_val></_></_>
- <_>
- <!-- tree 5 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>11 2 4 11 -1.</_>
- <_>11 2 2 11 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-0.0413439087569714</threshold>
- <left_val>0.2241418063640595</left_val>
- <right_val>-0.0436536706984043</right_val></_></_>
- <_>
- <!-- tree 6 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>6 9 4 9 -1.</_>
- <_>8 9 2 9 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0320564694702625</threshold>
- <left_val>-0.5940976142883301</left_val>
- <right_val>0.0518911592662334</right_val></_></_>
- <_>
- <!-- tree 7 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>8 3 12 4 -1.</_>
- <_>14 3 6 2 2.</_>
- <_>8 5 6 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-4.0590870194137096e-003</threshold>
- <left_val>0.1640208065509796</left_val>
- <right_val>-0.1552838981151581</right_val></_></_>
- <_>
- <!-- tree 8 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>5 14 7 4 -1.</_>
- <_>5 16 7 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-9.1876718215644360e-005</threshold>
- <left_val>0.1058787032961845</left_val>
- <right_val>-0.2826159894466400</right_val></_></_>
- <_>
- <!-- tree 9 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>13 0 4 13 -1.</_>
- <_>13 0 2 13 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>0.0283582191914320</threshold>
- <left_val>0.0573840290307999</left_val>
- <right_val>-0.0670941472053528</right_val></_></_>
- <_>
- <!-- tree 10 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>9 0 13 4 -1.</_>
- <_>9 0 13 2 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-0.0746625214815140</threshold>
- <left_val>0.5691670775413513</left_val>
- <right_val>-0.0487856417894363</right_val></_></_>
- <_>
- <!-- tree 11 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>12 9 4 9 -1.</_>
- <_>12 12 4 3 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-3.6556490231305361e-003</threshold>
- <left_val>0.2236949056386948</left_val>
- <right_val>-0.1220214962959290</right_val></_></_>
- <_>
- <!-- tree 12 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>7 4 12 2 -1.</_>
- <_>7 4 12 1 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>3.1778779812157154e-003</threshold>
- <left_val>0.1224031969904900</left_val>
- <right_val>-0.2768172919750214</right_val></_></_>
- <_>
- <!-- tree 13 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>12 5 10 6 -1.</_>
- <_>17 5 5 3 2.</_>
- <_>12 8 5 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0380443409085274</threshold>
- <left_val>0.0232164002954960</left_val>
- <right_val>-0.5373290181159973</right_val></_></_>
- <_>
- <!-- tree 14 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>1 0 17 3 -1.</_>
- <_>1 1 17 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>8.7831392884254456e-003</threshold>
- <left_val>-0.0743375569581985</left_val>
- <right_val>0.3285123109817505</right_val></_></_>
- <_>
- <!-- tree 15 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>15 4 6 8 -1.</_>
- <_>18 4 3 4 2.</_>
- <_>15 8 3 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-5.9818099252879620e-003</threshold>
- <left_val>-0.1950477957725525</left_val>
- <right_val>0.0669768527150154</right_val></_></_>
- <_>
- <!-- tree 16 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>3 2 4 14 -1.</_>
- <_>3 2 2 7 2.</_>
- <_>5 9 2 7 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-1.6369449440389872e-003</threshold>
- <left_val>0.1467480063438416</left_val>
- <right_val>-0.1802414953708649</right_val></_></_>
- <_>
- <!-- tree 17 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>14 8 6 4 -1.</_>
- <_>14 8 6 2 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-0.0991931334137917</threshold>
- <left_val>0.6836351752281189</left_val>
- <right_val>-0.0296527203172445</right_val></_></_>
- <_>
- <!-- tree 18 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>8 8 4 6 -1.</_>
- <_>8 8 2 6 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-0.0103520099073648</threshold>
- <left_val>0.3422530889511108</left_val>
- <right_val>-0.0811415389180183</right_val></_></_>
- <_>
- <!-- tree 19 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>12 1 4 16 -1.</_>
- <_>14 1 2 8 2.</_>
- <_>12 9 2 8 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0256379097700119</threshold>
- <left_val>0.0514169000089169</left_val>
- <right_val>-0.1669799983501434</right_val></_></_>
- <_>
- <!-- tree 20 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>7 0 6 8 -1.</_>
- <_>7 0 3 4 2.</_>
- <_>10 4 3 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-1.2416959507390857e-003</threshold>
- <left_val>0.1248890012502670</left_val>
- <right_val>-0.2134622037410736</right_val></_></_>
- <_>
- <!-- tree 21 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>8 12 6 5 -1.</_>
- <_>8 12 3 5 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>1.5018839621916413e-003</threshold>
- <left_val>0.0979343876242638</left_val>
- <right_val>-0.2638502120971680</right_val></_></_>
- <_>
- <!-- tree 22 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>7 5 6 12 -1.</_>
- <_>7 5 3 6 2.</_>
- <_>10 11 3 6 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0327036790549755</threshold>
- <left_val>0.5750488042831421</left_val>
- <right_val>-0.0458754003047943</right_val></_></_>
- <_>
- <!-- tree 23 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>15 5 6 6 -1.</_>
- <_>15 5 3 6 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>0.0212971698492765</threshold>
- <left_val>0.0610693804919720</left_val>
- <right_val>-0.2248021960258484</right_val></_></_>
- <_>
- <!-- tree 24 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>6 10 3 8 -1.</_>
- <_>6 14 3 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-8.8358018547296524e-004</threshold>
- <left_val>0.0956257879734039</left_val>
- <right_val>-0.2756459116935730</right_val></_></_>
- <_>
- <!-- tree 25 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>4 0 14 3 -1.</_>
- <_>4 1 14 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-3.6556860432028770e-003</threshold>
- <left_val>0.2410708963871002</left_val>
- <right_val>-0.1035951972007752</right_val></_></_>
- <_>
- <!-- tree 26 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 9 8 3 -1.</_>
- <_>4 9 4 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0343004614114761</threshold>
- <left_val>0.0390627011656761</left_val>
- <right_val>-0.6244534850120544</right_val></_></_>
- <_>
- <!-- tree 27 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>9 3 4 6 -1.</_>
- <_>9 6 4 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0114923501387239</threshold>
- <left_val>-0.0692460536956787</left_val>
- <right_val>0.3825817108154297</right_val></_></_>
- <_>
- <!-- tree 28 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>3 0 10 10 -1.</_>
- <_>3 0 5 5 2.</_>
- <_>8 5 5 5 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-3.1294790096580982e-003</threshold>
- <left_val>0.1127336993813515</left_val>
- <right_val>-0.2312251031398773</right_val></_></_>
- <_>
- <!-- tree 29 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>5 13 12 4 -1.</_>
- <_>5 13 6 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-4.0945871733129025e-003</threshold>
- <left_val>-0.1719598025083542</left_val>
- <right_val>0.1311265975236893</right_val></_></_>
- <_>
- <!-- tree 30 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>6 12 10 3 -1.</_>
- <_>11 12 5 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-3.0921408906579018e-003</threshold>
- <left_val>-0.2546038925647736</left_val>
- <right_val>0.0966591611504555</right_val></_></_>
- <_>
- <!-- tree 31 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>12 15 10 3 -1.</_>
- <_>12 15 5 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0416721291840076</threshold>
- <left_val>0.2732776999473572</left_val>
- <right_val>-0.0630946233868599</right_val></_></_>
- <_>
- <!-- tree 32 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 15 10 3 -1.</_>
- <_>5 15 5 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0113844601437449</threshold>
- <left_val>-0.0718725174665451</left_val>
- <right_val>0.4116039872169495</right_val></_></_>
- <_>
- <!-- tree 33 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>3 0 17 14 -1.</_>
- <_>3 7 17 7 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0239341501146555</threshold>
- <left_val>0.1319234073162079</left_val>
- <right_val>-0.1795483976602554</right_val></_></_>
- <_>
- <!-- tree 34 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>9 0 4 16 -1.</_>
- <_>9 0 2 8 2.</_>
- <_>11 8 2 8 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0315541699528694</threshold>
- <left_val>-0.5879213213920593</left_val>
- <right_val>0.0417828895151615</right_val></_></_>
- <_>
- <!-- tree 35 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>11 4 6 8 -1.</_>
- <_>11 8 6 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0240338593721390</threshold>
- <left_val>-0.1553476005792618</left_val>
- <right_val>0.0277002602815628</right_val></_></_>
- <_>
- <!-- tree 36 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 9 12 3 -1.</_>
- <_>0 10 12 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0315894708037376</threshold>
- <left_val>-0.0391502790153027</left_val>
- <right_val>0.6095172166824341</right_val></_></_>
- <_>
- <!-- tree 37 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>1 5 20 8 -1.</_>
- <_>11 5 10 4 2.</_>
- <_>1 9 10 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0242148600518703</threshold>
- <left_val>-0.2458761930465698</left_val>
- <right_val>0.0911332964897156</right_val></_></_>
- <_>
- <!-- tree 38 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>1 8 13 3 -1.</_>
- <_>1 9 13 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>1.9322870066389441e-003</threshold>
- <left_val>-0.1164783984422684</left_val>
- <right_val>0.1881929039955139</right_val></_></_>
- <_>
- <!-- tree 39 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>8 8 14 3 -1.</_>
- <_>8 9 14 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-3.6017759703099728e-003</threshold>
- <left_val>0.0976005122065544</left_val>
- <right_val>-0.0489180907607079</right_val></_></_>
- <_>
- <!-- tree 40 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>4 16 14 2 -1.</_>
- <_>4 17 14 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>3.1516118906438351e-003</threshold>
- <left_val>0.0658088698983192</left_val>
- <right_val>-0.3157765865325928</right_val></_></_>
- <_>
- <!-- tree 41 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>11 1 3 6 -1.</_>
- <_>12 2 1 6 3.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-0.0636770725250244</threshold>
- <left_val>-0.8641548156738281</left_val>
- <right_val>-9.9097320344299078e-004</right_val></_></_>
- <_>
- <!-- tree 42 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>11 1 6 3 -1.</_>
- <_>10 2 6 1 3.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-3.9085028693079948e-003</threshold>
- <left_val>0.2082621008157730</left_val>
- <right_val>-0.1056023016571999</right_val></_></_>
- <_>
- <!-- tree 43 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>13 1 6 10 -1.</_>
- <_>16 1 3 5 2.</_>
- <_>13 6 3 5 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0268377196043730</threshold>
- <left_val>-0.1837512999773026</left_val>
- <right_val>0.0295453295111656</right_val></_></_>
- <_>
- <!-- tree 44 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>11 0 10 3 -1.</_>
- <_>10 1 10 1 3.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>3.1312298960983753e-003</threshold>
- <left_val>-0.1262668967247009</left_val>
- <right_val>0.1688859015703201</right_val></_></_>
- <_>
- <!-- tree 45 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>12 1 3 12 -1.</_>
- <_>13 2 1 12 3.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-0.0734918713569641</threshold>
- <left_val>-1.</left_val>
- <right_val>5.6774187833070755e-003</right_val></_></_>
- <_>
- <!-- tree 46 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>10 1 12 3 -1.</_>
- <_>9 2 12 1 3.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>0.0180348195135593</threshold>
- <left_val>-0.0686174109578133</left_val>
- <right_val>0.3343813121318817</right_val></_></_>
- <_>
- <!-- tree 47 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>13 1 6 10 -1.</_>
- <_>16 1 3 5 2.</_>
- <_>13 6 3 5 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0686559975147247</threshold>
- <left_val>4.6462309546768665e-003</left_val>
- <right_val>-0.8066462874412537</right_val></_></_>
- <_>
- <!-- tree 48 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>3 1 6 10 -1.</_>
- <_>3 1 3 5 2.</_>
- <_>6 6 3 5 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-4.6970890834927559e-003</threshold>
- <left_val>-0.2012176960706711</left_val>
- <right_val>0.1158004030585289</right_val></_></_>
- <_>
- <!-- tree 49 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>14 7 6 10 -1.</_>
- <_>17 7 3 5 2.</_>
- <_>14 12 3 5 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0467838905751705</threshold>
- <left_val>-0.0358026996254921</left_val>
- <right_val>0.4162563979625702</right_val></_></_>
- <_>
- <!-- tree 50 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>3 2 6 8 -1.</_>
- <_>3 2 3 4 2.</_>
- <_>6 6 3 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>4.5946058817207813e-003</threshold>
- <left_val>0.0884575769305229</left_val>
- <right_val>-0.2689448893070221</right_val></_></_>
- <_>
- <!-- tree 51 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>11 14 9 4 -1.</_>
- <_>14 14 3 4 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-1.3852829579263926e-003</threshold>
- <left_val>0.0813912227749825</left_val>
- <right_val>-0.1488042026758194</right_val></_></_>
- <_>
- <!-- tree 52 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>1 8 15 8 -1.</_>
- <_>1 12 15 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0217887591570616</threshold>
- <left_val>-0.0916404575109482</left_val>
- <right_val>0.2126124948263168</right_val></_></_>
- <_>
- <!-- tree 53 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>9 12 8 4 -1.</_>
- <_>9 14 8 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-1.3380090240389109e-004</threshold>
- <left_val>0.0964247435331345</left_val>
- <right_val>-0.1471737027168274</right_val></_></_>
- <_>
- <!-- tree 54 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>6 5 7 6 -1.</_>
- <_>6 7 7 2 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0479904115200043</threshold>
- <left_val>-0.6198713183403015</left_val>
- <right_val>0.0387607105076313</right_val></_></_>
- <_>
- <!-- tree 55 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>9 5 6 5 -1.</_>
- <_>9 5 3 5 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0200260095298290</threshold>
- <left_val>-0.0359724201261997</left_val>
- <right_val>0.1939342021942139</right_val></_></_>
- <_>
- <!-- tree 56 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 12 8 6 -1.</_>
- <_>2 12 4 6 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>1.0723130544647574e-003</threshold>
- <left_val>-0.1944749951362610</left_val>
- <right_val>0.1206495016813278</right_val></_></_>
- <_>
- <!-- tree 57 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>14 8 6 4 -1.</_>
- <_>14 8 3 4 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>0.0226650908589363</threshold>
- <left_val>0.0487194396555424</left_val>
- <right_val>-0.2364079952239990</right_val></_></_>
- <_>
- <!-- tree 58 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>8 8 4 6 -1.</_>
- <_>8 8 4 3 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-0.0110421096906066</threshold>
- <left_val>-0.2610734105110169</left_val>
- <right_val>0.1007549017667770</right_val></_></_>
- <_>
- <!-- tree 59 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>9 4 6 8 -1.</_>
- <_>11 4 2 8 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0128110498189926</threshold>
- <left_val>0.1519962996244431</left_val>
- <right_val>-0.0885529592633247</right_val></_></_>
- <_>
- <!-- tree 60 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>7 4 6 8 -1.</_>
- <_>9 4 2 8 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0366286486387253</threshold>
- <left_val>0.3885886073112488</left_val>
- <right_val>-0.0773045495152473</right_val></_></_></trees>
- <stage_threshold>-0.9562031030654907</stage_threshold>
- <parent>10</parent>
- <next>-1</next></_>
- <_>
- <!-- stage 12 -->
- <trees>
- <_>
- <!-- tree 0 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 15 10 3 -1.</_>
- <_>5 15 5 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0546066388487816</threshold>
- <left_val>0.5580134987831116</left_val>
- <right_val>-0.1416888982057571</right_val></_></_>
- <_>
- <!-- tree 1 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>11 5 3 9 -1.</_>
- <_>12 6 1 9 3.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>0.0335337407886982</threshold>
- <left_val>-0.0273862797766924</left_val>
- <right_val>0.4438177049160004</right_val></_></_>
- <_>
- <!-- tree 2 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>11 5 9 3 -1.</_>
- <_>10 6 9 1 3.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-9.9635301157832146e-003</threshold>
- <left_val>0.2519390881061554</left_val>
- <right_val>-0.1464754045009613</right_val></_></_>
- <_>
- <!-- tree 3 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>12 6 8 4 -1.</_>
- <_>12 6 8 2 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>1.8188880058005452e-003</threshold>
- <left_val>-0.1126412004232407</left_val>
- <right_val>0.1152326017618179</right_val></_></_>
- <_>
- <!-- tree 4 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>10 6 4 8 -1.</_>
- <_>10 6 2 8 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-0.0487938299775124</threshold>
- <left_val>0.5131710767745972</left_val>
- <right_val>-0.0786650180816650</right_val></_></_>
- <_>
- <!-- tree 5 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>13 0 5 12 -1.</_>
- <_>13 0 5 6 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-0.0133577696979046</threshold>
- <left_val>-0.1419797986745834</left_val>
- <right_val>0.1186259984970093</right_val></_></_>
- <_>
- <!-- tree 6 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>1 3 12 4 -1.</_>
- <_>4 3 6 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>1.1562240542843938e-003</threshold>
- <left_val>-0.2094922065734863</left_val>
- <right_val>0.1569304019212723</right_val></_></_>
- <_>
- <!-- tree 7 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>15 7 6 5 -1.</_>
- <_>15 7 3 5 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-6.2384512275457382e-003</threshold>
- <left_val>-0.1433645039796829</left_val>
- <right_val>0.1130355000495911</right_val></_></_>
- <_>
- <!-- tree 8 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>1 7 12 3 -1.</_>
- <_>1 8 12 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>4.4234818778932095e-003</threshold>
- <left_val>-0.1035858020186424</left_val>
- <right_val>0.2458948940038681</right_val></_></_>
- <_>
- <!-- tree 9 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>15 7 6 5 -1.</_>
- <_>15 7 3 5 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0529644489288330</threshold>
- <left_val>0.0125615503638983</left_val>
- <right_val>-0.6255180835723877</right_val></_></_>
- <_>
- <!-- tree 10 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>1 7 6 5 -1.</_>
- <_>4 7 3 5 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>5.5844681337475777e-003</threshold>
- <left_val>0.0839678868651390</left_val>
- <right_val>-0.2465379983186722</right_val></_></_>
- <_>
- <!-- tree 11 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>12 13 6 4 -1.</_>
- <_>12 15 6 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-4.1809541289694607e-004</threshold>
- <left_val>0.0695880725979805</left_val>
- <right_val>-0.1355881989002228</right_val></_></_>
- <_>
- <!-- tree 12 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>5 12 12 6 -1.</_>
- <_>5 12 6 3 2.</_>
- <_>11 15 6 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-8.9637134224176407e-003</threshold>
- <left_val>-0.3044273853302002</left_val>
- <right_val>0.0698947235941887</right_val></_></_>
- <_>
- <!-- tree 13 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>11 5 2 9 -1.</_>
- <_>11 5 1 9 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>0.0244790501892567</threshold>
- <left_val>-0.0316518284380436</left_val>
- <right_val>0.2030878961086273</right_val></_></_>
- <_>
- <!-- tree 14 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>11 5 9 2 -1.</_>
- <_>11 5 9 1 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-0.0258423294872046</threshold>
- <left_val>0.5040106177330017</left_val>
- <right_val>-0.0639220625162125</right_val></_></_>
- <_>
- <!-- tree 15 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>10 12 9 4 -1.</_>
- <_>13 12 3 4 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-2.0785620436072350e-003</threshold>
- <left_val>0.1098022013902664</left_val>
- <right_val>-0.1183955967426300</right_val></_></_>
- <_>
- <!-- tree 16 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>8 6 6 6 -1.</_>
- <_>8 6 6 3 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>0.0680303424596787</threshold>
- <left_val>0.0422907397150993</left_val>
- <right_val>-0.5185551047325134</right_val></_></_>
- <_>
- <!-- tree 17 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>10 14 6 4 -1.</_>
- <_>10 14 3 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-7.0639760233461857e-003</threshold>
- <left_val>-0.2003110051155090</left_val>
- <right_val>0.0249556098133326</right_val></_></_>
- <_>
- <!-- tree 18 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 2 14 3 -1.</_>
- <_>0 3 14 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-3.4848200157284737e-003</threshold>
- <left_val>0.2313532978296280</left_val>
- <right_val>-0.0969895571470261</right_val></_></_>
- <_>
- <!-- tree 19 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>8 2 12 3 -1.</_>
- <_>8 3 12 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0131471604108810</threshold>
- <left_val>-0.0374509505927563</left_val>
- <right_val>0.2584278881549835</right_val></_></_>
- <_>
- <!-- tree 20 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>8 7 5 6 -1.</_>
- <_>8 7 5 3 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-0.0142716597765684</threshold>
- <left_val>-0.3011017143726349</left_val>
- <right_val>0.0796723365783691</right_val></_></_>
- <_>
- <!-- tree 21 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>12 6 8 3 -1.</_>
- <_>12 6 4 3 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>0.0126534802839160</threshold>
- <left_val>0.0490391403436661</left_val>
- <right_val>-0.1498810946941376</right_val></_></_>
- <_>
- <!-- tree 22 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>4 10 4 6 -1.</_>
- <_>6 10 2 6 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-4.4893440790474415e-003</threshold>
- <left_val>0.1720885932445526</left_val>
- <right_val>-0.1535564959049225</right_val></_></_>
- <_>
- <!-- tree 23 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>1 11 20 4 -1.</_>
- <_>6 11 10 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0323654003441334</threshold>
- <left_val>-0.0904931128025055</left_val>
- <right_val>0.3577916026115418</right_val></_></_>
- <_>
- <!-- tree 24 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>6 10 8 7 -1.</_>
- <_>8 10 4 7 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>4.6125808730721474e-003</threshold>
- <left_val>0.1144519001245499</left_val>
- <right_val>-0.2651948928833008</right_val></_></_>
- <_>
- <!-- tree 25 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>11 3 3 9 -1.</_>
- <_>12 4 1 9 3.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>0.0286459308117628</threshold>
- <left_val>-0.0359885394573212</left_val>
- <right_val>0.3002552092075348</right_val></_></_>
- <_>
- <!-- tree 26 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 8 22 4 -1.</_>
- <_>11 8 11 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0235719792544842</threshold>
- <left_val>-0.2487282007932663</left_val>
- <right_val>0.0919671207666397</right_val></_></_>
- <_>
- <!-- tree 27 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>3 10 16 3 -1.</_>
- <_>3 10 8 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0107397995889187</threshold>
- <left_val>-0.2136776000261307</left_val>
- <right_val>0.0964774116873741</right_val></_></_>
- <_>
- <!-- tree 28 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>11 3 9 3 -1.</_>
- <_>10 4 9 1 3.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>0.0237286593765020</threshold>
- <left_val>-0.0709161981940269</left_val>
- <right_val>0.4382875859737396</right_val></_></_>
- <_>
- <!-- tree 29 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>5 3 12 9 -1.</_>
- <_>9 6 4 3 9.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.3280070126056671</threshold>
- <left_val>0.5884003043174744</left_val>
- <right_val>-0.0317567884922028</right_val></_></_>
- <_>
- <!-- tree 30 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>7 12 4 6 -1.</_>
- <_>9 12 2 6 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>7.5008560997957829e-006</threshold>
- <left_val>-0.1828856021165848</left_val>
- <right_val>0.1202294006943703</right_val></_></_>
- <_>
- <!-- tree 31 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>9 12 6 6 -1.</_>
- <_>9 12 3 6 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0300714094191790</threshold>
- <left_val>0.0278020203113556</left_val>
- <right_val>-0.4322428107261658</right_val></_></_>
- <_>
- <!-- tree 32 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>2 13 16 5 -1.</_>
- <_>10 13 8 5 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-2.1936609409749508e-003</threshold>
- <left_val>0.1359242051839829</left_val>
- <right_val>-0.1403862982988358</right_val></_></_>
- <_>
- <!-- tree 33 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>12 12 8 3 -1.</_>
- <_>12 12 4 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0201743394136429</threshold>
- <left_val>-0.0616289190948009</left_val>
- <right_val>0.3157976865768433</right_val></_></_>
- <_>
- <!-- tree 34 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>10 4 12 2 -1.</_>
- <_>10 4 6 2 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>9.7460206598043442e-003</threshold>
- <left_val>0.0889580324292183</left_val>
- <right_val>-0.2259400933980942</right_val></_></_>
- <_>
- <!-- tree 35 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>11 3 8 4 -1.</_>
- <_>11 3 4 4 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-0.0129583403468132</threshold>
- <left_val>-0.1220085024833679</left_val>
- <right_val>0.0865180864930153</right_val></_></_>
- <_>
- <!-- tree 36 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>4 6 10 3 -1.</_>
- <_>9 6 5 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0114454999566078</threshold>
- <left_val>-0.0641823336482048</left_val>
- <right_val>0.3027974963188171</right_val></_></_>
- <_>
- <!-- tree 37 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>10 1 6 8 -1.</_>
- <_>13 1 3 4 2.</_>
- <_>10 5 3 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-3.3802569378167391e-003</threshold>
- <left_val>0.1117767021059990</left_val>
- <right_val>-0.1292237937450409</right_val></_></_>
- <_>
- <!-- tree 38 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>11 1 6 6 -1.</_>
- <_>11 1 6 3 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>0.0203662104904652</threshold>
- <left_val>0.1010453999042511</left_val>
- <right_val>-0.2599115967750549</right_val></_></_>
- <_>
- <!-- tree 39 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>11 6 6 4 -1.</_>
- <_>11 8 6 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0380586497485638</threshold>
- <left_val>0.0131683498620987</left_val>
- <right_val>-0.7558063268661499</right_val></_></_>
- <_>
- <!-- tree 40 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>2 2 12 3 -1.</_>
- <_>2 3 12 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>2.3050000891089439e-003</threshold>
- <left_val>-0.1076664999127388</left_val>
- <right_val>0.1875766962766647</right_val></_></_>
- <_>
- <!-- tree 41 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>11 3 8 4 -1.</_>
- <_>11 3 4 4 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>0.0518471188843250</threshold>
- <left_val>-0.0223205294460058</left_val>
- <right_val>0.1879583001136780</right_val></_></_>
- <_>
- <!-- tree 42 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>1 0 8 6 -1.</_>
- <_>1 0 4 3 2.</_>
- <_>5 3 4 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0113830296322703</threshold>
- <left_val>0.0602261610329151</left_val>
- <right_val>-0.3596178889274597</right_val></_></_>
- <_>
- <!-- tree 43 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>8 3 14 3 -1.</_>
- <_>8 4 14 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>8.2553178071975708e-003</threshold>
- <left_val>-0.0851313918828964</left_val>
- <right_val>0.2349344044923782</right_val></_></_>
- <_>
- <!-- tree 44 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>11 3 4 8 -1.</_>
- <_>11 3 4 4 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-0.0269843395799398</threshold>
- <left_val>-0.2147939950227737</left_val>
- <right_val>0.0936567336320877</right_val></_></_>
- <_>
- <!-- tree 45 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>6 0 12 10 -1.</_>
- <_>9 0 6 10 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0102899800986052</threshold>
- <left_val>0.0582548901438713</left_val>
- <right_val>-0.0839509293437004</right_val></_></_>
- <_>
- <!-- tree 46 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>4 16 14 2 -1.</_>
- <_>4 17 14 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-1.4419780200114474e-005</threshold>
- <left_val>0.1039287000894547</left_val>
- <right_val>-0.1731729954481125</right_val></_></_>
- <_>
- <!-- tree 47 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>10 11 12 3 -1.</_>
- <_>10 12 12 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0100651402026415</threshold>
- <left_val>-0.0413111187517643</left_val>
- <right_val>0.1761602014303207</right_val></_></_>
- <_>
- <!-- tree 48 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>3 0 4 6 -1.</_>
- <_>5 0 2 6 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-1.4870229642838240e-004</threshold>
- <left_val>0.1565753966569901</left_val>
- <right_val>-0.1203005984425545</right_val></_></_>
- <_>
- <!-- tree 49 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>16 12 6 4 -1.</_>
- <_>16 12 3 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-3.1059589236974716e-003</threshold>
- <left_val>0.1167488023638725</left_val>
- <right_val>-0.0913724601268768</right_val></_></_>
- <_>
- <!-- tree 50 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 13 10 4 -1.</_>
- <_>5 13 5 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0107080303132534</threshold>
- <left_val>-0.0776082277297974</left_val>
- <right_val>0.2791610062122345</right_val></_></_>
- <_>
- <!-- tree 51 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>3 1 16 4 -1.</_>
- <_>11 1 8 2 2.</_>
- <_>3 3 8 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-9.7792129963636398e-003</threshold>
- <left_val>-0.2906092107295990</left_val>
- <right_val>0.0715626403689384</right_val></_></_>
- <_>
- <!-- tree 52 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 1 11 4 -1.</_>
- <_>0 3 11 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0201219804584980</threshold>
- <left_val>0.0439949594438076</left_val>
- <right_val>-0.4253950119018555</right_val></_></_>
- <_>
- <!-- tree 53 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>6 8 11 6 -1.</_>
- <_>6 11 11 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0632951632142067</threshold>
- <left_val>0.3703423142433167</left_val>
- <right_val>-0.0525498092174530</right_val></_></_>
- <_>
- <!-- tree 54 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>8 5 5 10 -1.</_>
- <_>8 10 5 5 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0872895568609238</threshold>
- <left_val>-0.6429927945137024</left_val>
- <right_val>0.0319528691470623</right_val></_></_>
- <_>
- <!-- tree 55 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>9 2 4 6 -1.</_>
- <_>9 5 4 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0203985404223204</threshold>
- <left_val>-0.0459555983543396</left_val>
- <right_val>0.4626615941524506</right_val></_></_>
- <_>
- <!-- tree 56 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>2 3 12 6 -1.</_>
- <_>2 3 6 3 2.</_>
- <_>8 6 6 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-4.0313000790774822e-003</threshold>
- <left_val>0.1384084969758987</left_val>
- <right_val>-0.1798083931207657</right_val></_></_>
- <_>
- <!-- tree 57 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>13 3 7 9 -1.</_>
- <_>13 6 7 3 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0157345198094845</threshold>
- <left_val>-0.1847718060016632</left_val>
- <right_val>0.0699830800294876</right_val></_></_>
- <_>
- <!-- tree 58 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>2 3 7 9 -1.</_>
- <_>2 6 7 3 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>3.3332880120724440e-003</threshold>
- <left_val>0.1127765029668808</left_val>
- <right_val>-0.1951379030942917</right_val></_></_>
- <_>
- <!-- tree 59 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>11 0 3 6 -1.</_>
- <_>12 1 1 6 3.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>0.0436891615390778</threshold>
- <left_val>5.9510939754545689e-003</left_val>
- <right_val>-0.5542343854904175</right_val></_></_>
- <_>
- <!-- tree 60 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>3 3 13 3 -1.</_>
- <_>3 4 13 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-2.0920610986649990e-003</threshold>
- <left_val>0.1916346997022629</left_val>
- <right_val>-0.0971361100673676</right_val></_></_>
- <_>
- <!-- tree 61 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>8 3 14 3 -1.</_>
- <_>8 4 14 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>2.0574270747601986e-003</threshold>
- <left_val>-0.1019743010401726</left_val>
- <right_val>0.1408381015062332</right_val></_></_>
- <_>
- <!-- tree 62 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>3 6 7 12 -1.</_>
- <_>3 9 7 6 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>8.8018123060464859e-003</threshold>
- <left_val>0.1198780983686447</left_val>
- <right_val>-0.1563854962587357</right_val></_></_>
- <_>
- <!-- tree 63 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>12 13 6 4 -1.</_>
- <_>12 15 6 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0168825294822454</threshold>
- <left_val>-0.1843809932470322</left_val>
- <right_val>0.0194928701967001</right_val></_></_>
- <_>
- <!-- tree 64 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>4 13 6 4 -1.</_>
- <_>4 15 6 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-6.1647890834137797e-004</threshold>
- <left_val>0.1066510975360870</left_val>
- <right_val>-0.2216400951147080</right_val></_></_>
- <_>
- <!-- tree 65 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>6 1 15 2 -1.</_>
- <_>6 2 15 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>1.0317339911125600e-004</threshold>
- <left_val>-0.1122889965772629</left_val>
- <right_val>0.1385865062475205</right_val></_></_>
- <_>
- <!-- tree 66 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>4 3 3 12 -1.</_>
- <_>5 3 1 12 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0153163298964500</threshold>
- <left_val>-0.0506394095718861</left_val>
- <right_val>0.4111982882022858</right_val></_></_>
- <_>
- <!-- tree 67 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>14 4 2 12 -1.</_>
- <_>14 4 2 6 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>0.0106606902554631</threshold>
- <left_val>0.0588208101689816</left_val>
- <right_val>-0.1645466983318329</right_val></_></_>
- <_>
- <!-- tree 68 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>11 0 6 3 -1.</_>
- <_>10 1 6 1 3.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-0.0192968696355820</threshold>
- <left_val>0.3926095962524414</left_val>
- <right_val>-0.0527611896395683</right_val></_></_>
- <_>
- <!-- tree 69 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>4 9 14 5 -1.</_>
- <_>4 9 7 5 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0100181102752686</threshold>
- <left_val>0.1006847023963928</left_val>
- <right_val>-0.1975626945495606</right_val></_></_>
- <_>
- <!-- tree 70 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>11 2 10 3 -1.</_>
- <_>10 3 10 1 3.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-0.0272637903690338</threshold>
- <left_val>0.3533208966255188</left_val>
- <right_val>-0.0553055517375469</right_val></_></_>
- <_>
- <!-- tree 71 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>9 12 7 6 -1.</_>
- <_>9 14 7 2 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>5.4494310170412064e-003</threshold>
- <left_val>0.0672537684440613</left_val>
- <right_val>-0.1838447004556656</right_val></_></_></trees>
- <stage_threshold>-0.8770840764045715</stage_threshold>
- <parent>11</parent>
- <next>-1</next></_>
- <_>
- <!-- stage 13 -->
- <trees>
- <_>
- <!-- tree 0 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>1 8 8 10 -1.</_>
- <_>1 8 4 5 2.</_>
- <_>5 13 4 5 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0574348606169224</threshold>
- <left_val>0.5058255195617676</left_val>
- <right_val>-0.1227457001805306</right_val></_></_>
- <_>
- <!-- tree 1 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>5 5 12 5 -1.</_>
- <_>9 5 4 5 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.1275065988302231</threshold>
- <left_val>0.5760596990585327</left_val>
- <right_val>-0.0437109284102917</right_val></_></_>
- <_>
- <!-- tree 2 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>8 8 4 6 -1.</_>
- <_>8 8 2 6 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-0.0636756420135498</threshold>
- <left_val>0.5712252259254456</left_val>
- <right_val>-0.0499683208763599</right_val></_></_>
- <_>
- <!-- tree 3 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>7 6 8 10 -1.</_>
- <_>7 11 8 5 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0119284801185131</threshold>
- <left_val>0.2164193987846375</left_val>
- <right_val>-0.1848026961088181</right_val></_></_>
- <_>
- <!-- tree 4 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>6 14 6 4 -1.</_>
- <_>9 14 3 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>1.3247699826024473e-004</threshold>
- <left_val>-0.2268567979335785</left_val>
- <right_val>0.1064827963709831</right_val></_></_>
- <_>
- <!-- tree 5 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>5 15 12 2 -1.</_>
- <_>5 16 12 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>6.4140267204493284e-004</threshold>
- <left_val>0.0947516784071922</left_val>
- <right_val>-0.2689200937747955</right_val></_></_>
- <_>
- <!-- tree 6 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>6 4 10 6 -1.</_>
- <_>6 6 10 2 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-2.9463530518114567e-003</threshold>
- <left_val>0.1391091048717499</left_val>
- <right_val>-0.1709107011556625</right_val></_></_>
- <_>
- <!-- tree 7 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>9 12 8 6 -1.</_>
- <_>9 14 8 2 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>5.3384741768240929e-003</threshold>
- <left_val>0.0839692428708076</left_val>
- <right_val>-0.0954419896006584</right_val></_></_>
- <_>
- <!-- tree 8 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>1 11 20 5 -1.</_>
- <_>6 11 10 5 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0587031506001949</threshold>
- <left_val>-0.0696475207805634</left_val>
- <right_val>0.3362944126129150</right_val></_></_>
- <_>
- <!-- tree 9 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>10 8 8 4 -1.</_>
- <_>10 8 4 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-2.5406300555914640e-003</threshold>
- <left_val>0.0961760133504868</left_val>
- <right_val>-0.1575814038515091</right_val></_></_>
- <_>
- <!-- tree 10 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>2 4 18 6 -1.</_>
- <_>2 6 18 2 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0318995192646980</threshold>
- <left_val>-0.2795648872852325</left_val>
- <right_val>0.0703595131635666</right_val></_></_>
- <_>
- <!-- tree 11 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>8 4 12 11 -1.</_>
- <_>8 4 6 11 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.3202270865440369</threshold>
- <left_val>-0.9080504775047302</left_val>
- <right_val>7.5922380201518536e-003</right_val></_></_>
- <_>
- <!-- tree 12 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>11 5 11 2 -1.</_>
- <_>11 5 11 1 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>0.0357962511479855</threshold>
- <left_val>-0.0500707700848579</left_val>
- <right_val>0.4210157990455627</right_val></_></_>
- <_>
- <!-- tree 13 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>3 6 18 9 -1.</_>
- <_>9 9 6 3 9.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.1907916069030762</threshold>
- <left_val>-0.2206103056669235</left_val>
- <right_val>0.0651847869157791</right_val></_></_>
- <_>
- <!-- tree 14 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>3 2 10 9 -1.</_>
- <_>8 2 5 9 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0121818296611309</threshold>
- <left_val>0.1347943991422653</left_val>
- <right_val>-0.1666775047779083</right_val></_></_>
- <_>
- <!-- tree 15 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>14 5 6 6 -1.</_>
- <_>16 5 2 6 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0321657992899418</threshold>
- <left_val>-0.2510541081428528</left_val>
- <right_val>0.0193445608019829</right_val></_></_>
- <_>
- <!-- tree 16 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>5 5 12 6 -1.</_>
- <_>8 5 6 6 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0362996309995651</threshold>
- <left_val>-0.0594907812774181</left_val>
- <right_val>0.4000773131847382</right_val></_></_>
- <_>
- <!-- tree 17 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>11 3 10 4 -1.</_>
- <_>11 3 5 4 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>0.0202245805412531</threshold>
- <left_val>0.0564897991716862</left_val>
- <right_val>-0.1341823935508728</right_val></_></_>
- <_>
- <!-- tree 18 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>6 3 8 6 -1.</_>
- <_>6 3 4 3 2.</_>
- <_>10 6 4 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0253931302577257</threshold>
- <left_val>0.3650783896446228</left_val>
- <right_val>-0.0660021826624870</right_val></_></_>
- <_>
- <!-- tree 19 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>16 0 3 15 -1.</_>
- <_>16 5 3 5 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0120223695412278</threshold>
- <left_val>-0.1765505969524384</left_val>
- <right_val>0.0739976391196251</right_val></_></_>
- <_>
- <!-- tree 20 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>3 0 3 15 -1.</_>
- <_>3 5 3 5 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0479651391506195</threshold>
- <left_val>0.0446685589849949</left_val>
- <right_val>-0.4458498060703278</right_val></_></_>
- <_>
- <!-- tree 21 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>5 2 12 16 -1.</_>
- <_>8 2 6 16 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.2056401968002319</threshold>
- <left_val>-0.7325450181961060</left_val>
- <right_val>0.0199552308768034</right_val></_></_>
- <_>
- <!-- tree 22 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>6 8 4 6 -1.</_>
- <_>8 8 2 6 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-1.6601709648966789e-003</threshold>
- <left_val>0.1163327023386955</left_val>
- <right_val>-0.1548850983381271</right_val></_></_>
- <_>
- <!-- tree 23 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>5 9 13 9 -1.</_>
- <_>5 12 13 3 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0868996232748032</threshold>
- <left_val>-0.0541075505316257</left_val>
- <right_val>0.2695240080356598</right_val></_></_>
- <_>
- <!-- tree 24 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>11 7 8 3 -1.</_>
- <_>11 7 4 3 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-1.1374129680916667e-003</threshold>
- <left_val>-0.1431442946195602</left_val>
- <right_val>0.1244433000683785</right_val></_></_>
- <_>
- <!-- tree 25 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>7 0 9 4 -1.</_>
- <_>10 0 3 4 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0309763401746750</threshold>
- <left_val>0.0298648606985807</left_val>
- <right_val>-0.3260793089866638</right_val></_></_>
- <_>
- <!-- tree 26 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>7 6 6 5 -1.</_>
- <_>10 6 3 5 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0269780103117228</threshold>
- <left_val>-0.0450982488691807</left_val>
- <right_val>0.3612884879112244</right_val></_></_>
- <_>
- <!-- tree 27 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>2 7 18 6 -1.</_>
- <_>8 9 6 2 9.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.1942182034254074</threshold>
- <left_val>0.0322551913559437</left_val>
- <right_val>-0.6898170113563538</right_val></_></_>
- <_>
- <!-- tree 28 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>11 4 10 3 -1.</_>
- <_>10 5 10 1 3.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-0.0204433593899012</threshold>
- <left_val>0.2930010855197907</left_val>
- <right_val>-0.0644832178950310</right_val></_></_>
- <_>
- <!-- tree 29 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>13 14 8 4 -1.</_>
- <_>13 16 8 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0404204502701759</threshold>
- <left_val>-0.7682335972785950</left_val>
- <right_val>0.0122819803655148</right_val></_></_>
- <_>
- <!-- tree 30 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>1 14 8 4 -1.</_>
- <_>1 16 8 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0126414299011230</threshold>
- <left_val>-0.2757379114627838</left_val>
- <right_val>0.0619011186063290</right_val></_></_>
- <_>
- <!-- tree 31 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>11 4 3 10 -1.</_>
- <_>12 5 1 10 3.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-0.0396702997386456</threshold>
- <left_val>0.3282839059829712</left_val>
- <right_val>-0.0203649997711182</right_val></_></_>
- <_>
- <!-- tree 32 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>11 4 10 3 -1.</_>
- <_>10 5 10 1 3.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>0.0202467292547226</threshold>
- <left_val>-0.0583936013281345</left_val>
- <right_val>0.3306053876876831</right_val></_></_>
- <_>
- <!-- tree 33 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>2 12 18 6 -1.</_>
- <_>11 12 9 3 2.</_>
- <_>2 15 9 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>8.9611168950796127e-003</threshold>
- <left_val>0.0900963172316551</left_val>
- <right_val>-0.2234300971031189</right_val></_></_>
- <_>
- <!-- tree 34 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>5 2 8 6 -1.</_>
- <_>5 2 4 3 2.</_>
- <_>9 5 4 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-8.3055719733238220e-003</threshold>
- <left_val>0.1417534947395325</left_val>
- <right_val>-0.1260726004838944</right_val></_></_>
- <_>
- <!-- tree 35 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>8 14 6 4 -1.</_>
- <_>8 16 6 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-2.8248139642528258e-005</threshold>
- <left_val>0.0945169627666473</left_val>
- <right_val>-0.2181037068367004</right_val></_></_>
- <_>
- <!-- tree 36 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>1 10 6 8 -1.</_>
- <_>1 10 3 4 2.</_>
- <_>4 14 3 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-5.1939398981630802e-003</threshold>
- <left_val>0.1330431997776032</left_val>
- <right_val>-0.1334158033132553</right_val></_></_>
- <_>
- <!-- tree 37 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>7 2 15 9 -1.</_>
- <_>12 5 5 3 9.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.1177311018109322</threshold>
- <left_val>0.0295861996710300</left_val>
- <right_val>-0.2402082979679108</right_val></_></_>
- <_>
- <!-- tree 38 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 2 15 9 -1.</_>
- <_>5 5 5 3 9.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0678967013955116</threshold>
- <left_val>0.0809137076139450</left_val>
- <right_val>-0.2345446050167084</right_val></_></_>
- <_>
- <!-- tree 39 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>10 5 6 7 -1.</_>
- <_>12 5 2 7 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0266836993396282</threshold>
- <left_val>0.3059098124504089</left_val>
- <right_val>-0.0641520470380783</right_val></_></_>
- <_>
- <!-- tree 40 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>5 14 12 4 -1.</_>
- <_>5 14 6 2 2.</_>
- <_>11 16 6 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>3.5058211069554090e-003</threshold>
- <left_val>0.0893419682979584</left_val>
- <right_val>-0.2277368009090424</right_val></_></_>
- <_>
- <!-- tree 41 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>10 1 12 3 -1.</_>
- <_>10 2 12 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-6.5844372147694230e-004</threshold>
- <left_val>0.1245813965797424</left_val>
- <right_val>-0.0913524404168129</right_val></_></_>
- <_>
- <!-- tree 42 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>8 1 3 12 -1.</_>
- <_>9 1 1 12 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>7.2530400939285755e-003</threshold>
- <left_val>-0.0692851766943932</left_val>
- <right_val>0.2548288106918335</right_val></_></_>
- <_>
- <!-- tree 43 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>14 2 6 7 -1.</_>
- <_>14 2 3 7 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0280561298131943</threshold>
- <left_val>-0.2086703926324844</left_val>
- <right_val>0.0335395783185959</right_val></_></_>
- <_>
- <!-- tree 44 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>1 0 12 9 -1.</_>
- <_>5 3 4 3 9.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0512051805853844</threshold>
- <left_val>-0.2410742938518524</left_val>
- <right_val>0.0644394084811211</right_val></_></_>
- <_>
- <!-- tree 45 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>8 3 7 6 -1.</_>
- <_>8 6 7 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0292346496134996</threshold>
- <left_val>-0.0508038401603699</left_val>
- <right_val>0.3648504912853241</right_val></_></_>
- <_>
- <!-- tree 46 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>1 12 20 3 -1.</_>
- <_>6 12 10 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.1021952033042908</threshold>
- <left_val>0.4012348055839539</left_val>
- <right_val>-0.0429021194577217</right_val></_></_>
- <_>
- <!-- tree 47 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>5 2 12 16 -1.</_>
- <_>5 6 12 8 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0151049699634314</threshold>
- <left_val>0.1048149019479752</left_val>
- <right_val>-0.1847243010997772</right_val></_></_>
- <_>
- <!-- tree 48 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>4 3 7 6 -1.</_>
- <_>4 6 7 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0125706503167748</threshold>
- <left_val>-0.2054093927145004</left_val>
- <right_val>0.0930131971836090</right_val></_></_>
- <_>
- <!-- tree 49 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>9 5 6 6 -1.</_>
- <_>11 5 2 6 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0122530702501535</threshold>
- <left_val>-0.0592851005494595</left_val>
- <right_val>0.2392731010913849</right_val></_></_>
- <_>
- <!-- tree 50 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>7 0 8 2 -1.</_>
- <_>7 0 8 1 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-0.0261669903993607</threshold>
- <left_val>-0.6996678709983826</left_val>
- <right_val>0.0249067097902298</right_val></_></_>
- <_>
- <!-- tree 51 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>5 14 12 2 -1.</_>
- <_>5 15 12 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>7.0817661471664906e-003</threshold>
- <left_val>0.0241731200367212</left_val>
- <right_val>-0.5514479279518127</right_val></_></_>
- <_>
- <!-- tree 52 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>3 11 16 6 -1.</_>
- <_>3 13 16 2 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0214268509298563</threshold>
- <left_val>0.0641688406467438</left_val>
- <right_val>-0.2599790096282959</right_val></_></_>
- <_>
- <!-- tree 53 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>11 5 3 8 -1.</_>
- <_>11 5 3 4 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>0.0181897096335888</threshold>
- <left_val>0.0358382500708103</left_val>
- <right_val>-0.1802058070898056</right_val></_></_>
- <_>
- <!-- tree 54 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>2 15 12 3 -1.</_>
- <_>8 15 6 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0174157992005348</threshold>
- <left_val>-0.0838620364665985</left_val>
- <right_val>0.3333852887153626</right_val></_></_>
- <_>
- <!-- tree 55 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>4 13 15 3 -1.</_>
- <_>9 13 5 3 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-1.4878029469400644e-003</threshold>
- <left_val>0.1207885965704918</left_val>
- <right_val>-0.1276932060718536</right_val></_></_>
- <_>
- <!-- tree 56 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>2 3 12 4 -1.</_>
- <_>2 3 6 2 2.</_>
- <_>8 5 6 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>7.5296638533473015e-003</threshold>
- <left_val>-0.0700147077441216</left_val>
- <right_val>0.3218109011650085</right_val></_></_>
- <_>
- <!-- tree 57 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>17 5 4 7 -1.</_>
- <_>17 5 2 7 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-0.0614990182220936</threshold>
- <left_val>0.4646979868412018</left_val>
- <right_val>-0.0100737102329731</right_val></_></_>
- <_>
- <!-- tree 58 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>5 4 7 4 -1.</_>
- <_>5 4 7 2 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-1.9133290334139019e-004</threshold>
- <left_val>-0.1409429013729096</left_val>
- <right_val>0.1383011043071747</right_val></_></_>
- <_>
- <!-- tree 59 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>2 2 18 3 -1.</_>
- <_>8 2 6 3 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0244222898036242</threshold>
- <left_val>-0.2529231011867523</left_val>
- <right_val>0.0676841735839844</right_val></_></_>
- <_>
- <!-- tree 60 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>2 2 18 9 -1.</_>
- <_>8 5 6 3 9.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.2613632082939148</threshold>
- <left_val>0.3400354087352753</left_val>
- <right_val>-0.0584625490009785</right_val></_></_>
- <_>
- <!-- tree 61 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>15 6 6 4 -1.</_>
- <_>15 6 3 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0760467797517776</threshold>
- <left_val>-0.7851415872573853</left_val>
- <right_val>5.2708541043102741e-003</right_val></_></_>
- <_>
- <!-- tree 62 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 1 12 3 -1.</_>
- <_>0 2 12 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-3.0279329512268305e-003</threshold>
- <left_val>0.1852705925703049</left_val>
- <right_val>-0.0906919613480568</right_val></_></_>
- <_>
- <!-- tree 63 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>16 2 6 4 -1.</_>
- <_>16 2 6 2 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-8.0219199880957603e-003</threshold>
- <left_val>-0.1254058033227921</left_val>
- <right_val>0.0305948890745640</right_val></_></_>
- <_>
- <!-- tree 64 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 9 14 6 -1.</_>
- <_>7 9 7 6 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.2070596069097519</threshold>
- <left_val>-0.7541192173957825</left_val>
- <right_val>0.0212011300027370</right_val></_></_>
- <_>
- <!-- tree 65 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>13 5 8 4 -1.</_>
- <_>13 5 4 4 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-0.0953228175640106</threshold>
- <left_val>-0.2962307035923004</left_val>
- <right_val>0.0131387095898390</right_val></_></_>
- <_>
- <!-- tree 66 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>9 5 4 8 -1.</_>
- <_>9 5 4 4 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>9.5921624451875687e-003</threshold>
- <left_val>0.0843243226408958</left_val>
- <right_val>-0.2174658030271530</right_val></_></_>
- <_>
- <!-- tree 67 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>12 4 3 14 -1.</_>
- <_>12 11 3 7 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0130894696339965</threshold>
- <left_val>0.0936075001955032</left_val>
- <right_val>-0.0657541304826736</right_val></_></_>
- <_>
- <!-- tree 68 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>1 13 20 5 -1.</_>
- <_>6 13 10 5 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0117328800261021</threshold>
- <left_val>-0.0800390467047691</left_val>
- <right_val>0.2329193949699402</right_val></_></_>
- <_>
- <!-- tree 69 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>12 4 3 14 -1.</_>
- <_>12 11 3 7 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.1523904949426651</threshold>
- <left_val>9.9299130961298943e-003</left_val>
- <right_val>-0.6519606709480286</right_val></_></_>
- <_>
- <!-- tree 70 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>7 4 3 14 -1.</_>
- <_>7 11 3 7 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0645915120840073</threshold>
- <left_val>0.2837221920490265</left_val>
- <right_val>-0.0600588284432888</right_val></_></_>
- <_>
- <!-- tree 71 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>16 2 6 4 -1.</_>
- <_>16 2 6 2 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-0.0554930306971073</threshold>
- <left_val>0.2665910124778748</left_val>
- <right_val>-0.0103364195674658</right_val></_></_>
- <_>
- <!-- tree 72 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>6 2 4 6 -1.</_>
- <_>6 2 2 6 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-0.0502874106168747</threshold>
- <left_val>-0.6950147151947022</left_val>
- <right_val>0.0278498791158199</right_val></_></_>
- <_>
- <!-- tree 73 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>7 4 15 14 -1.</_>
- <_>7 11 15 7 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.4779424965381622</threshold>
- <left_val>-0.9287195205688477</left_val>
- <right_val>5.9050112031400204e-003</right_val></_></_>
- <_>
- <!-- tree 74 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>1 16 16 2 -1.</_>
- <_>1 17 16 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0143985198810697</threshold>
- <left_val>-0.4554106891155243</left_val>
- <right_val>0.0364099815487862</right_val></_></_></trees>
- <stage_threshold>-0.8526716828346252</stage_threshold>
- <parent>12</parent>
- <next>-1</next></_>
- <_>
- <!-- stage 14 -->
- <trees>
- <_>
- <!-- tree 0 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 6 12 4 -1.</_>
- <_>3 6 6 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>1.9511899445205927e-003</threshold>
- <left_val>-0.2493699043989182</left_val>
- <right_val>0.1411163955926895</right_val></_></_>
- <_>
- <!-- tree 1 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>6 9 10 9 -1.</_>
- <_>6 12 10 3 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0466346703469753</threshold>
- <left_val>0.3784058988094330</left_val>
- <right_val>-0.0784017369151115</right_val></_></_>
- <_>
- <!-- tree 2 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 6 6 5 -1.</_>
- <_>3 6 3 5 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0161937493830919</threshold>
- <left_val>0.0752133131027222</left_val>
- <right_val>-0.4199146926403046</right_val></_></_>
- <_>
- <!-- tree 3 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>11 14 7 4 -1.</_>
- <_>11 16 7 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-1.2459639401640743e-004</threshold>
- <left_val>0.0685761868953705</left_val>
- <right_val>-0.1793542057275772</right_val></_></_>
- <_>
- <!-- tree 4 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>7 8 8 2 -1.</_>
- <_>7 8 8 1 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>7.3257791809737682e-003</threshold>
- <left_val>0.1032209992408752</left_val>
- <right_val>-0.2609927952289581</right_val></_></_>
- <_>
- <!-- tree 5 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>10 13 7 4 -1.</_>
- <_>10 15 7 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-1.5020779756014235e-005</threshold>
- <left_val>0.0731225982308388</left_val>
- <right_val>-0.1671888977289200</right_val></_></_>
- <_>
- <!-- tree 6 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>1 16 20 2 -1.</_>
- <_>11 16 10 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0345220081508160</threshold>
- <left_val>-0.3932698965072632</left_val>
- <right_val>0.0767271667718887</right_val></_></_>
- <_>
- <!-- tree 7 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>5 12 14 4 -1.</_>
- <_>5 12 7 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0826795101165771</threshold>
- <left_val>-0.7467781901359558</left_val>
- <right_val>0.0155306002125144</right_val></_></_>
- <_>
- <!-- tree 8 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>8 8 4 6 -1.</_>
- <_>8 8 2 6 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>0.0821624025702477</threshold>
- <left_val>-0.0692495033144951</left_val>
- <right_val>0.3791460096836090</right_val></_></_>
- <_>
- <!-- tree 9 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>17 2 2 14 -1.</_>
- <_>17 2 2 7 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>0.0341878309845924</threshold>
- <left_val>0.0426086597144604</left_val>
- <right_val>-0.1542989015579224</right_val></_></_>
- <_>
- <!-- tree 10 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>7 1 8 4 -1.</_>
- <_>11 1 4 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0178913697600365</threshold>
- <left_val>-0.3063957095146179</left_val>
- <right_val>0.0781183987855911</right_val></_></_>
- <_>
- <!-- tree 11 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>5 7 12 3 -1.</_>
- <_>9 7 4 3 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0331309996545315</threshold>
- <left_val>-0.0561838001012802</left_val>
- <right_val>0.3740524053573608</right_val></_></_>
- <_>
- <!-- tree 12 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>2 14 6 4 -1.</_>
- <_>5 14 3 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-5.7486710138618946e-003</threshold>
- <left_val>0.1249035000801086</left_val>
- <right_val>-0.2052786052227020</right_val></_></_>
- <_>
- <!-- tree 13 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>10 9 12 4 -1.</_>
- <_>16 9 6 2 2.</_>
- <_>10 11 6 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0335368290543556</threshold>
- <left_val>-0.0483442209661007</left_val>
- <right_val>0.2672440111637116</right_val></_></_>
- <_>
- <!-- tree 14 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>6 14 9 4 -1.</_>
- <_>9 14 3 4 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0247238297015429</threshold>
- <left_val>0.0836789682507515</left_val>
- <right_val>-0.3373064994812012</right_val></_></_>
- <_>
- <!-- tree 15 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>11 9 2 6 -1.</_>
- <_>11 9 1 6 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>2.2355809342116117e-003</threshold>
- <left_val>0.1037459000945091</left_val>
- <right_val>-0.1307191997766495</right_val></_></_>
- <_>
- <!-- tree 16 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>3 9 14 9 -1.</_>
- <_>3 12 14 3 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-2.4322168901562691e-003</threshold>
- <left_val>0.1564508974552155</left_val>
- <right_val>-0.1328445971012116</right_val></_></_>
- <_>
- <!-- tree 17 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>5 10 16 6 -1.</_>
- <_>5 12 16 2 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0259991195052862</threshold>
- <left_val>-0.0803431272506714</left_val>
- <right_val>0.2161011993885040</right_val></_></_>
- <_>
- <!-- tree 18 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>5 12 10 6 -1.</_>
- <_>5 12 5 3 2.</_>
- <_>10 15 5 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>3.6965688195778057e-005</threshold>
- <left_val>-0.1787101030349731</left_val>
- <right_val>0.1056312024593353</right_val></_></_>
- <_>
- <!-- tree 19 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>4 13 18 5 -1.</_>
- <_>4 13 9 5 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.1629150062799454</threshold>
- <left_val>-0.6914169788360596</left_val>
- <right_val>0.0223747305572033</right_val></_></_>
- <_>
- <!-- tree 20 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 13 18 5 -1.</_>
- <_>9 13 9 5 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.1300814002752304</threshold>
- <left_val>-0.0427690409123898</left_val>
- <right_val>0.4637356996536255</right_val></_></_>
- <_>
- <!-- tree 21 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>4 9 16 3 -1.</_>
- <_>4 10 16 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0276585407555103</threshold>
- <left_val>-0.0371086001396179</left_val>
- <right_val>0.3838658034801483</right_val></_></_>
- <_>
- <!-- tree 22 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>5 1 15 2 -1.</_>
- <_>5 1 15 1 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-0.0100204199552536</threshold>
- <left_val>-0.2632805109024048</left_val>
- <right_val>0.0748586803674698</right_val></_></_>
- <_>
- <!-- tree 23 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>13 5 2 9 -1.</_>
- <_>13 5 1 9 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-0.0304599404335022</threshold>
- <left_val>0.3230090141296387</left_val>
- <right_val>-0.0258583705872297</right_val></_></_>
- <_>
- <!-- tree 24 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>9 5 9 2 -1.</_>
- <_>9 5 9 1 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>1.3251040363684297e-003</threshold>
- <left_val>0.1444766968488693</left_val>
- <right_val>-0.2108217030763626</right_val></_></_>
- <_>
- <!-- tree 25 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>1 11 20 5 -1.</_>
- <_>6 11 10 5 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0279310103505850</threshold>
- <left_val>0.1437451988458633</left_val>
- <right_val>-0.1616230010986328</right_val></_></_>
- <_>
- <!-- tree 26 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>3 9 13 3 -1.</_>
- <_>3 10 13 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-8.8642723858356476e-003</threshold>
- <left_val>0.2300062030553818</left_val>
- <right_val>-0.0950950980186462</right_val></_></_>
- <_>
- <!-- tree 27 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>18 5 4 12 -1.</_>
- <_>20 5 2 6 2.</_>
- <_>18 11 2 6 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0122139696031809</threshold>
- <left_val>-0.2464639991521835</left_val>
- <right_val>0.0655220225453377</right_val></_></_>
- <_>
- <!-- tree 28 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>4 12 5 6 -1.</_>
- <_>4 15 5 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0487375296652317</threshold>
- <left_val>-0.7912771105766296</left_val>
- <right_val>0.0254164095968008</right_val></_></_>
- <_>
- <!-- tree 29 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>15 1 2 8 -1.</_>
- <_>15 1 1 8 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>0.0611852891743183</threshold>
- <left_val>-1.2226430408190936e-004</left_val>
- <right_val>-0.9054586887359619</right_val></_></_>
- <_>
- <!-- tree 30 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>7 1 8 2 -1.</_>
- <_>7 1 8 1 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>0.0264536794275045</threshold>
- <left_val>0.0265628006309271</left_val>
- <right_val>-0.6395434141159058</right_val></_></_>
- <_>
- <!-- tree 31 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>18 5 4 12 -1.</_>
- <_>20 5 2 6 2.</_>
- <_>18 11 2 6 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>8.8589917868375778e-003</threshold>
- <left_val>0.0541458502411842</left_val>
- <right_val>-0.2160128057003021</right_val></_></_>
- <_>
- <!-- tree 32 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>10 4 10 2 -1.</_>
- <_>10 4 10 1 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>0.0348479412496090</threshold>
- <left_val>-0.0457493588328362</left_val>
- <right_val>0.4393540024757385</right_val></_></_>
- <_>
- <!-- tree 33 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>2 4 20 4 -1.</_>
- <_>7 4 10 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.1459821015596390</threshold>
- <left_val>-0.5556176900863648</left_val>
- <right_val>9.5249973237514496e-003</right_val></_></_>
- <_>
- <!-- tree 34 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>1 9 8 3 -1.</_>
- <_>5 9 4 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0504565685987473</threshold>
- <left_val>-0.7528784871101379</left_val>
- <right_val>0.0202147103846073</right_val></_></_>
- <_>
- <!-- tree 35 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>18 5 4 12 -1.</_>
- <_>20 5 2 6 2.</_>
- <_>18 11 2 6 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0854437798261642</threshold>
- <left_val>-1.</left_val>
- <right_val>-1.3681349810212851e-003</right_val></_></_>
- <_>
- <!-- tree 36 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 5 4 12 -1.</_>
- <_>0 5 2 6 2.</_>
- <_>2 11 2 6 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0132489800453186</threshold>
- <left_val>0.0634007006883621</left_val>
- <right_val>-0.2541181147098541</right_val></_></_>
- <_>
- <!-- tree 37 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>6 0 14 18 -1.</_>
- <_>6 9 14 9 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.6593561172485352</threshold>
- <left_val>-1.</left_val>
- <right_val>7.7378489077091217e-003</right_val></_></_>
- <_>
- <!-- tree 38 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>4 4 12 3 -1.</_>
- <_>4 5 12 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>5.0879311747848988e-003</threshold>
- <left_val>-0.0832077413797379</left_val>
- <right_val>0.1887629032135010</right_val></_></_>
- <_>
- <!-- tree 39 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>8 4 14 3 -1.</_>
- <_>8 5 14 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-3.4071630798280239e-003</threshold>
- <left_val>0.1457829028367996</left_val>
- <right_val>-0.0919603332877159</right_val></_></_>
- <_>
- <!-- tree 40 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>4 13 14 3 -1.</_>
- <_>4 14 14 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0216562692075968</threshold>
- <left_val>-0.6536489129066467</left_val>
- <right_val>0.0271297506988049</right_val></_></_>
- <_>
- <!-- tree 41 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>8 2 6 14 -1.</_>
- <_>11 2 3 7 2.</_>
- <_>8 9 3 7 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>9.4357347115874290e-003</threshold>
- <left_val>0.0643601119518280</left_val>
- <right_val>-0.2388547956943512</right_val></_></_>
- <_>
- <!-- tree 42 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 13 15 4 -1.</_>
- <_>0 14 15 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-7.5177568942308426e-003</threshold>
- <left_val>0.2451906055212021</left_val>
- <right_val>-0.0682218372821808</right_val></_></_>
- <_>
- <!-- tree 43 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>11 14 7 4 -1.</_>
- <_>11 16 7 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0160676296800375</threshold>
- <left_val>7.6069780625402927e-003</left_val>
- <right_val>-0.3166871964931488</right_val></_></_>
- <_>
- <!-- tree 44 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>11 7 7 3 -1.</_>
- <_>10 8 7 1 3.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-1.8057749839499593e-003</threshold>
- <left_val>0.1271037012338638</left_val>
- <right_val>-0.1214571967720985</right_val></_></_>
- <_>
- <!-- tree 45 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>10 6 6 6 -1.</_>
- <_>10 9 6 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0441549010574818</threshold>
- <left_val>-0.4857960939407349</left_val>
- <right_val>0.0234448593109846</right_val></_></_>
- <_>
- <!-- tree 46 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>2 0 4 14 -1.</_>
- <_>2 0 2 7 2.</_>
- <_>4 7 2 7 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>7.5462698005139828e-003</threshold>
- <left_val>0.0684307664632797</left_val>
- <right_val>-0.2331652045249939</right_val></_></_>
- <_>
- <!-- tree 47 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>2 6 18 5 -1.</_>
- <_>8 6 6 5 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.1086826026439667</threshold>
- <left_val>-0.0416639111936092</left_val>
- <right_val>0.3945221900939941</right_val></_></_>
- <_>
- <!-- tree 48 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>2 0 18 18 -1.</_>
- <_>8 0 6 18 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.6124870181083679</threshold>
- <left_val>0.0207021702080965</left_val>
- <right_val>-0.9849479198455811</right_val></_></_>
- <_>
- <!-- tree 49 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>13 1 4 8 -1.</_>
- <_>14 2 2 8 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>0.0498282909393311</threshold>
- <left_val>2.7304550167173147e-003</left_val>
- <right_val>-0.4018169939517975</right_val></_></_>
- <_>
- <!-- tree 50 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>4 0 12 18 -1.</_>
- <_>4 0 6 9 2.</_>
- <_>10 9 6 9 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0727687180042267</threshold>
- <left_val>0.3267647922039032</left_val>
- <right_val>-0.0491443388164043</right_val></_></_>
- <_>
- <!-- tree 51 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>12 14 6 4 -1.</_>
- <_>12 16 6 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0243143104016781</threshold>
- <left_val>-7.8135710209608078e-003</left_val>
- <right_val>0.5822330117225647</right_val></_></_>
- <_>
- <!-- tree 52 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>4 14 6 4 -1.</_>
- <_>4 16 6 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-1.7177179688587785e-004</threshold>
- <left_val>0.0816699117422104</left_val>
- <right_val>-0.2037622034549713</right_val></_></_>
- <_>
- <!-- tree 53 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>11 8 2 6 -1.</_>
- <_>11 8 1 6 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-0.0400952696800232</threshold>
- <left_val>0.5468152165412903</left_val>
- <right_val>-0.0171795394271612</right_val></_></_>
- <_>
- <!-- tree 54 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>1 10 20 6 -1.</_>
- <_>1 10 10 3 2.</_>
- <_>11 13 10 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0896345674991608</threshold>
- <left_val>-0.8161401152610779</left_val>
- <right_val>0.0212838891893625</right_val></_></_>
- <_>
- <!-- tree 55 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>13 1 7 9 -1.</_>
- <_>10 4 7 3 3.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>0.1869214028120041</threshold>
- <left_val>8.3980746567249298e-003</left_val>
- <right_val>-0.6018530130386353</right_val></_></_>
- <_>
- <!-- tree 56 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>5 3 4 6 -1.</_>
- <_>5 6 4 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0430383794009686</threshold>
- <left_val>-0.8789898753166199</left_val>
- <right_val>0.0149307297542691</right_val></_></_>
- <_>
- <!-- tree 57 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>13 0 2 12 -1.</_>
- <_>13 6 2 6 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-1.8602630007080734e-004</threshold>
- <left_val>0.0401562415063381</left_val>
- <right_val>-0.0826044380664825</right_val></_></_>
- <_>
- <!-- tree 58 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>7 11 8 3 -1.</_>
- <_>11 11 4 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-1.4392189914360642e-003</threshold>
- <left_val>-0.1710239946842194</left_val>
- <right_val>0.0912035405635834</right_val></_></_>
- <_>
- <!-- tree 59 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>9 6 12 11 -1.</_>
- <_>12 6 6 11 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0421606190502644</threshold>
- <left_val>-0.0358610190451145</left_val>
- <right_val>0.1517430990934372</right_val></_></_>
- <_>
- <!-- tree 60 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>6 8 10 9 -1.</_>
- <_>11 8 5 9 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>7.5991409830749035e-003</threshold>
- <left_val>0.1087452992796898</left_val>
- <right_val>-0.1614716053009033</right_val></_></_>
- <_>
- <!-- tree 61 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>11 14 6 4 -1.</_>
- <_>11 14 3 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-5.7539329864084721e-003</threshold>
- <left_val>-0.2567706108093262</left_val>
- <right_val>0.0584571510553360</right_val></_></_>
- <_>
- <!-- tree 62 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>3 6 12 4 -1.</_>
- <_>7 6 4 4 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0277367495000362</threshold>
- <left_val>0.2232517004013062</left_val>
- <right_val>-0.0740715116262436</right_val></_></_>
- <_>
- <!-- tree 63 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>10 5 6 7 -1.</_>
- <_>12 5 2 7 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0256761107593775</threshold>
- <left_val>0.1883108019828796</left_val>
- <right_val>-0.0538603812456131</right_val></_></_>
- <_>
- <!-- tree 64 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>8 0 6 4 -1.</_>
- <_>11 0 3 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0158907305449247</threshold>
- <left_val>0.0517095401883125</left_val>
- <right_val>-0.3847657144069672</right_val></_></_>
- <_>
- <!-- tree 65 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>10 6 6 12 -1.</_>
- <_>12 6 2 12 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0863742679357529</threshold>
- <left_val>-0.5568069815635681</left_val>
- <right_val>9.4922119751572609e-003</right_val></_></_>
- <_>
- <!-- tree 66 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>6 6 6 12 -1.</_>
- <_>8 6 2 12 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>1.9480630289763212e-003</threshold>
- <left_val>-0.1080721989274025</left_val>
- <right_val>0.1477168053388596</right_val></_></_></trees>
- <stage_threshold>-0.7418665885925293</stage_threshold>
- <parent>13</parent>
- <next>-1</next></_>
- <_>
- <!-- stage 15 -->
- <trees>
- <_>
- <!-- tree 0 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>6 9 9 6 -1.</_>
- <_>6 12 9 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-6.8531660363078117e-003</threshold>
- <left_val>0.2893550992012024</left_val>
- <right_val>-0.2768914103507996</right_val></_></_>
- <_>
- <!-- tree 1 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>14 6 6 6 -1.</_>
- <_>14 6 6 3 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-0.0692176371812820</threshold>
- <left_val>0.3490979075431824</left_val>
- <right_val>-0.0497410893440247</right_val></_></_>
- <_>
- <!-- tree 2 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>1 13 20 5 -1.</_>
- <_>6 13 10 5 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.1309297978878021</threshold>
- <left_val>0.4279156029224396</left_val>
- <right_val>-0.0961560085415840</right_val></_></_>
- <_>
- <!-- tree 3 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>8 14 6 4 -1.</_>
- <_>8 16 6 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-2.9759139579255134e-005</threshold>
- <left_val>0.1167578026652336</left_val>
- <right_val>-0.2467838972806931</right_val></_></_>
- <_>
- <!-- tree 4 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>4 7 8 3 -1.</_>
- <_>4 7 4 3 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-0.0471007898449898</threshold>
- <left_val>0.3725911080837250</left_val>
- <right_val>-0.0590729191899300</right_val></_></_>
- <_>
- <!-- tree 5 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>16 0 2 15 -1.</_>
- <_>16 0 1 15 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>0.0441245101392269</threshold>
- <left_val>0.0789040997624397</left_val>
- <right_val>-0.2552854120731354</right_val></_></_>
- <_>
- <!-- tree 6 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>9 3 12 2 -1.</_>
- <_>9 3 12 1 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>4.2540309950709343e-003</threshold>
- <left_val>-0.2361238002777100</left_val>
- <right_val>0.1285677999258041</right_val></_></_>
- <_>
- <!-- tree 7 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>7 1 8 6 -1.</_>
- <_>9 1 4 6 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-1.0833570268005133e-003</threshold>
- <left_val>0.1434731036424637</left_val>
- <right_val>-0.1420363038778305</right_val></_></_>
- <_>
- <!-- tree 8 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>6 15 8 3 -1.</_>
- <_>10 15 4 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>5.9925230743829161e-005</threshold>
- <left_val>-0.1992727071046829</left_val>
- <right_val>0.0885029137134552</right_val></_></_>
- <_>
- <!-- tree 9 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>8 3 6 6 -1.</_>
- <_>10 3 2 6 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0730214864015579</threshold>
- <left_val>-0.8066626191139221</left_val>
- <right_val>0.0320418588817120</right_val></_></_>
- <_>
- <!-- tree 10 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>1 1 16 3 -1.</_>
- <_>1 2 16 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>7.9495050013065338e-003</threshold>
- <left_val>-0.0658784434199333</left_val>
- <right_val>0.2707126140594482</right_val></_></_>
- <_>
- <!-- tree 11 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>9 1 12 3 -1.</_>
- <_>9 2 12 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-3.3911041100509465e-004</threshold>
- <left_val>0.1349073946475983</left_val>
- <right_val>-0.1335476040840149</right_val></_></_>
- <_>
- <!-- tree 12 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 0 22 6 -1.</_>
- <_>0 0 11 3 2.</_>
- <_>11 3 11 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0260101798921824</threshold>
- <left_val>-0.2807458043098450</left_val>
- <right_val>0.0779026597738266</right_val></_></_>
- <_>
- <!-- tree 13 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>10 5 4 6 -1.</_>
- <_>10 5 2 6 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0311530902981758</threshold>
- <left_val>0.2702265977859497</left_val>
- <right_val>-0.0269943401217461</right_val></_></_>
- <_>
- <!-- tree 14 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>10 0 8 5 -1.</_>
- <_>10 0 4 5 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>0.0109462495893240</threshold>
- <left_val>-0.1599372029304504</left_val>
- <right_val>0.1035069972276688</right_val></_></_>
- <_>
- <!-- tree 15 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>12 4 4 10 -1.</_>
- <_>13 5 2 10 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>0.0731012076139450</threshold>
- <left_val>-4.1365791112184525e-003</left_val>
- <right_val>0.5233982801437378</right_val></_></_>
- <_>
- <!-- tree 16 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>10 4 10 4 -1.</_>
- <_>9 5 10 2 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>0.0302071496844292</threshold>
- <left_val>-0.0492294207215309</left_val>
- <right_val>0.4284898936748505</right_val></_></_>
- <_>
- <!-- tree 17 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>15 1 2 8 -1.</_>
- <_>15 1 1 8 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>0.0649852603673935</threshold>
- <left_val>3.9118612185120583e-003</left_val>
- <right_val>-1.0003379583358765</right_val></_></_>
- <_>
- <!-- tree 18 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>7 1 8 2 -1.</_>
- <_>7 1 8 1 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-0.0291192494332790</threshold>
- <left_val>-0.7702599167823792</left_val>
- <right_val>0.0239308103919029</right_val></_></_>
- <_>
- <!-- tree 19 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>17 0 3 11 -1.</_>
- <_>18 1 1 11 3.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>0.0504583083093166</threshold>
- <left_val>6.9283558987081051e-003</left_val>
- <right_val>-0.5185477733612061</right_val></_></_>
- <_>
- <!-- tree 20 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>9 8 4 6 -1.</_>
- <_>9 8 4 3 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-0.0388901792466640</threshold>
- <left_val>-0.4817684888839722</left_val>
- <right_val>0.0302702896296978</right_val></_></_>
- <_>
- <!-- tree 21 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>14 6 6 12 -1.</_>
- <_>17 6 3 6 2.</_>
- <_>14 12 3 6 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0583193711936474</threshold>
- <left_val>-0.0221013892441988</left_val>
- <right_val>0.2839350104331970</right_val></_></_>
- <_>
- <!-- tree 22 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>2 12 18 6 -1.</_>
- <_>8 14 6 2 9.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0108036901801825</threshold>
- <left_val>0.1284206062555313</left_val>
- <right_val>-0.1384977996349335</right_val></_></_>
- <_>
- <!-- tree 23 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>14 7 3 10 -1.</_>
- <_>14 12 3 5 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>9.4525264576077461e-003</threshold>
- <left_val>-0.0571944192051888</left_val>
- <right_val>0.1775905042886734</right_val></_></_>
- <_>
- <!-- tree 24 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>3 8 16 10 -1.</_>
- <_>3 8 8 5 2.</_>
- <_>11 13 8 5 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0152291702106595</threshold>
- <left_val>0.1050117015838623</left_val>
- <right_val>-0.2051838934421539</right_val></_></_>
- <_>
- <!-- tree 25 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>15 12 4 6 -1.</_>
- <_>15 15 4 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-8.9435698464512825e-004</threshold>
- <left_val>0.0686682537198067</left_val>
- <right_val>-0.1466601043939591</right_val></_></_>
- <_>
- <!-- tree 26 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>2 8 18 10 -1.</_>
- <_>2 8 9 5 2.</_>
- <_>11 13 9 5 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0183224994689226</threshold>
- <left_val>-0.2361371964216232</left_val>
- <right_val>0.0835383310914040</right_val></_></_>
- <_>
- <!-- tree 27 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>10 1 12 3 -1.</_>
- <_>10 2 12 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>2.5474189314991236e-003</threshold>
- <left_val>-0.0847315266728401</left_val>
- <right_val>0.1721152067184448</right_val></_></_>
- <_>
- <!-- tree 28 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>1 1 12 3 -1.</_>
- <_>1 2 12 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-1.4951790217310190e-003</threshold>
- <left_val>0.1864299029111862</left_val>
- <right_val>-0.1275333017110825</right_val></_></_>
- <_>
- <!-- tree 29 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>8 0 14 4 -1.</_>
- <_>15 0 7 2 2.</_>
- <_>8 2 7 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0247961506247520</threshold>
- <left_val>0.0329235605895519</left_val>
- <right_val>-0.4095472991466522</right_val></_></_>
- <_>
- <!-- tree 30 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>2 4 14 4 -1.</_>
- <_>2 5 14 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-2.8976860921829939e-003</threshold>
- <left_val>0.1448003947734833</left_val>
- <right_val>-0.1040467992424965</right_val></_></_>
- <_>
- <!-- tree 31 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>8 4 12 3 -1.</_>
- <_>8 5 12 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>7.0361169055104256e-003</threshold>
- <left_val>-0.0679165571928024</left_val>
- <right_val>0.2154435068368912</right_val></_></_>
- <_>
- <!-- tree 32 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>1 0 8 8 -1.</_>
- <_>1 0 4 4 2.</_>
- <_>5 4 4 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0118703898042440</threshold>
- <left_val>-0.2553744912147522</left_val>
- <right_val>0.0744434073567390</right_val></_></_>
- <_>
- <!-- tree 33 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>13 0 8 6 -1.</_>
- <_>17 0 4 3 2.</_>
- <_>13 3 4 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>2.4765899870544672e-003</threshold>
- <left_val>0.0683133676648140</left_val>
- <right_val>-0.1611132025718689</right_val></_></_>
- <_>
- <!-- tree 34 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>1 0 8 6 -1.</_>
- <_>1 0 4 3 2.</_>
- <_>5 3 4 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0212845504283905</threshold>
- <left_val>0.0370908714830875</left_val>
- <right_val>-0.4691652059555054</right_val></_></_>
- <_>
- <!-- tree 35 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>9 6 6 5 -1.</_>
- <_>9 6 3 5 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0103694796562195</threshold>
- <left_val>0.1080783978104591</left_val>
- <right_val>-0.0604898706078529</right_val></_></_>
- <_>
- <!-- tree 36 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>5 6 8 3 -1.</_>
- <_>9 6 4 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0107324803248048</threshold>
- <left_val>-0.0585823804140091</left_val>
- <right_val>0.3195860981941223</right_val></_></_>
- <_>
- <!-- tree 37 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>13 3 6 9 -1.</_>
- <_>10 6 6 3 3.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-0.2323516011238098</threshold>
- <left_val>-1.</left_val>
- <right_val>8.2511743530631065e-003</right_val></_></_>
- <_>
- <!-- tree 38 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>9 3 9 6 -1.</_>
- <_>12 6 3 6 3.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-6.0572529037017375e-005</threshold>
- <left_val>0.0802017673850060</left_val>
- <right_val>-0.2358305007219315</right_val></_></_>
- <_>
- <!-- tree 39 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>4 11 18 3 -1.</_>
- <_>4 12 18 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-2.7367009315639734e-003</threshold>
- <left_val>0.1536909043788910</left_val>
- <right_val>-0.0788008794188499</right_val></_></_>
- <_>
- <!-- tree 40 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 13 15 4 -1.</_>
- <_>5 13 5 4 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0311680100858212</threshold>
- <left_val>-0.0418529510498047</left_val>
- <right_val>0.3737446963787079</right_val></_></_>
- <_>
- <!-- tree 41 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>15 12 4 6 -1.</_>
- <_>15 15 4 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0454151295125484</threshold>
- <left_val>6.6594500094652176e-003</left_val>
- <right_val>-0.9997528791427612</right_val></_></_>
- <_>
- <!-- tree 42 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>3 12 4 6 -1.</_>
- <_>3 15 4 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-1.3742819428443909e-003</threshold>
- <left_val>0.1058785021305084</left_val>
- <right_val>-0.1923477947711945</right_val></_></_>
- <_>
- <!-- tree 43 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>9 12 6 6 -1.</_>
- <_>11 12 2 6 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>3.0089360661804676e-003</threshold>
- <left_val>0.0940386429429054</left_val>
- <right_val>-0.1544273048639298</right_val></_></_>
- <_>
- <!-- tree 44 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>6 9 9 7 -1.</_>
- <_>9 9 3 7 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0710713863372803</threshold>
- <left_val>-0.5495526790618897</left_val>
- <right_val>0.0255231298506260</right_val></_></_>
- <_>
- <!-- tree 45 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>13 10 6 8 -1.</_>
- <_>16 10 3 4 2.</_>
- <_>13 14 3 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>1.0958979837596416e-003</threshold>
- <left_val>-0.0613276585936546</left_val>
- <right_val>0.0576776191592216</right_val></_></_>
- <_>
- <!-- tree 46 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>3 10 6 8 -1.</_>
- <_>3 10 3 4 2.</_>
- <_>6 14 3 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0237067993730307</threshold>
- <left_val>0.2948609888553619</left_val>
- <right_val>-0.0665534734725952</right_val></_></_>
- <_>
- <!-- tree 47 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>7 10 8 4 -1.</_>
- <_>7 10 4 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>6.8882037885487080e-003</threshold>
- <left_val>0.0738617032766342</left_val>
- <right_val>-0.2572773098945618</right_val></_></_>
- <_>
- <!-- tree 48 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>7 5 6 11 -1.</_>
- <_>10 5 3 11 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0491580404341221</threshold>
- <left_val>0.3240630924701691</left_val>
- <right_val>-0.0527858398854733</right_val></_></_>
- <_>
- <!-- tree 49 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>10 6 6 6 -1.</_>
- <_>10 9 6 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0713694170117378</threshold>
- <left_val>0.0132099203765392</left_val>
- <right_val>-0.7482113242149353</right_val></_></_>
- <_>
- <!-- tree 50 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>6 6 6 6 -1.</_>
- <_>6 9 6 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-8.4517486393451691e-003</threshold>
- <left_val>-0.2065279930830002</left_val>
- <right_val>0.0931395962834358</right_val></_></_>
- <_>
- <!-- tree 51 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>8 6 12 8 -1.</_>
- <_>12 6 4 8 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.1555441021919251</threshold>
- <left_val>-0.5073614120483398</left_val>
- <right_val>0.0115754203870893</right_val></_></_>
- <_>
- <!-- tree 52 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>2 11 12 3 -1.</_>
- <_>6 11 4 3 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0459768213331699</threshold>
- <left_val>0.3343332111835480</left_val>
- <right_val>-0.0565582811832428</right_val></_></_>
- <_>
- <!-- tree 53 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>14 3 6 8 -1.</_>
- <_>17 3 3 4 2.</_>
- <_>14 7 3 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0179002191871405</threshold>
- <left_val>0.0340919904410839</left_val>
- <right_val>-0.2856503129005432</right_val></_></_>
- <_>
- <!-- tree 54 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 5 13 3 -1.</_>
- <_>0 6 13 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>6.7351139150559902e-003</threshold>
- <left_val>-0.0665388181805611</left_val>
- <right_val>0.2332212030887604</right_val></_></_>
- <_>
- <!-- tree 55 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>14 0 6 6 -1.</_>
- <_>14 2 6 2 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>6.4544100314378738e-003</threshold>
- <left_val>0.0472244992852211</left_val>
- <right_val>-0.1442237049341202</right_val></_></_>
- <_>
- <!-- tree 56 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>3 0 6 6 -1.</_>
- <_>3 2 6 2 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0110290497541428</threshold>
- <left_val>-0.2644239962100983</left_val>
- <right_val>0.0625426918268204</right_val></_></_>
- <_>
- <!-- tree 57 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>8 8 14 3 -1.</_>
- <_>8 9 14 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-3.3727919217199087e-003</threshold>
- <left_val>0.1257591992616653</left_val>
- <right_val>-0.0683576464653015</right_val></_></_>
- <_>
- <!-- tree 58 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>7 2 2 15 -1.</_>
- <_>8 2 1 15 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-2.2960419300943613e-003</threshold>
- <left_val>-0.1557330936193466</left_val>
- <right_val>0.0946819707751274</right_val></_></_>
- <_>
- <!-- tree 59 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>4 14 16 4 -1.</_>
- <_>4 14 8 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0795031636953354</threshold>
- <left_val>-0.3824613988399506</left_val>
- <right_val>0.0172012597322464</right_val></_></_>
- <_>
- <!-- tree 60 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>1 6 20 12 -1.</_>
- <_>6 6 10 12 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.2524088025093079</threshold>
- <left_val>0.3013980984687805</left_val>
- <right_val>-0.0589428097009659</right_val></_></_>
- <_>
- <!-- tree 61 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>5 10 16 6 -1.</_>
- <_>13 10 8 3 2.</_>
- <_>5 13 8 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0363130792975426</threshold>
- <left_val>0.0211058706045151</left_val>
- <right_val>-0.2081169039011002</right_val></_></_>
- <_>
- <!-- tree 62 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>1 10 16 6 -1.</_>
- <_>1 10 8 3 2.</_>
- <_>9 13 8 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0687375217676163</threshold>
- <left_val>-0.0324002988636494</left_val>
- <right_val>0.5134530067443848</right_val></_></_>
- <_>
- <!-- tree 63 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>8 8 14 6 -1.</_>
- <_>8 8 7 6 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.2181455045938492</threshold>
- <left_val>-0.7009329199790955</left_val>
- <right_val>0.0162609796971083</right_val></_></_>
- <_>
- <!-- tree 64 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 8 14 6 -1.</_>
- <_>7 8 7 6 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.1977089941501617</threshold>
- <left_val>-0.6781736016273499</left_val>
- <right_val>0.0179375503212214</right_val></_></_>
- <_>
- <!-- tree 65 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>5 6 12 11 -1.</_>
- <_>8 6 6 11 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.1013111993670464</threshold>
- <left_val>0.3647063076496124</left_val>
- <right_val>-0.0499694384634495</right_val></_></_>
- <_>
- <!-- tree 66 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>1 3 8 6 -1.</_>
- <_>1 3 4 3 2.</_>
- <_>5 6 4 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>5.4146698676049709e-003</threshold>
- <left_val>0.0660865902900696</left_val>
- <right_val>-0.2332739979028702</right_val></_></_>
- <_>
- <!-- tree 67 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>13 1 7 6 -1.</_>
- <_>13 1 7 3 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-0.0405901782214642</threshold>
- <left_val>0.2146472036838532</left_val>
- <right_val>-0.0430333092808723</right_val></_></_>
- <_>
- <!-- tree 68 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>1 4 5 10 -1.</_>
- <_>1 9 5 5 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-1.3324919855222106e-003</threshold>
- <left_val>0.1297567933797836</left_val>
- <right_val>-0.1279428005218506</right_val></_></_>
- <_>
- <!-- tree 69 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>18 6 3 8 -1.</_>
- <_>18 10 3 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>5.7570589706301689e-003</threshold>
- <left_val>0.0434699989855289</left_val>
- <right_val>-0.1197730004787445</right_val></_></_>
- <_>
- <!-- tree 70 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>1 6 3 8 -1.</_>
- <_>1 10 3 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-4.0872758254408836e-003</threshold>
- <left_val>-0.2018010020256043</left_val>
- <right_val>0.0926248729228973</right_val></_></_>
- <_>
- <!-- tree 71 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>8 5 13 3 -1.</_>
- <_>8 6 13 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0213452801108360</threshold>
- <left_val>-0.0263108704239130</left_val>
- <right_val>0.2914252877235413</right_val></_></_>
- <_>
- <!-- tree 72 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>1 5 13 3 -1.</_>
- <_>1 6 13 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-2.4241849314421415e-003</threshold>
- <left_val>0.1713156998157501</left_val>
- <right_val>-0.1172301024198532</right_val></_></_>
- <_>
- <!-- tree 73 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>18 0 3 12 -1.</_>
- <_>19 0 1 12 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0606775507330894</threshold>
- <left_val>-4.8347217962145805e-003</left_val>
- <right_val>0.5657712221145630</right_val></_></_>
- <_>
- <!-- tree 74 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>1 0 3 12 -1.</_>
- <_>2 0 1 12 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>3.1573011074215174e-004</threshold>
- <left_val>-0.1149955019354820</left_val>
- <right_val>0.1309486031532288</right_val></_></_>
- <_>
- <!-- tree 75 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>4 2 18 2 -1.</_>
- <_>4 2 9 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-1.4639530563727021e-003</threshold>
- <left_val>0.1070842966437340</left_val>
- <right_val>-0.0821887478232384</right_val></_></_>
- <_>
- <!-- tree 76 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>6 3 6 6 -1.</_>
- <_>9 3 3 6 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0816292762756348</threshold>
- <left_val>-0.7009016275405884</left_val>
- <right_val>0.0213186405599117</right_val></_></_>
- <_>
- <!-- tree 77 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>9 5 12 11 -1.</_>
- <_>12 5 6 11 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-2.2923630604054779e-004</threshold>
- <left_val>0.0524490103125572</left_val>
- <right_val>-0.0572733990848064</right_val></_></_>
- <_>
- <!-- tree 78 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>1 5 12 11 -1.</_>
- <_>4 5 6 11 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>8.6732655763626099e-003</threshold>
- <left_val>-0.1094440966844559</left_val>
- <right_val>0.1453080028295517</right_val></_></_>
- <_>
- <!-- tree 79 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>8 4 8 8 -1.</_>
- <_>8 4 4 8 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-9.5603411318734288e-004</threshold>
- <left_val>0.0547286607325077</left_val>
- <right_val>-0.0766770094633102</right_val></_></_>
- <_>
- <!-- tree 80 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 8 22 4 -1.</_>
- <_>0 8 11 2 2.</_>
- <_>11 10 11 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0568146891891956</threshold>
- <left_val>-0.7249373793601990</left_val>
- <right_val>0.0177913308143616</right_val></_></_>
- <_>
- <!-- tree 81 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>8 6 8 4 -1.</_>
- <_>8 6 4 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>6.4268838614225388e-003</threshold>
- <left_val>-0.0377686992287636</left_val>
- <right_val>0.0834547504782677</right_val></_></_>
- <_>
- <!-- tree 82 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>6 3 8 8 -1.</_>
- <_>10 3 4 8 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>5.2451258525252342e-003</threshold>
- <left_val>-0.0758067518472672</left_val>
- <right_val>0.2154906988143921</right_val></_></_>
- <_>
- <!-- tree 83 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>3 6 16 4 -1.</_>
- <_>11 6 8 2 2.</_>
- <_>3 8 8 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>6.7577441222965717e-003</threshold>
- <left_val>0.0771638676524162</left_val>
- <right_val>-0.2495719939470291</right_val></_></_>
- <_>
- <!-- tree 84 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>2 14 16 4 -1.</_>
- <_>10 14 8 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-5.7494179345667362e-003</threshold>
- <left_val>0.1424555927515030</left_val>
- <right_val>-0.1274092048406601</right_val></_></_>
- <_>
- <!-- tree 85 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>11 13 6 5 -1.</_>
- <_>11 13 3 5 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-6.7760650999844074e-003</threshold>
- <left_val>-0.2331600934267044</left_val>
- <right_val>0.0399752110242844</right_val></_></_>
- <_>
- <!-- tree 86 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>5 13 6 5 -1.</_>
- <_>8 13 3 5 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>3.5247279447503388e-004</threshold>
- <left_val>-0.1308315992355347</left_val>
- <right_val>0.1157741025090218</right_val></_></_>
- <_>
- <!-- tree 87 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>12 2 2 7 -1.</_>
- <_>12 2 1 7 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>1.4523849822580814e-003</threshold>
- <left_val>-0.0927244573831558</left_val>
- <right_val>0.0654869601130486</right_val></_></_></trees>
- <stage_threshold>-0.8364096879959106</stage_threshold>
- <parent>14</parent>
- <next>-1</next></_>
- <_>
- <!-- stage 16 -->
- <trees>
- <_>
- <!-- tree 0 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 9 21 9 -1.</_>
- <_>7 12 7 3 9.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.3116379976272583</threshold>
- <left_val>0.3806200027465820</left_val>
- <right_val>-0.1111584007740021</right_val></_></_>
- <_>
- <!-- tree 1 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>5 3 12 9 -1.</_>
- <_>9 6 4 3 9.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.3033824861049652</threshold>
- <left_val>0.5123680830001831</left_val>
- <right_val>-0.0504597313702106</right_val></_></_>
- <_>
- <!-- tree 2 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>3 9 16 8 -1.</_>
- <_>3 9 8 4 2.</_>
- <_>11 13 8 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0109451701864600</threshold>
- <left_val>-0.2229202985763550</left_val>
- <right_val>0.1054809987545013</right_val></_></_>
- <_>
- <!-- tree 3 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>7 0 14 18 -1.</_>
- <_>7 0 7 18 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0280110798776150</threshold>
- <left_val>0.0706877931952477</left_val>
- <right_val>-0.0864785090088844</right_val></_></_>
- <_>
- <!-- tree 4 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>5 8 6 4 -1.</_>
- <_>5 8 3 4 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-0.0522561594843864</threshold>
- <left_val>0.5785626769065857</left_val>
- <right_val>-8.7944902479648590e-003</right_val></_></_>
- <_>
- <!-- tree 5 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>3 11 16 4 -1.</_>
- <_>11 11 8 2 2.</_>
- <_>3 13 8 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-5.9455442242324352e-003</threshold>
- <left_val>-0.2564198076725006</left_val>
- <right_val>0.0945845320820808</right_val></_></_>
- <_>
- <!-- tree 6 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>6 9 6 8 -1.</_>
- <_>6 9 3 4 2.</_>
- <_>9 13 3 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>2.5594399776309729e-003</threshold>
- <left_val>-0.2571848034858704</left_val>
- <right_val>0.1288242936134338</right_val></_></_>
- <_>
- <!-- tree 7 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>7 0 14 18 -1.</_>
- <_>7 0 7 18 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.1209926009178162</threshold>
- <left_val>-0.1229322031140328</left_val>
- <right_val>0.0258294306695461</right_val></_></_>
- <_>
- <!-- tree 8 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>1 0 14 18 -1.</_>
- <_>8 0 7 18 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.4420821964740753</threshold>
- <left_val>-0.7454655170440674</left_val>
- <right_val>0.0425867103040218</right_val></_></_>
- <_>
- <!-- tree 9 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>13 14 8 3 -1.</_>
- <_>13 14 4 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-6.6842641681432724e-003</threshold>
- <left_val>0.1351564973592758</left_val>
- <right_val>-0.1640930026769638</right_val></_></_>
- <_>
- <!-- tree 10 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>8 4 6 4 -1.</_>
- <_>8 6 6 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>9.8270708695054054e-003</threshold>
- <left_val>-0.0803053528070450</left_val>
- <right_val>0.2985329926013947</right_val></_></_>
- <_>
- <!-- tree 11 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>6 6 14 4 -1.</_>
- <_>13 6 7 2 2.</_>
- <_>6 8 7 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0586385987699032</threshold>
- <left_val>0.0275564193725586</left_val>
- <right_val>-0.8224250078201294</right_val></_></_>
- <_>
- <!-- tree 12 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>7 3 11 4 -1.</_>
- <_>6 4 11 2 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-3.0546959023922682e-003</threshold>
- <left_val>-0.1929274946451187</left_val>
- <right_val>0.1108272969722748</right_val></_></_>
- <_>
- <!-- tree 13 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>7 0 12 4 -1.</_>
- <_>13 0 6 2 2.</_>
- <_>7 2 6 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-7.3340102098882198e-003</threshold>
- <left_val>-0.2430793941020966</left_val>
- <right_val>0.0667446032166481</right_val></_></_>
- <_>
- <!-- tree 14 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>4 0 14 4 -1.</_>
- <_>4 0 7 2 2.</_>
- <_>11 2 7 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0105262296274304</threshold>
- <left_val>-0.3113602101802826</left_val>
- <right_val>0.0628508478403091</right_val></_></_>
- <_>
- <!-- tree 15 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>15 8 6 9 -1.</_>
- <_>17 8 2 9 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.1048116013407707</threshold>
- <left_val>0.0126217203214765</left_val>
- <right_val>-0.6737608909606934</right_val></_></_>
- <_>
- <!-- tree 16 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>1 8 6 9 -1.</_>
- <_>3 8 2 9 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>9.4269379042088985e-004</threshold>
- <left_val>-0.1707167029380798</left_val>
- <right_val>0.1028065010905266</right_val></_></_>
- <_>
- <!-- tree 17 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>12 5 5 9 -1.</_>
- <_>12 8 5 3 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>8.4397383034229279e-003</threshold>
- <left_val>-0.0530145689845085</left_val>
- <right_val>0.0885990783572197</right_val></_></_>
- <_>
- <!-- tree 18 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>5 5 5 9 -1.</_>
- <_>5 8 5 3 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0305516701191664</threshold>
- <left_val>0.3526489138603210</left_val>
- <right_val>-0.0691484734416008</right_val></_></_>
- <_>
- <!-- tree 19 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>17 9 4 6 -1.</_>
- <_>17 9 2 6 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0491123795509338</threshold>
- <left_val>-0.5821937918663025</left_val>
- <right_val>0.0140432203188539</right_val></_></_>
- <_>
- <!-- tree 20 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>1 9 4 6 -1.</_>
- <_>3 9 2 6 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>5.8098030276596546e-003</threshold>
- <left_val>0.0708724334836006</left_val>
- <right_val>-0.2536281943321228</right_val></_></_>
- <_>
- <!-- tree 21 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>4 3 14 3 -1.</_>
- <_>4 4 14 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0255410708487034</threshold>
- <left_val>-0.0451369397342205</left_val>
- <right_val>0.4067445099353790</right_val></_></_>
- <_>
- <!-- tree 22 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>6 0 10 3 -1.</_>
- <_>5 1 10 1 3.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-0.0487112887203693</threshold>
- <left_val>-0.7024015784263611</left_val>
- <right_val>0.0243178699165583</right_val></_></_>
- <_>
- <!-- tree 23 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>10 4 11 14 -1.</_>
- <_>10 11 11 7 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.3262439072132111</threshold>
- <left_val>-0.5061904788017273</left_val>
- <right_val>5.5445302277803421e-003</right_val></_></_>
- <_>
- <!-- tree 24 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>2 5 6 6 -1.</_>
- <_>2 7 6 2 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-1.8120040476787835e-004</threshold>
- <left_val>0.1313259005546570</left_val>
- <right_val>-0.1213954985141754</right_val></_></_>
- <_>
- <!-- tree 25 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>12 2 5 12 -1.</_>
- <_>12 6 5 4 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.1298076957464218</threshold>
- <left_val>-0.6820899248123169</left_val>
- <right_val>0.0164145492017269</right_val></_></_>
- <_>
- <!-- tree 26 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>5 16 12 2 -1.</_>
- <_>5 17 12 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>8.3528067916631699e-003</threshold>
- <left_val>0.0300403907895088</left_val>
- <right_val>-0.5090913772583008</right_val></_></_>
- <_>
- <!-- tree 27 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>3 4 18 3 -1.</_>
- <_>3 5 18 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>5.4547088220715523e-003</threshold>
- <left_val>-0.0824020728468895</left_val>
- <right_val>0.1800798028707504</right_val></_></_>
- <_>
- <!-- tree 28 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>1 4 11 14 -1.</_>
- <_>1 11 11 7 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.3169954121112824</threshold>
- <left_val>-0.8661301136016846</left_val>
- <right_val>0.0182291399687529</right_val></_></_>
- <_>
- <!-- tree 29 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>8 12 11 4 -1.</_>
- <_>8 14 11 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>5.8424862800166011e-004</threshold>
- <left_val>0.0424097292125225</left_val>
- <right_val>-0.1311808973550797</right_val></_></_>
- <_>
- <!-- tree 30 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>7 11 8 7 -1.</_>
- <_>11 11 4 7 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-9.7046848386526108e-003</threshold>
- <left_val>-0.2743268907070160</left_val>
- <right_val>0.0559204295277596</right_val></_></_>
- <_>
- <!-- tree 31 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>12 2 4 11 -1.</_>
- <_>12 2 2 11 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>0.0168343205004931</threshold>
- <left_val>-0.0833064168691635</left_val>
- <right_val>0.0677927583456039</right_val></_></_>
- <_>
- <!-- tree 32 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>10 4 11 2 -1.</_>
- <_>10 4 11 1 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-0.0306853801012039</threshold>
- <left_val>0.4212690889835358</left_val>
- <right_val>-0.0453393310308456</right_val></_></_>
- <_>
- <!-- tree 33 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>16 0 2 14 -1.</_>
- <_>16 0 1 14 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>0.0413949191570282</threshold>
- <left_val>0.0199717506766319</left_val>
- <right_val>-0.1972219049930573</right_val></_></_>
- <_>
- <!-- tree 34 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>6 0 14 2 -1.</_>
- <_>6 0 14 1 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>0.0349101498723030</threshold>
- <left_val>-0.0538268797099590</left_val>
- <right_val>0.3504027128219605</right_val></_></_>
- <_>
- <!-- tree 35 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>19 4 2 12 -1.</_>
- <_>19 4 1 12 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-5.2495039999485016e-003</threshold>
- <left_val>-0.1136389002203941</left_val>
- <right_val>0.0550805702805519</right_val></_></_>
- <_>
- <!-- tree 36 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>8 2 6 10 -1.</_>
- <_>8 7 6 5 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.1204561963677406</threshold>
- <left_val>0.0174515992403030</left_val>
- <right_val>-0.9395803213119507</right_val></_></_>
- <_>
- <!-- tree 37 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>19 4 2 12 -1.</_>
- <_>19 4 1 12 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>0.0421304218471050</threshold>
- <left_val>-0.0143432803452015</left_val>
- <right_val>0.6005985140800476</right_val></_></_>
- <_>
- <!-- tree 38 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>11 3 6 8 -1.</_>
- <_>11 3 6 4 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>0.0191208496689796</threshold>
- <left_val>0.0858645066618919</left_val>
- <right_val>-0.1858649998903275</right_val></_></_>
- <_>
- <!-- tree 39 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>11 2 10 6 -1.</_>
- <_>11 2 5 6 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>8.4470612928271294e-003</threshold>
- <left_val>-0.0694521814584732</left_val>
- <right_val>0.0734614208340645</right_val></_></_>
- <_>
- <!-- tree 40 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>3 5 13 2 -1.</_>
- <_>3 6 13 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>1.7696130089461803e-003</threshold>
- <left_val>-0.0799966603517532</left_val>
- <right_val>0.1947980970144272</right_val></_></_>
- <_>
- <!-- tree 41 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>5 4 12 6 -1.</_>
- <_>5 6 12 2 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0579959489405155</threshold>
- <left_val>0.0276330001652241</left_val>
- <right_val>-0.5409700870513916</right_val></_></_>
- <_>
- <!-- tree 42 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>6 9 9 9 -1.</_>
- <_>9 9 3 9 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0798840224742889</threshold>
- <left_val>-0.5430768132209778</left_val>
- <right_val>0.0232198294252157</right_val></_></_>
- <_>
- <!-- tree 43 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>19 1 3 12 -1.</_>
- <_>20 2 1 12 3.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>0.0665762424468994</threshold>
- <left_val>6.8416809663176537e-003</left_val>
- <right_val>-0.8122456073760986</right_val></_></_>
- <_>
- <!-- tree 44 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>2 13 9 5 -1.</_>
- <_>5 13 3 5 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0641699433326721</threshold>
- <left_val>-0.0248466897755861</left_val>
- <right_val>0.6079813241958618</right_val></_></_>
- <_>
- <!-- tree 45 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>11 2 10 6 -1.</_>
- <_>11 2 5 6 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-0.2940478026866913</threshold>
- <left_val>-1.</left_val>
- <right_val>4.6440181322395802e-003</right_val></_></_>
- <_>
- <!-- tree 46 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>11 2 6 10 -1.</_>
- <_>11 2 6 5 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-9.5727723091840744e-003</threshold>
- <left_val>-0.1415735930204392</left_val>
- <right_val>0.1012165024876595</right_val></_></_>
- <_>
- <!-- tree 47 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>1 6 21 3 -1.</_>
- <_>8 6 7 3 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0235744491219521</threshold>
- <left_val>0.1171545013785362</left_val>
- <right_val>-0.1318469047546387</right_val></_></_>
- <_>
- <!-- tree 48 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>5 5 3 8 -1.</_>
- <_>5 9 3 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-5.1256217993795872e-003</threshold>
- <left_val>-0.1762325018644333</left_val>
- <right_val>0.1017735973000526</right_val></_></_>
- <_>
- <!-- tree 49 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>10 5 7 6 -1.</_>
- <_>10 7 7 2 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0976630598306656</threshold>
- <left_val>4.4896239414811134e-003</left_val>
- <right_val>-0.8041555285453796</right_val></_></_>
- <_>
- <!-- tree 50 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>10 0 7 6 -1.</_>
- <_>8 2 7 2 3.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>0.0320886895060539</threshold>
- <left_val>-0.0580484308302403</left_val>
- <right_val>0.3019489049911499</right_val></_></_>
- <_>
- <!-- tree 51 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>13 5 6 6 -1.</_>
- <_>13 7 6 2 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0865172073245049</threshold>
- <left_val>-0.7552989125251770</left_val>
- <right_val>2.8089359402656555e-003</right_val></_></_>
- <_>
- <!-- tree 52 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>5 5 7 6 -1.</_>
- <_>5 7 7 2 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0285409707576036</threshold>
- <left_val>-0.3508501946926117</left_val>
- <right_val>0.0440815910696983</right_val></_></_>
- <_>
- <!-- tree 53 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>9 1 6 8 -1.</_>
- <_>12 1 3 4 2.</_>
- <_>9 5 3 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-5.3844689391553402e-003</threshold>
- <left_val>0.0923489034175873</left_val>
- <right_val>-0.0700338482856750</right_val></_></_>
- <_>
- <!-- tree 54 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>7 1 6 8 -1.</_>
- <_>7 1 3 4 2.</_>
- <_>10 5 3 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0222804397344589</threshold>
- <left_val>0.2494941949844360</left_val>
- <right_val>-0.0706586763262749</right_val></_></_>
- <_>
- <!-- tree 55 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>7 0 9 4 -1.</_>
- <_>10 0 3 4 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>5.1025422289967537e-003</threshold>
- <left_val>0.0608996897935867</left_val>
- <right_val>-0.1547394990921021</right_val></_></_>
- <_>
- <!-- tree 56 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>1 9 14 3 -1.</_>
- <_>1 10 14 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>3.7133800797164440e-003</threshold>
- <left_val>-0.0871243029832840</left_val>
- <right_val>0.1719526052474976</right_val></_></_>
- <_>
- <!-- tree 57 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>5 9 15 3 -1.</_>
- <_>5 10 15 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-4.0405280888080597e-003</threshold>
- <left_val>0.1505451947450638</left_val>
- <right_val>-0.0996850505471230</right_val></_></_>
- <_>
- <!-- tree 58 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>3 1 12 3 -1.</_>
- <_>2 2 12 1 3.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>0.0489449016749859</threshold>
- <left_val>0.0206377804279327</left_val>
- <right_val>-0.7111399769783020</right_val></_></_>
- <_>
- <!-- tree 59 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>5 12 12 6 -1.</_>
- <_>11 12 6 3 2.</_>
- <_>5 15 6 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-4.0832208469510078e-003</threshold>
- <left_val>-0.1610490977764130</left_val>
- <right_val>0.0886750072240829</right_val></_></_>
- <_>
- <!-- tree 60 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>5 12 12 4 -1.</_>
- <_>5 12 6 2 2.</_>
- <_>11 14 6 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-2.2145630791783333e-003</threshold>
- <left_val>-0.2190154045820236</left_val>
- <right_val>0.1004524007439613</right_val></_></_>
- <_>
- <!-- tree 61 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>15 4 3 9 -1.</_>
- <_>16 5 1 9 3.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-0.0642574504017830</threshold>
- <left_val>-0.5769470930099487</left_val>
- <right_val>0.0102538801729679</right_val></_></_>
- <_>
- <!-- tree 62 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>7 4 9 3 -1.</_>
- <_>6 5 9 1 3.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>0.0118954200297594</threshold>
- <left_val>-0.0705605968832970</left_val>
- <right_val>0.2614729106426239</right_val></_></_>
- <_>
- <!-- tree 63 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>13 3 7 4 -1.</_>
- <_>13 5 7 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0449882596731186</threshold>
- <left_val>-0.6844028234481812</left_val>
- <right_val>9.9674779921770096e-003</right_val></_></_>
- <_>
- <!-- tree 64 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>4 0 9 5 -1.</_>
- <_>7 0 3 5 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>6.3484339043498039e-003</threshold>
- <left_val>0.0847386568784714</left_val>
- <right_val>-0.1629998981952667</right_val></_></_>
- <_>
- <!-- tree 65 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>10 6 6 6 -1.</_>
- <_>12 6 2 6 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0565874390304089</threshold>
- <left_val>0.4896005094051361</left_val>
- <right_val>-0.0196411404758692</right_val></_></_>
- <_>
- <!-- tree 66 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 6 12 4 -1.</_>
- <_>0 6 6 2 2.</_>
- <_>6 8 6 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0358534008264542</threshold>
- <left_val>0.0196954403072596</left_val>
- <right_val>-0.6810833811759949</right_val></_></_>
- <_>
- <!-- tree 67 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>10 11 9 6 -1.</_>
- <_>13 11 3 6 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-4.5450981706380844e-003</threshold>
- <left_val>0.0690726563334465</left_val>
- <right_val>-0.0912766382098198</right_val></_></_>
- <_>
- <!-- tree 68 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>2 6 16 8 -1.</_>
- <_>2 10 16 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.1060857027769089</threshold>
- <left_val>-0.0499939918518066</left_val>
- <right_val>0.3213947117328644</right_val></_></_>
- <_>
- <!-- tree 69 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>17 0 2 10 -1.</_>
- <_>17 0 1 10 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-0.0459244102239609</threshold>
- <left_val>-0.8274418115615845</left_val>
- <right_val>0.0121494196355343</right_val></_></_>
- <_>
- <!-- tree 70 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>5 0 10 2 -1.</_>
- <_>5 0 10 1 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-0.0122732399031520</threshold>
- <left_val>-0.3066928982734680</left_val>
- <right_val>0.0516933985054493</right_val></_></_>
- <_>
- <!-- tree 71 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>9 11 13 3 -1.</_>
- <_>9 12 13 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0806673914194107</threshold>
- <left_val>2.1730009466409683e-003</left_val>
- <right_val>-1.0002529621124268</right_val></_></_>
- <_>
- <!-- tree 72 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 11 13 3 -1.</_>
- <_>0 12 13 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0230448599904776</threshold>
- <left_val>0.4508534967899323</left_val>
- <right_val>-0.0362739786505699</right_val></_></_>
- <_>
- <!-- tree 73 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>18 6 4 12 -1.</_>
- <_>18 9 4 6 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0187029093503952</threshold>
- <left_val>0.0469454601407051</left_val>
- <right_val>-0.2179626971483231</right_val></_></_>
- <_>
- <!-- tree 74 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>6 4 9 7 -1.</_>
- <_>9 4 3 7 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0968200266361237</threshold>
- <left_val>0.4039891064167023</left_val>
- <right_val>-0.0378190912306309</right_val></_></_>
- <_>
- <!-- tree 75 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>11 9 6 7 -1.</_>
- <_>13 9 2 7 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0605257898569107</threshold>
- <left_val>0.0157271604984999</left_val>
- <right_val>-0.4566167891025543</right_val></_></_>
- <_>
- <!-- tree 76 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>5 9 6 7 -1.</_>
- <_>7 9 2 7 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0104185696691275</threshold>
- <left_val>0.0627266466617584</left_val>
- <right_val>-0.2444117963314056</right_val></_></_>
- <_>
- <!-- tree 77 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>1 13 20 5 -1.</_>
- <_>6 13 10 5 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0107262097299099</threshold>
- <left_val>-0.0719688534736633</left_val>
- <right_val>0.2209997028112412</right_val></_></_>
- <_>
- <!-- tree 78 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>7 9 8 6 -1.</_>
- <_>9 9 4 6 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-2.7160700410604477e-003</threshold>
- <left_val>0.1288274973630905</left_val>
- <right_val>-0.1462963074445725</right_val></_></_>
- <_>
- <!-- tree 79 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>5 5 12 4 -1.</_>
- <_>8 5 6 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>8.5867568850517273e-003</threshold>
- <left_val>-0.0686456635594368</left_val>
- <right_val>0.2584058940410614</right_val></_></_></trees>
- <stage_threshold>-0.7232239842414856</stage_threshold>
- <parent>15</parent>
- <next>-1</next></_>
- <_>
- <!-- stage 17 -->
- <trees>
- <_>
- <!-- tree 0 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>1 11 20 6 -1.</_>
- <_>6 11 10 6 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0258516706526279</threshold>
- <left_val>0.1801179945468903</left_val>
- <right_val>-0.2474593073129654</right_val></_></_>
- <_>
- <!-- tree 1 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>1 8 20 7 -1.</_>
- <_>6 8 10 7 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.1405462026596069</threshold>
- <left_val>-0.0513192899525166</left_val>
- <right_val>0.4076690971851349</right_val></_></_>
- <_>
- <!-- tree 2 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>2 9 18 6 -1.</_>
- <_>8 11 6 2 9.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.2725507915019989</threshold>
- <left_val>0.4994125962257385</left_val>
- <right_val>-0.0450339317321777</right_val></_></_>
- <_>
- <!-- tree 3 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>8 13 9 4 -1.</_>
- <_>8 15 9 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>1.3978329952806234e-003</threshold>
- <left_val>0.0536005087196827</left_val>
- <right_val>-0.2179338932037354</right_val></_></_>
- <_>
- <!-- tree 4 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>1 12 9 6 -1.</_>
- <_>1 15 9 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0350598804652691</threshold>
- <left_val>-0.2994329035282135</left_val>
- <right_val>0.0899913236498833</right_val></_></_>
- <_>
- <!-- tree 5 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>9 2 8 6 -1.</_>
- <_>13 2 4 3 2.</_>
- <_>9 5 4 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-3.2894399482756853e-003</threshold>
- <left_val>0.1026419997215271</left_val>
- <right_val>-0.0947112515568733</right_val></_></_>
- <_>
- <!-- tree 6 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 5 22 5 -1.</_>
- <_>11 5 11 5 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.1824229061603546</threshold>
- <left_val>0.0256266705691814</left_val>
- <right_val>-0.6876572966575623</right_val></_></_>
- <_>
- <!-- tree 7 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>2 0 18 18 -1.</_>
- <_>2 9 18 9 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0787410810589790</threshold>
- <left_val>0.1081041991710663</left_val>
- <right_val>-0.1449752002954483</right_val></_></_>
- <_>
- <!-- tree 8 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>6 7 3 8 -1.</_>
- <_>6 11 3 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0139451297000051</threshold>
- <left_val>-0.0713719129562378</left_val>
- <right_val>0.3131574988365173</right_val></_></_>
- <_>
- <!-- tree 9 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>11 12 8 6 -1.</_>
- <_>13 12 4 6 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0446802787482738</threshold>
- <left_val>-0.0304461494088173</left_val>
- <right_val>0.3926362991333008</right_val></_></_>
- <_>
- <!-- tree 10 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>3 8 6 8 -1.</_>
- <_>3 8 3 4 2.</_>
- <_>6 12 3 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-2.6441770605742931e-003</threshold>
- <left_val>0.1159669980406761</left_val>
- <right_val>-0.1780045032501221</right_val></_></_>
- <_>
- <!-- tree 11 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>11 6 7 4 -1.</_>
- <_>11 8 7 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-5.1071979105472565e-003</threshold>
- <left_val>-0.1173994019627571</left_val>
- <right_val>0.0678234472870827</right_val></_></_>
- <_>
- <!-- tree 12 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>9 2 4 6 -1.</_>
- <_>11 2 2 6 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0325821787118912</threshold>
- <left_val>-0.5912901759147644</left_val>
- <right_val>0.0333520211279392</right_val></_></_>
- <_>
- <!-- tree 13 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>3 14 16 4 -1.</_>
- <_>11 14 8 2 2.</_>
- <_>3 16 8 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0277558397501707</threshold>
- <left_val>-0.7064936161041260</left_val>
- <right_val>0.0167614892125130</right_val></_></_>
- <_>
- <!-- tree 14 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>5 14 6 4 -1.</_>
- <_>5 16 6 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-6.0038521041860804e-005</threshold>
- <left_val>0.0738326683640480</left_val>
- <right_val>-0.2293335944414139</right_val></_></_>
- <_>
- <!-- tree 15 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>9 5 4 6 -1.</_>
- <_>9 5 2 6 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0305061805993319</threshold>
- <left_val>-0.0380560606718063</left_val>
- <right_val>0.4411535859107971</right_val></_></_>
- <_>
- <!-- tree 16 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>5 12 12 6 -1.</_>
- <_>8 12 6 6 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-6.2056961469352245e-003</threshold>
- <left_val>-0.1775723993778229</left_val>
- <right_val>0.0937074720859528</right_val></_></_>
- <_>
- <!-- tree 17 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>7 14 8 4 -1.</_>
- <_>7 16 8 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-8.0766230821609497e-003</threshold>
- <left_val>-0.2025669962167740</left_val>
- <right_val>0.0740596428513527</right_val></_></_>
- <_>
- <!-- tree 18 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>1 3 18 3 -1.</_>
- <_>1 4 18 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0332099087536335</threshold>
- <left_val>0.4637222886085510</left_val>
- <right_val>-0.0349030084908009</right_val></_></_>
- <_>
- <!-- tree 19 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>8 3 14 3 -1.</_>
- <_>8 4 14 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0355306081473827</threshold>
- <left_val>-0.0316795185208321</left_val>
- <right_val>0.4520249962806702</right_val></_></_>
- <_>
- <!-- tree 20 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>1 0 14 4 -1.</_>
- <_>1 0 7 2 2.</_>
- <_>8 2 7 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0162976402789354</threshold>
- <left_val>0.0441890396177769</left_val>
- <right_val>-0.3484537005424500</right_val></_></_>
- <_>
- <!-- tree 21 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>10 10 12 3 -1.</_>
- <_>10 11 12 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>9.9985357373952866e-003</threshold>
- <left_val>-0.0482553206384182</left_val>
- <right_val>0.1607805043458939</right_val></_></_>
- <_>
- <!-- tree 22 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>1 10 12 3 -1.</_>
- <_>1 11 12 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-5.2390778437256813e-003</threshold>
- <left_val>0.2323659956455231</left_val>
- <right_val>-0.0760327428579330</right_val></_></_>
- <_>
- <!-- tree 23 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>10 7 8 3 -1.</_>
- <_>10 7 4 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-3.2508899457752705e-003</threshold>
- <left_val>0.0543693900108337</left_val>
- <right_val>-0.0910402536392212</right_val></_></_>
- <_>
- <!-- tree 24 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>11 0 6 6 -1.</_>
- <_>9 2 6 2 3.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>0.0556407906115055</threshold>
- <left_val>-0.0388111285865307</left_val>
- <right_val>0.4203402101993561</right_val></_></_>
- <_>
- <!-- tree 25 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>17 0 2 10 -1.</_>
- <_>17 0 1 10 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>0.0339989811182022</threshold>
- <left_val>0.0222513303160667</left_val>
- <right_val>-0.3561536073684692</right_val></_></_>
- <_>
- <!-- tree 26 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>4 7 8 3 -1.</_>
- <_>8 7 4 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-4.3103890493512154e-003</threshold>
- <left_val>0.1128742992877960</left_val>
- <right_val>-0.1763073056936264</right_val></_></_>
- <_>
- <!-- tree 27 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>13 0 8 6 -1.</_>
- <_>13 2 8 2 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-7.9246461391448975e-003</threshold>
- <left_val>-0.1099233999848366</left_val>
- <right_val>0.0350996293127537</right_val></_></_>
- <_>
- <!-- tree 28 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>1 0 8 6 -1.</_>
- <_>1 2 8 2 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0442733801901340</threshold>
- <left_val>0.0280945692211390</left_val>
- <right_val>-0.6092141866683960</right_val></_></_>
- <_>
- <!-- tree 29 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>17 0 2 10 -1.</_>
- <_>17 0 1 10 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>0.0599073283374310</threshold>
- <left_val>9.7544339951127768e-004</left_val>
- <right_val>-0.9052320718765259</right_val></_></_>
- <_>
- <!-- tree 30 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>5 0 10 2 -1.</_>
- <_>5 0 10 1 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>0.0333788692951202</threshold>
- <left_val>0.0177232790738344</left_val>
- <right_val>-0.8525460958480835</right_val></_></_>
- <_>
- <!-- tree 31 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>10 6 6 4 -1.</_>
- <_>10 6 3 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0146941700950265</threshold>
- <left_val>-0.0490315109491348</left_val>
- <right_val>0.2799833118915558</right_val></_></_>
- <_>
- <!-- tree 32 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 4 14 3 -1.</_>
- <_>0 5 14 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-5.3877499885857105e-003</threshold>
- <left_val>0.1821904927492142</left_val>
- <right_val>-0.0823825225234032</right_val></_></_>
- <_>
- <!-- tree 33 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>3 3 16 10 -1.</_>
- <_>11 3 8 5 2.</_>
- <_>3 8 8 5 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0179768893867731</threshold>
- <left_val>-0.1938468962907791</left_val>
- <right_val>0.0849847570061684</right_val></_></_>
- <_>
- <!-- tree 34 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>1 5 12 3 -1.</_>
- <_>1 6 12 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-4.4651641510426998e-003</threshold>
- <left_val>0.1763291060924530</left_val>
- <right_val>-0.0950757712125778</right_val></_></_>
- <_>
- <!-- tree 35 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>9 6 13 4 -1.</_>
- <_>9 8 13 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0693722963333130</threshold>
- <left_val>3.1770321074873209e-003</left_val>
- <right_val>-0.6755440235137940</right_val></_></_>
- <_>
- <!-- tree 36 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>7 5 8 6 -1.</_>
- <_>7 5 4 3 2.</_>
- <_>11 8 4 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0170022696256638</threshold>
- <left_val>-0.3382794857025147</left_val>
- <right_val>0.0447317287325859</right_val></_></_>
- <_>
- <!-- tree 37 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>13 3 4 11 -1.</_>
- <_>14 4 2 11 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>0.0172742400318384</threshold>
- <left_val>-0.0247697103768587</left_val>
- <right_val>0.1185202971100807</right_val></_></_>
- <_>
- <!-- tree 38 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>9 2 11 2 -1.</_>
- <_>9 2 11 1 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>0.0403887294232845</threshold>
- <left_val>-0.0329676792025566</left_val>
- <right_val>0.4732314050197601</right_val></_></_>
- <_>
- <!-- tree 39 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>5 13 12 4 -1.</_>
- <_>5 14 12 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0142154004424810</threshold>
- <left_val>0.0298468600958586</left_val>
- <right_val>-0.4415706098079681</right_val></_></_>
- <_>
- <!-- tree 40 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 9 16 4 -1.</_>
- <_>0 9 8 2 2.</_>
- <_>8 11 8 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0416277199983597</threshold>
- <left_val>-0.0459539182484150</left_val>
- <right_val>0.3297838866710663</right_val></_></_>
- <_>
- <!-- tree 41 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>7 10 9 7 -1.</_>
- <_>10 10 3 7 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-1.7416840419173241e-003</threshold>
- <left_val>0.0872863084077835</left_val>
- <right_val>-0.0888622030615807</right_val></_></_>
- <_>
- <!-- tree 42 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>10 7 5 6 -1.</_>
- <_>10 7 5 3 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-9.8077040165662766e-003</threshold>
- <left_val>-0.2102667987346649</left_val>
- <right_val>0.0774018764495850</right_val></_></_>
- <_>
- <!-- tree 43 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>11 5 10 3 -1.</_>
- <_>11 5 5 3 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>0.0218366496264935</threshold>
- <left_val>0.0432117693126202</left_val>
- <right_val>-0.1533042043447495</right_val></_></_>
- <_>
- <!-- tree 44 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>2 13 12 5 -1.</_>
- <_>5 13 6 5 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0707430988550186</threshold>
- <left_val>0.3301903903484345</left_val>
- <right_val>-0.0527479499578476</right_val></_></_>
- <_>
- <!-- tree 45 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>17 9 4 7 -1.</_>
- <_>17 9 2 7 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0111810201779008</threshold>
- <left_val>-0.1149393990635872</left_val>
- <right_val>0.0278584603220224</right_val></_></_>
- <_>
- <!-- tree 46 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 6 12 3 -1.</_>
- <_>0 7 12 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0146235600113869</threshold>
- <left_val>0.3232707083225250</left_val>
- <right_val>-0.0441660583019257</right_val></_></_>
- <_>
- <!-- tree 47 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>18 6 2 10 -1.</_>
- <_>18 6 1 10 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-9.6702557057142258e-003</threshold>
- <left_val>-0.1815731972455978</left_val>
- <right_val>0.0361545309424400</right_val></_></_>
- <_>
- <!-- tree 48 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>1 14 8 3 -1.</_>
- <_>5 14 4 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>8.3439601585268974e-003</threshold>
- <left_val>-0.0524739101529121</left_val>
- <right_val>0.2744483947753906</right_val></_></_>
- <_>
- <!-- tree 49 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>6 11 12 3 -1.</_>
- <_>10 11 4 3 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0229705590754747</threshold>
- <left_val>0.0349300503730774</left_val>
- <right_val>-0.1577367037534714</right_val></_></_>
- <_>
- <!-- tree 50 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 14 8 3 -1.</_>
- <_>4 14 4 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-8.2734245806932449e-003</threshold>
- <left_val>0.1161279007792473</left_val>
- <right_val>-0.1196577027440071</right_val></_></_>
- <_>
- <!-- tree 51 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>5 11 16 3 -1.</_>
- <_>9 11 8 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>8.7074404582381248e-003</threshold>
- <left_val>-0.0408297888934612</left_val>
- <right_val>0.1048133000731468</right_val></_></_>
- <_>
- <!-- tree 52 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>1 9 4 7 -1.</_>
- <_>3 9 2 7 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0188258197158575</threshold>
- <left_val>-0.3879455029964447</left_val>
- <right_val>0.0473507009446621</right_val></_></_>
- <_>
- <!-- tree 53 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>6 12 10 6 -1.</_>
- <_>6 14 10 2 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-7.2092940099537373e-003</threshold>
- <left_val>-0.1988696008920670</left_val>
- <right_val>0.0759528502821922</right_val></_></_>
- <_>
- <!-- tree 54 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 16 12 2 -1.</_>
- <_>0 17 12 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>1.6543369565624744e-004</threshold>
- <left_val>-0.1067482978105545</left_val>
- <right_val>0.1551059931516647</right_val></_></_>
- <_>
- <!-- tree 55 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>12 5 4 12 -1.</_>
- <_>14 5 2 6 2.</_>
- <_>12 11 2 6 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>8.9294537901878357e-003</threshold>
- <left_val>-0.0670596435666084</left_val>
- <right_val>0.0902067869901657</right_val></_></_>
- <_>
- <!-- tree 56 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>6 11 6 6 -1.</_>
- <_>8 11 2 6 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>3.1991640571504831e-003</threshold>
- <left_val>0.0744457468390465</left_val>
- <right_val>-0.1968283951282501</right_val></_></_>
- <_>
- <!-- tree 57 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>4 16 15 2 -1.</_>
- <_>4 17 15 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-1.1280879698460922e-004</threshold>
- <left_val>0.0797033905982971</left_val>
- <right_val>-0.1366118937730789</right_val></_></_>
- <_>
- <!-- tree 58 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>5 0 12 9 -1.</_>
- <_>9 3 4 3 9.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0696137994527817</threshold>
- <left_val>-0.2101052999496460</left_val>
- <right_val>0.0657716169953346</right_val></_></_>
- <_>
- <!-- tree 59 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>8 0 6 9 -1.</_>
- <_>8 3 6 3 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0260666795074940</threshold>
- <left_val>0.2869651019573212</left_val>
- <right_val>-0.0574957914650440</right_val></_></_>
- <_>
- <!-- tree 60 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>1 0 3 13 -1.</_>
- <_>2 0 1 13 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0120507404208183</threshold>
- <left_val>-0.0468205101788044</left_val>
- <right_val>0.2799476981163025</right_val></_></_>
- <_>
- <!-- tree 61 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>10 1 6 4 -1.</_>
- <_>10 1 3 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0396258495748043</threshold>
- <left_val>-0.3705450892448425</left_val>
- <right_val>0.0114761395379901</right_val></_></_>
- <_>
- <!-- tree 62 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>8 1 6 9 -1.</_>
- <_>10 1 2 9 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-2.7379901148378849e-003</threshold>
- <left_val>0.0943711325526237</left_val>
- <right_val>-0.1620323061943054</right_val></_></_>
- <_>
- <!-- tree 63 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>8 3 6 6 -1.</_>
- <_>10 3 2 6 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0652625635266304</threshold>
- <left_val>-0.6780838966369629</left_val>
- <right_val>0.0194304697215557</right_val></_></_>
- <_>
- <!-- tree 64 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>3 5 11 2 -1.</_>
- <_>3 5 11 1 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>0.0231916196644306</threshold>
- <left_val>0.0261343102902174</left_val>
- <right_val>-0.4666424989700317</right_val></_></_>
- <_>
- <!-- tree 65 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>9 5 6 6 -1.</_>
- <_>11 5 2 6 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0477419309318066</threshold>
- <left_val>-0.0252911895513535</left_val>
- <right_val>0.2909249067306519</right_val></_></_>
- <_>
- <!-- tree 66 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>6 4 6 10 -1.</_>
- <_>6 9 6 5 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.1283002048730850</threshold>
- <left_val>-0.8718711733818054</left_val>
- <right_val>0.0138835404068232</right_val></_></_>
- <_>
- <!-- tree 67 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>11 2 3 12 -1.</_>
- <_>12 2 1 12 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0426892600953579</threshold>
- <left_val>-0.6764482259750366</left_val>
- <right_val>6.8771280348300934e-003</right_val></_></_>
- <_>
- <!-- tree 68 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>8 2 3 12 -1.</_>
- <_>9 2 1 12 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>6.2811248935759068e-003</threshold>
- <left_val>-0.0648037493228912</left_val>
- <right_val>0.2099442034959793</right_val></_></_>
- <_>
- <!-- tree 69 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>18 9 4 9 -1.</_>
- <_>18 9 2 9 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0275320801883936</threshold>
- <left_val>0.0153665402904153</left_val>
- <right_val>-0.2145736962556839</right_val></_></_>
- <_>
- <!-- tree 70 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>1 5 6 6 -1.</_>
- <_>1 8 6 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-3.4494648571126163e-004</threshold>
- <left_val>0.1182949990034103</left_val>
- <right_val>-0.1064111962914467</right_val></_></_>
- <_>
- <!-- tree 71 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>10 6 6 6 -1.</_>
- <_>12 6 2 6 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0321870110929012</threshold>
- <left_val>0.2067631930112839</left_val>
- <right_val>-0.0278047490864992</right_val></_></_>
- <_>
- <!-- tree 72 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>10 2 2 12 -1.</_>
- <_>11 2 1 12 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-2.4451729841530323e-003</threshold>
- <left_val>-0.1897021979093552</left_val>
- <right_val>0.0766128376126289</right_val></_></_>
- <_>
- <!-- tree 73 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>11 0 5 6 -1.</_>
- <_>11 3 5 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0396311208605766</threshold>
- <left_val>0.0114572802558541</left_val>
- <right_val>-0.4411228001117706</right_val></_></_>
- <_>
- <!-- tree 74 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>6 0 5 6 -1.</_>
- <_>6 3 5 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-9.0082110837101936e-003</threshold>
- <left_val>-0.2032909989356995</left_val>
- <right_val>0.0719978883862495</right_val></_></_>
- <_>
- <!-- tree 75 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>13 9 5 8 -1.</_>
- <_>13 13 5 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0605949088931084</threshold>
- <left_val>0.2583183050155640</left_val>
- <right_val>-0.0322740003466606</right_val></_></_>
- <_>
- <!-- tree 76 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 9 20 2 -1.</_>
- <_>10 9 10 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0336786396801472</threshold>
- <left_val>0.0365656390786171</left_val>
- <right_val>-0.3323315083980560</right_val></_></_>
- <_>
- <!-- tree 77 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>14 7 3 10 -1.</_>
- <_>14 12 3 5 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0145654100924730</threshold>
- <left_val>-0.0492692105472088</left_val>
- <right_val>0.1828067004680634</right_val></_></_>
- <_>
- <!-- tree 78 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>11 5 11 2 -1.</_>
- <_>11 5 11 1 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>4.0103439241647720e-003</threshold>
- <left_val>-0.1243560016155243</left_val>
- <right_val>0.1124764010310173</right_val></_></_>
- <_>
- <!-- tree 79 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>14 7 3 10 -1.</_>
- <_>14 12 3 5 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>1.7989509506151080e-003</threshold>
- <left_val>-0.0546759888529778</left_val>
- <right_val>0.1070184037089348</right_val></_></_>
- <_>
- <!-- tree 80 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>5 13 12 2 -1.</_>
- <_>5 14 12 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-1.6359580331481993e-004</threshold>
- <left_val>0.0817552283406258</left_val>
- <right_val>-0.1623550057411194</right_val></_></_>
- <_>
- <!-- tree 81 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>11 8 4 9 -1.</_>
- <_>11 11 4 3 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0319938994944096</threshold>
- <left_val>0.1863123029470444</left_val>
- <right_val>-0.0173506308346987</right_val></_></_>
- <_>
- <!-- tree 82 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>1 8 12 6 -1.</_>
- <_>1 10 12 2 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0817376673221588</threshold>
- <left_val>-0.7596148252487183</left_val>
- <right_val>0.0144199002534151</right_val></_></_>
- <_>
- <!-- tree 83 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>16 8 3 8 -1.</_>
- <_>16 12 3 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0882625505328178</threshold>
- <left_val>-1.</left_val>
- <right_val>5.3146481513977051e-004</right_val></_></_>
- <_>
- <!-- tree 84 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>3 8 3 8 -1.</_>
- <_>3 12 3 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0579979009926319</threshold>
- <left_val>-0.8939151167869568</left_val>
- <right_val>0.0124950995668769</right_val></_></_>
- <_>
- <!-- tree 85 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>11 8 4 9 -1.</_>
- <_>11 11 4 3 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0206914097070694</threshold>
- <left_val>-0.0371675081551075</left_val>
- <right_val>0.0972085520625114</right_val></_></_>
- <_>
- <!-- tree 86 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>7 8 4 9 -1.</_>
- <_>7 11 4 3 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-6.0336058959364891e-003</threshold>
- <left_val>0.1754779070615768</left_val>
- <right_val>-0.0869168564677238</right_val></_></_>
- <_>
- <!-- tree 87 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>7 3 15 12 -1.</_>
- <_>12 7 5 4 9.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.1578976064920425</threshold>
- <left_val>0.0306049603968859</left_val>
- <right_val>-0.2219929993152618</right_val></_></_>
- <_>
- <!-- tree 88 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>4 10 14 4 -1.</_>
- <_>4 10 7 2 2.</_>
- <_>11 12 7 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>3.3271119464188814e-003</threshold>
- <left_val>0.1120152026414871</left_val>
- <right_val>-0.1638471037149429</right_val></_></_>
- <_>
- <!-- tree 89 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>9 10 10 6 -1.</_>
- <_>14 10 5 3 2.</_>
- <_>9 13 5 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.1138323992490768</threshold>
- <left_val>1.8078039865940809e-003</left_val>
- <right_val>-0.9998143911361694</right_val></_></_>
- <_>
- <!-- tree 90 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>3 10 10 6 -1.</_>
- <_>3 10 5 3 2.</_>
- <_>8 13 5 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0391889698803425</threshold>
- <left_val>-0.0394944287836552</left_val>
- <right_val>0.3413948118686676</right_val></_></_>
- <_>
- <!-- tree 91 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>16 7 6 6 -1.</_>
- <_>18 7 2 6 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-4.7382968477904797e-003</threshold>
- <left_val>-0.0816014036536217</left_val>
- <right_val>0.0354984514415264</right_val></_></_>
- <_>
- <!-- tree 92 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>3 5 14 2 -1.</_>
- <_>10 5 7 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0234581604599953</threshold>
- <left_val>-0.0407674796879292</left_val>
- <right_val>0.3479276895523071</right_val></_></_>
- <_>
- <!-- tree 93 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>18 2 4 12 -1.</_>
- <_>20 2 2 6 2.</_>
- <_>18 8 2 6 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0165052209049463</threshold>
- <left_val>0.0201702807098627</left_val>
- <right_val>-0.1553200930356979</right_val></_></_>
- <_>
- <!-- tree 94 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>3 14 12 4 -1.</_>
- <_>3 15 12 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0202629491686821</threshold>
- <left_val>0.0212923791259527</left_val>
- <right_val>-0.6261150240898132</right_val></_></_>
- <_>
- <!-- tree 95 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>7 6 9 6 -1.</_>
- <_>7 9 9 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-9.1393236070871353e-003</threshold>
- <left_val>-0.1363748013973236</left_val>
- <right_val>0.0638918429613113</right_val></_></_>
- <_>
- <!-- tree 96 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>1 14 6 4 -1.</_>
- <_>4 14 3 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0562079809606075</threshold>
- <left_val>0.4067111909389496</left_val>
- <right_val>-0.0332582183182240</right_val></_></_>
- <_>
- <!-- tree 97 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>12 5 5 12 -1.</_>
- <_>12 8 5 6 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>6.6868839785456657e-003</threshold>
- <left_val>0.0641743093729019</left_val>
- <right_val>-0.0939662382006645</right_val></_></_>
- <_>
- <!-- tree 98 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>5 0 3 17 -1.</_>
- <_>6 0 1 17 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>5.8862278237938881e-003</threshold>
- <left_val>-0.0657899603247643</left_val>
- <right_val>0.2018133997917175</right_val></_></_>
- <_>
- <!-- tree 99 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>16 7 6 6 -1.</_>
- <_>18 7 2 6 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.1151738017797470</threshold>
- <left_val>-1.</left_val>
- <right_val>2.5347759947180748e-003</right_val></_></_>
- <_>
- <!-- tree 100 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 7 6 6 -1.</_>
- <_>2 7 2 6 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>5.5793710052967072e-003</threshold>
- <left_val>0.0706422030925751</left_val>
- <right_val>-0.1963742971420288</right_val></_></_>
- <_>
- <!-- tree 101 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>14 0 3 18 -1.</_>
- <_>15 0 1 18 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0321800000965595</threshold>
- <left_val>-0.0147377196699381</left_val>
- <right_val>0.2242016047239304</right_val></_></_>
- <_>
- <!-- tree 102 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 5 5 10 -1.</_>
- <_>0 10 5 5 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-9.1598782455548644e-004</threshold>
- <left_val>0.1147874966263771</left_val>
- <right_val>-0.1176707968115807</right_val></_></_></trees>
- <stage_threshold>-0.7688630819320679</stage_threshold>
- <parent>16</parent>
- <next>-1</next></_>
- <_>
- <!-- stage 18 -->
- <trees>
- <_>
- <!-- tree 0 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>5 12 12 4 -1.</_>
- <_>5 13 12 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>9.1346232220530510e-003</threshold>
- <left_val>0.0886986628174782</left_val>
- <right_val>-0.3859564960002899</right_val></_></_>
- <_>
- <!-- tree 1 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>7 9 8 6 -1.</_>
- <_>7 11 8 2 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-2.4696369655430317e-003</threshold>
- <left_val>0.1677206009626389</left_val>
- <right_val>-0.1464917063713074</right_val></_></_>
- <_>
- <!-- tree 2 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>2 10 15 4 -1.</_>
- <_>2 12 15 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0589350201189518</threshold>
- <left_val>-0.0133940000087023</left_val>
- <right_val>0.6183267235755920</right_val></_></_>
- <_>
- <!-- tree 3 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>5 15 12 3 -1.</_>
- <_>5 15 6 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-8.9100059121847153e-003</threshold>
- <left_val>-0.2695023119449616</left_val>
- <right_val>0.0729398131370544</right_val></_></_>
- <_>
- <!-- tree 4 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>7 4 3 14 -1.</_>
- <_>8 4 1 14 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0177438799291849</threshold>
- <left_val>-0.0502171888947487</left_val>
- <right_val>0.4316602051258087</right_val></_></_>
- <_>
- <!-- tree 5 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>7 15 8 3 -1.</_>
- <_>7 15 4 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0110566504299641</threshold>
- <left_val>0.0391558595001698</left_val>
- <right_val>-0.5286077260971069</right_val></_></_>
- <_>
- <!-- tree 6 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>1 2 8 6 -1.</_>
- <_>1 2 4 3 2.</_>
- <_>5 5 4 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0161613207310438</threshold>
- <left_val>0.0695810392498970</left_val>
- <right_val>-0.3761014044284821</right_val></_></_>
- <_>
- <!-- tree 7 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>14 9 6 8 -1.</_>
- <_>17 9 3 4 2.</_>
- <_>14 13 3 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0278790891170502</threshold>
- <left_val>0.2322065979242325</left_val>
- <right_val>-0.0559795796871185</right_val></_></_>
- <_>
- <!-- tree 8 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 0 6 8 -1.</_>
- <_>0 0 3 4 2.</_>
- <_>3 4 3 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0115568395704031</threshold>
- <left_val>-0.3123108148574829</left_val>
- <right_val>0.0743399634957314</right_val></_></_>
- <_>
- <!-- tree 9 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>14 9 6 8 -1.</_>
- <_>17 9 3 4 2.</_>
- <_>14 13 3 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0696514770388603</threshold>
- <left_val>-0.4190568923950195</left_val>
- <right_val>6.9694789126515388e-003</right_val></_></_>
- <_>
- <!-- tree 10 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>2 9 6 8 -1.</_>
- <_>2 9 3 4 2.</_>
- <_>5 13 3 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-5.0344727933406830e-003</threshold>
- <left_val>0.1318362057209015</left_val>
- <right_val>-0.1970203071832657</right_val></_></_>
- <_>
- <!-- tree 11 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>14 10 6 8 -1.</_>
- <_>17 10 3 4 2.</_>
- <_>14 14 3 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0860981196165085</threshold>
- <left_val>0.6572775244712830</left_val>
- <right_val>-9.5664570108056068e-003</right_val></_></_>
- <_>
- <!-- tree 12 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>2 10 6 8 -1.</_>
- <_>2 10 3 4 2.</_>
- <_>5 14 3 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0255463197827339</threshold>
- <left_val>-0.0401363410055637</left_val>
- <right_val>0.5484703779220581</right_val></_></_>
- <_>
- <!-- tree 13 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>13 1 6 8 -1.</_>
- <_>16 1 3 4 2.</_>
- <_>13 5 3 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0268708802759647</threshold>
- <left_val>-0.2530665099620819</left_val>
- <right_val>0.0441817194223404</right_val></_></_>
- <_>
- <!-- tree 14 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>3 3 12 3 -1.</_>
- <_>3 4 12 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>9.5859682187438011e-003</threshold>
- <left_val>-0.0818824619054794</left_val>
- <right_val>0.2689467072486877</right_val></_></_>
- <_>
- <!-- tree 15 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>13 1 6 8 -1.</_>
- <_>16 1 3 4 2.</_>
- <_>13 5 3 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0266838092356920</threshold>
- <left_val>0.0265933498740196</left_val>
- <right_val>-0.4412704110145569</right_val></_></_>
- <_>
- <!-- tree 16 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>3 1 6 8 -1.</_>
- <_>3 1 3 4 2.</_>
- <_>6 5 3 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0144908400252461</threshold>
- <left_val>-0.3569746911525726</left_val>
- <right_val>0.0700729414820671</right_val></_></_>
- <_>
- <!-- tree 17 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>3 3 16 3 -1.</_>
- <_>3 4 16 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-2.2448399104177952e-003</threshold>
- <left_val>0.2008823007345200</left_val>
- <right_val>-0.1222817003726959</right_val></_></_>
- <_>
- <!-- tree 18 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>7 13 6 4 -1.</_>
- <_>7 15 6 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>4.8795710317790508e-003</threshold>
- <left_val>0.0458209812641144</left_val>
- <right_val>-0.3949818909168243</right_val></_></_>
- <_>
- <!-- tree 19 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>10 14 6 4 -1.</_>
- <_>10 16 6 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-6.1262990348041058e-003</threshold>
- <left_val>-0.1882608979940414</left_val>
- <right_val>0.0788120776414871</right_val></_></_>
- <_>
- <!-- tree 20 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>2 10 15 3 -1.</_>
- <_>2 11 15 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0169529691338539</threshold>
- <left_val>-0.0616842210292816</left_val>
- <right_val>0.3360370099544525</right_val></_></_>
- <_>
- <!-- tree 21 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>8 12 8 6 -1.</_>
- <_>10 12 4 6 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-4.5547191984951496e-003</threshold>
- <left_val>-0.1947139054536820</left_val>
- <right_val>0.0531471893191338</right_val></_></_>
- <_>
- <!-- tree 22 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>2 4 13 4 -1.</_>
- <_>2 5 13 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-1.2753040064126253e-003</threshold>
- <left_val>0.1480087935924530</left_val>
- <right_val>-0.1424434930086136</right_val></_></_>
- <_>
- <!-- tree 23 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>9 9 12 3 -1.</_>
- <_>9 10 12 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0220602806657553</threshold>
- <left_val>-0.0354067385196686</left_val>
- <right_val>0.3377530872821808</right_val></_></_>
- <_>
- <!-- tree 24 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>3 13 16 4 -1.</_>
- <_>3 13 8 2 2.</_>
- <_>11 15 8 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0210503898561001</threshold>
- <left_val>0.0422891303896904</left_val>
- <right_val>-0.4588645100593567</right_val></_></_>
- <_>
- <!-- tree 25 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>8 12 8 6 -1.</_>
- <_>10 12 4 6 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0956372097134590</threshold>
- <left_val>-0.0131716495379806</left_val>
- <right_val>0.5553498268127441</right_val></_></_>
- <_>
- <!-- tree 26 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>6 12 8 6 -1.</_>
- <_>8 12 4 6 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-3.6728319246321917e-003</threshold>
- <left_val>-0.1884289979934692</left_val>
- <right_val>0.0954581424593925</right_val></_></_>
- <_>
- <!-- tree 27 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>9 4 13 2 -1.</_>
- <_>9 5 13 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>1.6345079347956926e-004</threshold>
- <left_val>-0.0604448094964027</left_val>
- <right_val>0.1053673028945923</right_val></_></_>
- <_>
- <!-- tree 28 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>7 3 8 12 -1.</_>
- <_>7 9 8 6 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.2533828914165497</threshold>
- <left_val>0.0160262603312731</left_val>
- <right_val>-0.9999446868896484</right_val></_></_>
- <_>
- <!-- tree 29 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>3 6 17 3 -1.</_>
- <_>3 7 17 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0461133308708668</threshold>
- <left_val>0.5424798727035523</left_val>
- <right_val>-0.0278902091085911</right_val></_></_>
- <_>
- <!-- tree 30 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>3 0 14 4 -1.</_>
- <_>3 0 7 2 2.</_>
- <_>10 2 7 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>5.2588270045816898e-003</threshold>
- <left_val>0.0798673033714294</left_val>
- <right_val>-0.2070070952177048</right_val></_></_>
- <_>
- <!-- tree 31 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>11 4 6 5 -1.</_>
- <_>11 4 3 5 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-0.1344957053661346</threshold>
- <left_val>-0.4127010107040405</left_val>
- <right_val>8.1500215455889702e-003</right_val></_></_>
- <_>
- <!-- tree 32 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>11 4 5 6 -1.</_>
- <_>11 4 5 3 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>1.6953679732978344e-003</threshold>
- <left_val>0.1103534996509552</left_val>
- <right_val>-0.1680212020874023</right_val></_></_>
- <_>
- <!-- tree 33 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>10 5 4 6 -1.</_>
- <_>10 5 2 6 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0394921414554119</threshold>
- <left_val>-0.0134100103750825</left_val>
- <right_val>0.3844763934612274</right_val></_></_>
- <_>
- <!-- tree 34 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>4 12 12 3 -1.</_>
- <_>8 12 4 3 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-9.3634781660512090e-004</threshold>
- <left_val>0.1098681986331940</left_val>
- <right_val>-0.1731048971414566</right_val></_></_>
- <_>
- <!-- tree 35 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>8 6 8 7 -1.</_>
- <_>8 6 4 7 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0444957092404366</threshold>
- <left_val>0.1947119981050491</left_val>
- <right_val>-0.0407688990235329</right_val></_></_>
- <_>
- <!-- tree 36 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>5 0 8 12 -1.</_>
- <_>5 0 4 6 2.</_>
- <_>9 6 4 6 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0606301091611385</threshold>
- <left_val>-0.0422523692250252</left_val>
- <right_val>0.5141298770904541</right_val></_></_>
- <_>
- <!-- tree 37 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>7 0 12 4 -1.</_>
- <_>13 0 6 2 2.</_>
- <_>7 2 6 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>7.5067640282213688e-003</threshold>
- <left_val>0.0420869700610638</left_val>
- <right_val>-0.1608040034770966</right_val></_></_>
- <_>
- <!-- tree 38 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>1 4 6 5 -1.</_>
- <_>4 4 3 5 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>9.9260415881872177e-003</threshold>
- <left_val>0.0641195327043533</left_val>
- <right_val>-0.2621530890464783</right_val></_></_>
- <_>
- <!-- tree 39 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>15 0 7 4 -1.</_>
- <_>15 0 7 2 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>0.0605285204946995</threshold>
- <left_val>0.0241899695247412</left_val>
- <right_val>-0.3660838901996613</right_val></_></_>
- <_>
- <!-- tree 40 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>5 2 8 6 -1.</_>
- <_>5 2 4 3 2.</_>
- <_>9 5 4 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-6.8054231815040112e-003</threshold>
- <left_val>0.1250838935375214</left_val>
- <right_val>-0.1388971060514450</right_val></_></_>
- <_>
- <!-- tree 41 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>4 2 15 3 -1.</_>
- <_>4 3 15 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-2.0940289832651615e-003</threshold>
- <left_val>0.1399659961462021</left_val>
- <right_val>-0.0827063992619514</right_val></_></_>
- <_>
- <!-- tree 42 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>4 1 14 3 -1.</_>
- <_>4 2 14 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-9.6904346719384193e-003</threshold>
- <left_val>0.2668136060237885</left_val>
- <right_val>-0.0715769901871681</right_val></_></_>
- <_>
- <!-- tree 43 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>15 5 4 6 -1.</_>
- <_>15 8 4 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0183203499764204</threshold>
- <left_val>0.0313219800591469</left_val>
- <right_val>-0.2346061021089554</right_val></_></_>
- <_>
- <!-- tree 44 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 1 17 2 -1.</_>
- <_>0 2 17 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>5.0429959082975984e-004</threshold>
- <left_val>-0.1166971996426582</left_val>
- <right_val>0.1651464998722076</right_val></_></_>
- <_>
- <!-- tree 45 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>15 5 4 6 -1.</_>
- <_>15 8 4 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-4.7016288153827190e-003</threshold>
- <left_val>-0.1200615018606186</left_val>
- <right_val>0.0592004284262657</right_val></_></_>
- <_>
- <!-- tree 46 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>3 5 4 6 -1.</_>
- <_>3 8 4 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0199268702417612</threshold>
- <left_val>-0.3948509991168976</left_val>
- <right_val>0.0411430187523365</right_val></_></_>
- <_>
- <!-- tree 47 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>3 0 18 3 -1.</_>
- <_>3 1 18 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>7.4013080447912216e-003</threshold>
- <left_val>-0.0763312578201294</left_val>
- <right_val>0.2106536030769348</right_val></_></_>
- <_>
- <!-- tree 48 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>7 1 6 4 -1.</_>
- <_>10 1 3 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0148796299472451</threshold>
- <left_val>0.0479790717363358</left_val>
- <right_val>-0.3401476144790649</right_val></_></_>
- <_>
- <!-- tree 49 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 11 22 7 -1.</_>
- <_>0 11 11 7 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.1552755981683731</threshold>
- <left_val>0.0322258807718754</left_val>
- <right_val>-0.4693807959556580</right_val></_></_>
- <_>
- <!-- tree 50 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>3 5 4 12 -1.</_>
- <_>3 5 2 6 2.</_>
- <_>5 11 2 6 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-7.0786331780254841e-003</threshold>
- <left_val>0.1219948008656502</left_val>
- <right_val>-0.1200494021177292</right_val></_></_>
- <_>
- <!-- tree 51 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>14 7 3 10 -1.</_>
- <_>14 12 3 5 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0298721697181463</threshold>
- <left_val>-0.0436775088310242</left_val>
- <right_val>0.2352982014417648</right_val></_></_>
- <_>
- <!-- tree 52 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>4 11 14 4 -1.</_>
- <_>4 11 7 2 2.</_>
- <_>11 13 7 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0305551700294018</threshold>
- <left_val>0.0317758806049824</left_val>
- <right_val>-0.5782545208930969</right_val></_></_>
- <_>
- <!-- tree 53 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>7 11 8 6 -1.</_>
- <_>11 11 4 3 2.</_>
- <_>7 14 4 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0102845700457692</threshold>
- <left_val>0.0472028106451035</left_val>
- <right_val>-0.2956649959087372</right_val></_></_>
- <_>
- <!-- tree 54 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>3 5 3 13 -1.</_>
- <_>4 5 1 13 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0198087096214294</threshold>
- <left_val>-0.0457759387791157</left_val>
- <right_val>0.3323101997375488</right_val></_></_>
- <_>
- <!-- tree 55 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>17 1 4 12 -1.</_>
- <_>19 1 2 6 2.</_>
- <_>17 7 2 6 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0272188801318407</threshold>
- <left_val>0.0255772192031145</left_val>
- <right_val>-0.3318088054656982</right_val></_></_>
- <_>
- <!-- tree 56 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>1 1 4 12 -1.</_>
- <_>1 1 2 6 2.</_>
- <_>3 7 2 6 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0140976803377271</threshold>
- <left_val>0.0521574206650257</left_val>
- <right_val>-0.2935838103294373</right_val></_></_>
- <_>
- <!-- tree 57 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>7 0 13 16 -1.</_>
- <_>7 4 13 8 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.2428656965494156</threshold>
- <left_val>0.0146924601867795</left_val>
- <right_val>-0.6985487937927246</right_val></_></_>
- <_>
- <!-- tree 58 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>1 4 13 2 -1.</_>
- <_>1 5 13 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0124195702373981</threshold>
- <left_val>-0.0471058785915375</left_val>
- <right_val>0.3669505119323731</right_val></_></_>
- <_>
- <!-- tree 59 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>9 14 6 4 -1.</_>
- <_>9 16 6 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>1.3503880472853780e-003</threshold>
- <left_val>0.0537913590669632</left_val>
- <right_val>-0.2095365971326828</right_val></_></_>
- <_>
- <!-- tree 60 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>2 4 17 3 -1.</_>
- <_>2 5 17 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0156262908130884</threshold>
- <left_val>0.2788845896720886</left_val>
- <right_val>-0.0600537508726120</right_val></_></_>
- <_>
- <!-- tree 61 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>14 0 3 10 -1.</_>
- <_>15 1 1 10 3.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>0.0158501397818327</threshold>
- <left_val>-0.0303249098360538</left_val>
- <right_val>0.1028752028942108</right_val></_></_>
- <_>
- <!-- tree 62 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>7 0 8 3 -1.</_>
- <_>6 1 8 1 3.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-0.0408689193427563</threshold>
- <left_val>-0.8040220737457275</left_val>
- <right_val>0.0176014993339777</right_val></_></_>
- <_>
- <!-- tree 63 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>14 0 3 10 -1.</_>
- <_>15 1 1 10 3.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>0.0641086399555206</threshold>
- <left_val>2.5845379568636417e-003</left_val>
- <right_val>-0.5385494232177734</right_val></_></_>
- <_>
- <!-- tree 64 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>8 0 10 3 -1.</_>
- <_>7 1 10 1 3.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>0.0499271005392075</threshold>
- <left_val>0.0218633003532887</left_val>
- <right_val>-0.6178072094917297</right_val></_></_>
- <_>
- <!-- tree 65 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>11 1 2 7 -1.</_>
- <_>11 1 1 7 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>0.0146554196253419</threshold>
- <left_val>0.0196633692830801</left_val>
- <right_val>-0.2042617052793503</right_val></_></_>
- <_>
- <!-- tree 66 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>8 0 3 14 -1.</_>
- <_>9 0 1 14 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0240948107093573</threshold>
- <left_val>0.3760913014411926</left_val>
- <right_val>-0.0409541018307209</right_val></_></_>
- <_>
- <!-- tree 67 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>11 1 2 7 -1.</_>
- <_>11 1 1 7 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>0.0294177699834108</threshold>
- <left_val>-8.6903842166066170e-003</left_val>
- <right_val>0.4044741988182068</right_val></_></_>
- <_>
- <!-- tree 68 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>11 1 7 2 -1.</_>
- <_>11 1 7 1 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-0.0141586400568485</threshold>
- <left_val>0.3781171143054962</left_val>
- <right_val>-0.0403216406702995</right_val></_></_>
- <_>
- <!-- tree 69 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>7 9 9 8 -1.</_>
- <_>10 9 3 8 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0467549897730350</threshold>
- <left_val>0.2210430949926376</left_val>
- <right_val>-0.0289961099624634</right_val></_></_>
- <_>
- <!-- tree 70 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>1 7 4 8 -1.</_>
- <_>3 7 2 8 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0114379497244954</threshold>
- <left_val>-0.2503308951854706</left_val>
- <right_val>0.0582142882049084</right_val></_></_>
- <_>
- <!-- tree 71 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>17 11 4 6 -1.</_>
- <_>17 11 2 6 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0425987802445889</threshold>
- <left_val>0.3756220042705536</left_val>
- <right_val>-0.0163490902632475</right_val></_></_>
- <_>
- <!-- tree 72 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>8 12 6 6 -1.</_>
- <_>10 12 2 6 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0152011597529054</threshold>
- <left_val>-0.3563781976699829</left_val>
- <right_val>0.0386903695762157</right_val></_></_>
- <_>
- <!-- tree 73 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>11 0 3 6 -1.</_>
- <_>12 1 1 6 3.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>0.0433788485825062</threshold>
- <left_val>3.3045639283955097e-003</left_val>
- <right_val>-0.4672946929931641</right_val></_></_>
- <_>
- <!-- tree 74 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>11 0 6 3 -1.</_>
- <_>10 1 6 1 3.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>5.5153011344373226e-003</threshold>
- <left_val>-0.0835836082696915</left_val>
- <right_val>0.1879317015409470</right_val></_></_>
- <_>
- <!-- tree 75 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>9 14 9 4 -1.</_>
- <_>12 14 3 4 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-7.8126927837729454e-003</threshold>
- <left_val>-0.1658685952425003</left_val>
- <right_val>0.0438011288642883</right_val></_></_>
- <_>
- <!-- tree 76 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>8 2 6 4 -1.</_>
- <_>8 2 6 2 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>0.0416526012122631</threshold>
- <left_val>-0.0318045206367970</left_val>
- <right_val>0.4351752102375031</right_val></_></_>
- <_>
- <!-- tree 77 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>10 10 4 6 -1.</_>
- <_>10 10 2 6 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>3.4417589195072651e-003</threshold>
- <left_val>0.0422822795808315</left_val>
- <right_val>-0.1308895945549011</right_val></_></_>
- <_>
- <!-- tree 78 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>1 8 18 2 -1.</_>
- <_>1 9 18 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>1.3004569336771965e-004</threshold>
- <left_val>-0.1126001030206680</left_val>
- <right_val>0.1396459937095642</right_val></_></_>
- <_>
- <!-- tree 79 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>8 8 14 3 -1.</_>
- <_>8 9 14 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0773477330803871</threshold>
- <left_val>0.7075064778327942</left_val>
- <right_val>-5.4134069941937923e-003</right_val></_></_>
- <_>
- <!-- tree 80 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>3 15 14 3 -1.</_>
- <_>10 15 7 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-1.6143550164997578e-003</threshold>
- <left_val>0.1192042008042336</left_val>
- <right_val>-0.1188426986336708</right_val></_></_>
- <_>
- <!-- tree 81 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>8 8 14 3 -1.</_>
- <_>8 9 14 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-9.8279246594756842e-004</threshold>
- <left_val>0.0631562769412994</left_val>
- <right_val>-0.0527811013162136</right_val></_></_>
- <_>
- <!-- tree 82 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>4 14 9 4 -1.</_>
- <_>7 14 3 4 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0456674695014954</threshold>
- <left_val>-0.3450087010860443</left_val>
- <right_val>0.0446007288992405</right_val></_></_></trees>
- <stage_threshold>-0.7757309079170227</stage_threshold>
- <parent>17</parent>
- <next>-1</next></_>
- <_>
- <!-- stage 19 -->
- <trees>
- <_>
- <!-- tree 0 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>10 6 4 8 -1.</_>
- <_>10 6 2 8 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>0.0733159780502319</threshold>
- <left_val>-0.1141010969877243</left_val>
- <right_val>0.4003581106662750</right_val></_></_>
- <_>
- <!-- tree 1 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>2 11 18 3 -1.</_>
- <_>8 11 6 3 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0252756699919701</threshold>
- <left_val>-0.0720138773322105</left_val>
- <right_val>0.3609578013420105</right_val></_></_>
- <_>
- <!-- tree 2 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>10 0 12 4 -1.</_>
- <_>10 0 12 2 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>0.0188738591969013</threshold>
- <left_val>-0.1723437011241913</left_val>
- <right_val>0.1822322010993958</right_val></_></_>
- <_>
- <!-- tree 3 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>6 6 16 4 -1.</_>
- <_>14 6 8 2 2.</_>
- <_>6 8 8 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>7.4607720307540148e-005</threshold>
- <left_val>-0.0816272869706154</left_val>
- <right_val>0.0888885036110878</right_val></_></_>
- <_>
- <!-- tree 4 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>6 3 4 14 -1.</_>
- <_>7 3 2 14 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>4.2250280966982245e-004</threshold>
- <left_val>-0.1284023970365524</left_val>
- <right_val>0.1179141998291016</right_val></_></_>
- <_>
- <!-- tree 5 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>12 12 6 6 -1.</_>
- <_>14 12 2 6 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0144024603068829</threshold>
- <left_val>0.0209603402763605</left_val>
- <right_val>0.1902469992637634</right_val></_></_>
- <_>
- <!-- tree 6 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>4 12 6 6 -1.</_>
- <_>6 12 2 6 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-2.0460959058254957e-003</threshold>
- <left_val>0.0957124978303909</left_val>
- <right_val>-0.2151706069707871</right_val></_></_>
- <_>
- <!-- tree 7 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>14 8 3 8 -1.</_>
- <_>14 12 3 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>7.1128448471426964e-003</threshold>
- <left_val>-0.0561004802584648</left_val>
- <right_val>0.2098432034254074</right_val></_></_>
- <_>
- <!-- tree 8 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 6 16 4 -1.</_>
- <_>0 6 8 2 2.</_>
- <_>8 8 8 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-6.5832170657813549e-003</threshold>
- <left_val>-0.2113818973302841</left_val>
- <right_val>0.0760941505432129</right_val></_></_>
- <_>
- <!-- tree 9 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>9 10 5 6 -1.</_>
- <_>9 13 5 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-4.1252959636040032e-004</threshold>
- <left_val>0.1310734003782272</left_val>
- <right_val>-0.1567085981369019</right_val></_></_>
- <_>
- <!-- tree 10 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>7 5 6 12 -1.</_>
- <_>7 5 3 6 2.</_>
- <_>10 11 3 6 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0443308316171169</threshold>
- <left_val>0.5404803752899170</left_val>
- <right_val>-0.0190594792366028</right_val></_></_>
- <_>
- <!-- tree 11 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>1 5 21 9 -1.</_>
- <_>8 8 7 3 9.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0117001300677657</threshold>
- <left_val>0.0517124012112617</left_val>
- <right_val>-0.1721616983413696</right_val></_></_>
- <_>
- <!-- tree 12 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>8 6 3 12 -1.</_>
- <_>9 6 1 12 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>3.5091140307486057e-003</threshold>
- <left_val>-0.0767679512500763</left_val>
- <right_val>0.1777625977993012</right_val></_></_>
- <_>
- <!-- tree 13 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>11 3 3 11 -1.</_>
- <_>12 4 1 11 3.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>0.0155975697562099</threshold>
- <left_val>0.0383078902959824</left_val>
- <right_val>-0.1473001986742020</right_val></_></_>
- <_>
- <!-- tree 14 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>11 5 9 3 -1.</_>
- <_>10 6 9 1 3.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-0.0362853705883026</threshold>
- <left_val>0.3534766137599945</left_val>
- <right_val>-0.0450184904038906</right_val></_></_>
- <_>
- <!-- tree 15 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>12 11 6 6 -1.</_>
- <_>12 13 6 2 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0451182983815670</threshold>
- <left_val>-0.5707414150238037</left_val>
- <right_val>0.0106467101722956</right_val></_></_>
- <_>
- <!-- tree 16 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 1 9 9 -1.</_>
- <_>3 1 3 9 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0137345800176263</threshold>
- <left_val>0.0660183578729630</left_val>
- <right_val>-0.2048089057207108</right_val></_></_>
- <_>
- <!-- tree 17 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>6 0 12 12 -1.</_>
- <_>9 0 6 12 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0271209795027971</threshold>
- <left_val>0.0480942092835903</left_val>
- <right_val>-0.0513949617743492</right_val></_></_>
- <_>
- <!-- tree 18 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>7 14 6 4 -1.</_>
- <_>10 14 3 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-1.5354059869423509e-003</threshold>
- <left_val>-0.2354800999164581</left_val>
- <right_val>0.0530746094882488</right_val></_></_>
- <_>
- <!-- tree 19 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>8 7 13 3 -1.</_>
- <_>8 8 13 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>3.6000818945467472e-003</threshold>
- <left_val>-0.0589443407952785</left_val>
- <right_val>0.1182541027665138</right_val></_></_>
- <_>
- <!-- tree 20 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>2 13 12 4 -1.</_>
- <_>5 13 6 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>6.8916529417037964e-003</threshold>
- <left_val>-0.0500144883990288</left_val>
- <right_val>0.2690939903259277</right_val></_></_>
- <_>
- <!-- tree 21 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>15 3 2 13 -1.</_>
- <_>15 3 1 13 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>3.5373449791222811e-003</threshold>
- <left_val>-0.1294703930616379</left_val>
- <right_val>0.0886970385909081</right_val></_></_>
- <_>
- <!-- tree 22 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>9 5 11 2 -1.</_>
- <_>9 5 11 1 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-4.1431561112403870e-003</threshold>
- <left_val>-0.1788363009691238</left_val>
- <right_val>0.0690981075167656</right_val></_></_>
- <_>
- <!-- tree 23 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>13 2 2 16 -1.</_>
- <_>13 10 2 8 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.1076257973909378</threshold>
- <left_val>-1.</left_val>
- <right_val>4.7263409942388535e-003</right_val></_></_>
- <_>
- <!-- tree 24 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>7 2 2 16 -1.</_>
- <_>7 10 2 8 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>9.7946207970380783e-003</threshold>
- <left_val>-0.0540387704968452</left_val>
- <right_val>0.2411547005176544</right_val></_></_>
- <_>
- <!-- tree 25 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>14 0 7 6 -1.</_>
- <_>12 2 7 2 3.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>0.0100542800500989</threshold>
- <left_val>-0.0806248933076859</left_val>
- <right_val>0.1162756010890007</right_val></_></_>
- <_>
- <!-- tree 26 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>7 3 6 12 -1.</_>
- <_>7 3 3 6 2.</_>
- <_>10 9 3 6 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-8.7350717512890697e-004</threshold>
- <left_val>-0.1819397956132889</left_val>
- <right_val>0.0774685069918633</right_val></_></_>
- <_>
- <!-- tree 27 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>9 14 8 4 -1.</_>
- <_>9 16 8 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>9.4283261569216847e-004</threshold>
- <left_val>0.0462650507688522</left_val>
- <right_val>-0.2273202985525131</right_val></_></_>
- <_>
- <!-- tree 28 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>11 3 11 3 -1.</_>
- <_>10 4 11 1 3.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>3.5424059024080634e-004</threshold>
- <left_val>-0.1182428970932961</left_val>
- <right_val>0.1109569966793060</right_val></_></_>
- <_>
- <!-- tree 29 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>11 1 4 6 -1.</_>
- <_>12 2 2 6 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-0.0385877899825573</threshold>
- <left_val>-0.3028686940670013</left_val>
- <right_val>3.1856179703027010e-003</right_val></_></_>
- <_>
- <!-- tree 30 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>11 1 6 4 -1.</_>
- <_>10 2 6 2 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-4.9504679627716541e-003</threshold>
- <left_val>0.1375810056924820</left_val>
- <right_val>-0.0916903465986252</right_val></_></_>
- <_>
- <!-- tree 31 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>10 10 6 8 -1.</_>
- <_>12 10 2 8 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0254536308348179</threshold>
- <left_val>-0.2301352024078369</left_val>
- <right_val>0.0197479296475649</right_val></_></_>
- <_>
- <!-- tree 32 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>2 4 12 4 -1.</_>
- <_>2 4 6 2 2.</_>
- <_>8 6 6 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0158367007970810</threshold>
- <left_val>-0.0452521592378616</left_val>
- <right_val>0.2933708131313324</right_val></_></_>
- <_>
- <!-- tree 33 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>14 1 3 10 -1.</_>
- <_>15 2 1 10 3.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>0.0103798797354102</threshold>
- <left_val>0.0597066916525364</left_val>
- <right_val>-0.1641553044319153</right_val></_></_>
- <_>
- <!-- tree 34 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 7 22 7 -1.</_>
- <_>11 7 11 7 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0431784503161907</threshold>
- <left_val>0.0634605363011360</left_val>
- <right_val>-0.2136048972606659</right_val></_></_>
- <_>
- <!-- tree 35 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>8 2 14 3 -1.</_>
- <_>8 3 14 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-2.2508678957819939e-003</threshold>
- <left_val>0.1064511016011238</left_val>
- <right_val>-0.0595391802489758</right_val></_></_>
- <_>
- <!-- tree 36 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 2 14 3 -1.</_>
- <_>0 3 14 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>5.0743711180984974e-003</threshold>
- <left_val>-0.0943770334124565</left_val>
- <right_val>0.2299972027540207</right_val></_></_>
- <_>
- <!-- tree 37 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>14 1 3 10 -1.</_>
- <_>15 2 1 10 3.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-0.0306706503033638</threshold>
- <left_val>0.2597576081752777</left_val>
- <right_val>-0.0231882091611624</right_val></_></_>
- <_>
- <!-- tree 38 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>8 1 10 3 -1.</_>
- <_>7 2 10 1 3.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>2.4162670597434044e-003</threshold>
- <left_val>0.0879190564155579</left_val>
- <right_val>-0.1928738057613373</right_val></_></_>
- <_>
- <!-- tree 39 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>12 3 3 10 -1.</_>
- <_>13 4 1 10 3.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-9.3405842781066895e-003</threshold>
- <left_val>-0.1093555986881256</left_val>
- <right_val>0.0293585006147623</right_val></_></_>
- <_>
- <!-- tree 40 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>11 4 10 3 -1.</_>
- <_>10 5 10 1 3.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>0.0205137301236391</threshold>
- <left_val>-0.0525113493204117</left_val>
- <right_val>0.3054544925689697</right_val></_></_>
- <_>
- <!-- tree 41 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>12 1 7 6 -1.</_>
- <_>12 3 7 2 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0436303801834583</threshold>
- <left_val>-0.4531044960021973</left_val>
- <right_val>0.0182615704834461</right_val></_></_>
- <_>
- <!-- tree 42 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 3 14 3 -1.</_>
- <_>0 4 14 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>3.4857920836657286e-003</threshold>
- <left_val>-0.0970931202173233</left_val>
- <right_val>0.1487710028886795</right_val></_></_>
- <_>
- <!-- tree 43 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>8 0 12 4 -1.</_>
- <_>14 0 6 2 2.</_>
- <_>8 2 6 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0104116098955274</threshold>
- <left_val>0.0429157316684723</left_val>
- <right_val>-0.2484963983297348</right_val></_></_>
- <_>
- <!-- tree 44 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>2 0 12 4 -1.</_>
- <_>2 0 6 2 2.</_>
- <_>8 2 6 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-7.5155291706323624e-003</threshold>
- <left_val>-0.2662334144115448</left_val>
- <right_val>0.0516023188829422</right_val></_></_>
- <_>
- <!-- tree 45 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>8 4 12 3 -1.</_>
- <_>8 5 12 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>7.2157550603151321e-003</threshold>
- <left_val>-0.0618781596422195</left_val>
- <right_val>0.1831496953964233</right_val></_></_>
- <_>
- <!-- tree 46 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 1 14 2 -1.</_>
- <_>7 1 7 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>9.1090862406417727e-004</threshold>
- <left_val>-0.0974202826619148</left_val>
- <right_val>0.1222369968891144</right_val></_></_>
- <_>
- <!-- tree 47 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>5 0 15 11 -1.</_>
- <_>10 0 5 11 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.4006991088390350</threshold>
- <left_val>-0.8183109164237976</left_val>
- <right_val>4.7453590668737888e-003</right_val></_></_>
- <_>
- <!-- tree 48 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>2 0 15 11 -1.</_>
- <_>7 0 5 11 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-4.8033627681434155e-003</threshold>
- <left_val>0.0941939875483513</left_val>
- <right_val>-0.1443651020526886</right_val></_></_>
- <_>
- <!-- tree 49 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>11 6 6 12 -1.</_>
- <_>14 6 3 6 2.</_>
- <_>11 12 3 6 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0211474299430847</threshold>
- <left_val>0.2953240871429443</left_val>
- <right_val>-0.0447512716054916</right_val></_></_>
- <_>
- <!-- tree 50 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>7 5 6 6 -1.</_>
- <_>9 5 2 6 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0186022594571114</threshold>
- <left_val>-0.0429937802255154</left_val>
- <right_val>0.2970671951770783</right_val></_></_>
- <_>
- <!-- tree 51 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>14 13 6 5 -1.</_>
- <_>14 13 3 5 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-8.1051718443632126e-003</threshold>
- <left_val>0.1236922964453697</left_val>
- <right_val>-0.1324644982814789</right_val></_></_>
- <_>
- <!-- tree 52 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>6 10 6 8 -1.</_>
- <_>8 10 2 8 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-8.3215925842523575e-003</threshold>
- <left_val>-0.1902258992195129</left_val>
- <right_val>0.0891510173678398</right_val></_></_>
- <_>
- <!-- tree 53 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>10 10 6 6 -1.</_>
- <_>12 10 2 6 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>3.1376329716295004e-003</threshold>
- <left_val>0.0415848195552826</left_val>
- <right_val>-0.0795528963208199</right_val></_></_>
- <_>
- <!-- tree 54 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>6 10 6 6 -1.</_>
- <_>8 10 2 6 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0165560692548752</threshold>
- <left_val>0.0449088588356972</left_val>
- <right_val>-0.3694730103015900</right_val></_></_>
- <_>
- <!-- tree 55 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>6 11 14 3 -1.</_>
- <_>6 11 7 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0299197304993868</threshold>
- <left_val>-0.0377202592790127</left_val>
- <right_val>0.2428061962127686</right_val></_></_>
- <_>
- <!-- tree 56 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>3 1 7 6 -1.</_>
- <_>3 3 7 2 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0519882887601852</threshold>
- <left_val>-0.6937226057052612</left_val>
- <right_val>0.0189267806708813</right_val></_></_>
- <_>
- <!-- tree 57 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>11 8 6 10 -1.</_>
- <_>14 8 3 5 2.</_>
- <_>11 13 3 5 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0755281075835228</threshold>
- <left_val>-0.0126113500446081</left_val>
- <right_val>0.2573269009590149</right_val></_></_>
- <_>
- <!-- tree 58 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>8 5 3 13 -1.</_>
- <_>9 5 1 13 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-2.5031189434230328e-003</threshold>
- <left_val>0.1380728036165237</left_val>
- <right_val>-0.0916624665260315</right_val></_></_>
- <_>
- <!-- tree 59 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>11 0 6 4 -1.</_>
- <_>11 0 3 4 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-5.9646938461810350e-004</threshold>
- <left_val>-0.0636546164751053</left_val>
- <right_val>0.0259372703731060</right_val></_></_>
- <_>
- <!-- tree 60 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>11 0 4 6 -1.</_>
- <_>11 0 4 3 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>0.0103193400427699</threshold>
- <left_val>0.0837918370962143</left_val>
- <right_val>-0.1740830987691879</right_val></_></_>
- <_>
- <!-- tree 61 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>14 3 2 12 -1.</_>
- <_>14 3 2 6 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>9.3816686421632767e-003</threshold>
- <left_val>0.0278715305030346</left_val>
- <right_val>-0.1114158034324646</right_val></_></_>
- <_>
- <!-- tree 62 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>5 4 10 7 -1.</_>
- <_>10 4 5 7 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0100234104320407</threshold>
- <left_val>-0.0699662491679192</left_val>
- <right_val>0.2190064042806625</right_val></_></_>
- <_>
- <!-- tree 63 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>8 9 6 6 -1.</_>
- <_>10 9 2 6 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-8.3700200775638223e-004</threshold>
- <left_val>0.1009768992662430</left_val>
- <right_val>-0.1426136046648026</right_val></_></_>
- <_>
- <!-- tree 64 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 8 12 9 -1.</_>
- <_>4 11 4 3 9.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0224687103182077</threshold>
- <left_val>0.0940282121300697</left_val>
- <right_val>-0.1380742043256760</right_val></_></_>
- <_>
- <!-- tree 65 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>13 12 4 6 -1.</_>
- <_>13 15 4 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0391152091324329</threshold>
- <left_val>-5.3969398140907288e-003</left_val>
- <right_val>0.6518750786781311</right_val></_></_>
- <_>
- <!-- tree 66 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>5 12 5 6 -1.</_>
- <_>5 15 5 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-1.5670569846406579e-003</threshold>
- <left_val>0.0708860307931900</left_val>
- <right_val>-0.2001060992479324</right_val></_></_>
- <_>
- <!-- tree 67 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>12 4 2 11 -1.</_>
- <_>12 4 1 11 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>6.0749892145395279e-003</threshold>
- <left_val>0.0353959389030933</left_val>
- <right_val>-0.0439185909926891</right_val></_></_>
- <_>
- <!-- tree 68 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>9 4 11 2 -1.</_>
- <_>9 4 11 1 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-0.0431668907403946</threshold>
- <left_val>0.5988184809684753</left_val>
- <right_val>-0.0234801806509495</right_val></_></_>
- <_>
- <!-- tree 69 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>11 8 6 10 -1.</_>
- <_>14 8 3 5 2.</_>
- <_>11 13 3 5 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>2.3302088957279921e-003</threshold>
- <left_val>-0.0728186890482903</left_val>
- <right_val>0.0439402088522911</right_val></_></_>
- <_>
- <!-- tree 70 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>5 8 6 10 -1.</_>
- <_>5 8 3 5 2.</_>
- <_>8 13 3 5 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0552365891635418</threshold>
- <left_val>-0.0351179204881191</left_val>
- <right_val>0.3635514974594116</right_val></_></_>
- <_>
- <!-- tree 71 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>11 7 6 10 -1.</_>
- <_>14 7 3 5 2.</_>
- <_>11 12 3 5 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0277743991464376</threshold>
- <left_val>0.0300742909312248</left_val>
- <right_val>-0.1002677008509636</right_val></_></_>
- <_>
- <!-- tree 72 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>2 1 18 3 -1.</_>
- <_>2 2 18 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>8.4784086793661118e-003</threshold>
- <left_val>-0.0562433004379272</left_val>
- <right_val>0.2171134948730469</right_val></_></_>
- <_>
- <!-- tree 73 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>16 4 6 7 -1.</_>
- <_>16 4 3 7 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0132693601772189</threshold>
- <left_val>0.0431383699178696</left_val>
- <right_val>-0.1642978042364121</right_val></_></_>
- <_>
- <!-- tree 74 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>5 7 6 10 -1.</_>
- <_>5 7 3 5 2.</_>
- <_>8 12 3 5 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0340722799301147</threshold>
- <left_val>0.3941879868507385</left_val>
- <right_val>-0.0329146385192871</right_val></_></_>
- <_>
- <!-- tree 75 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>12 0 3 14 -1.</_>
- <_>12 7 3 7 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-5.9365970082581043e-003</threshold>
- <left_val>0.0648541226983070</left_val>
- <right_val>-0.0869715884327888</right_val></_></_>
- <_>
- <!-- tree 76 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>7 10 8 7 -1.</_>
- <_>11 10 4 7 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-5.1997308619320393e-003</threshold>
- <left_val>-0.2171074002981186</left_val>
- <right_val>0.0654410123825073</right_val></_></_>
- <_>
- <!-- tree 77 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>8 0 12 3 -1.</_>
- <_>8 1 12 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>3.0441130511462688e-003</threshold>
- <left_val>-0.0471716411411762</left_val>
- <right_val>0.0946628674864769</right_val></_></_>
- <_>
- <!-- tree 78 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>3 0 13 4 -1.</_>
- <_>3 1 13 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-2.2375459957402200e-004</threshold>
- <left_val>0.1173989996314049</left_val>
- <right_val>-0.1045159026980400</right_val></_></_>
- <_>
- <!-- tree 79 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>7 11 12 4 -1.</_>
- <_>7 12 12 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0494941398501396</threshold>
- <left_val>9.9552040919661522e-003</left_val>
- <right_val>-0.8820502161979675</right_val></_></_>
- <_>
- <!-- tree 80 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 0 8 18 -1.</_>
- <_>4 0 4 18 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0771270319819450</threshold>
- <left_val>-0.0366387590765953</left_val>
- <right_val>0.3715699911117554</right_val></_></_>
- <_>
- <!-- tree 81 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>14 13 6 5 -1.</_>
- <_>14 13 3 5 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-3.7054829299449921e-003</threshold>
- <left_val>0.0462130792438984</left_val>
- <right_val>-0.0794984996318817</right_val></_></_>
- <_>
- <!-- tree 82 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 5 22 4 -1.</_>
- <_>11 5 11 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.1365543007850647</threshold>
- <left_val>0.0208025798201561</left_val>
- <right_val>-0.6469228267669678</right_val></_></_>
- <_>
- <!-- tree 83 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>11 2 10 9 -1.</_>
- <_>11 5 10 3 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.1691939979791641</threshold>
- <left_val>-0.9014499187469482</left_val>
- <right_val>4.3158119660802186e-004</right_val></_></_>
- <_>
- <!-- tree 84 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>1 2 10 9 -1.</_>
- <_>1 5 10 3 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>5.2525149658322334e-003</threshold>
- <left_val>0.0866862162947655</left_val>
- <right_val>-0.1575164049863815</right_val></_></_>
- <_>
- <!-- tree 85 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>18 6 2 12 -1.</_>
- <_>18 6 1 12 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0579522587358952</threshold>
- <left_val>1.3485850067809224e-003</left_val>
- <right_val>-1.0001620054244995</right_val></_></_>
- <_>
- <!-- tree 86 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>2 6 2 12 -1.</_>
- <_>3 6 1 12 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0306814592331648</threshold>
- <left_val>-0.6734688878059387</left_val>
- <right_val>0.0177308097481728</right_val></_></_>
- <_>
- <!-- tree 87 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>15 6 4 12 -1.</_>
- <_>15 9 4 6 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0285564009100199</threshold>
- <left_val>0.2491353005170822</left_val>
- <right_val>-0.0218073595315218</right_val></_></_>
- <_>
- <!-- tree 88 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>3 6 4 12 -1.</_>
- <_>3 9 4 6 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>5.8311191387474537e-003</threshold>
- <left_val>0.1010965034365654</left_val>
- <right_val>-0.1258653998374939</right_val></_></_>
- <_>
- <!-- tree 89 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>14 13 6 5 -1.</_>
- <_>14 13 3 5 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>2.8870739042758942e-003</threshold>
- <left_val>-0.0454622805118561</left_val>
- <right_val>0.1479419022798538</right_val></_></_>
- <_>
- <!-- tree 90 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>2 13 6 5 -1.</_>
- <_>5 13 3 5 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-5.3575891070067883e-003</threshold>
- <left_val>0.1084545999765396</left_val>
- <right_val>-0.2063605934381485</right_val></_></_>
- <_>
- <!-- tree 91 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>8 12 12 5 -1.</_>
- <_>11 12 6 5 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0208518300205469</threshold>
- <left_val>-0.0256414301693439</left_val>
- <right_val>0.1200079992413521</right_val></_></_>
- <_>
- <!-- tree 92 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>2 12 12 5 -1.</_>
- <_>5 12 6 5 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>2.9372319113463163e-003</threshold>
- <left_val>-0.0588329806923866</left_val>
- <right_val>0.2396713942289352</right_val></_></_>
- <_>
- <!-- tree 93 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>12 12 6 6 -1.</_>
- <_>12 14 6 2 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0101090697571635</threshold>
- <left_val>0.0447247400879860</left_val>
- <right_val>-0.2502495944499970</right_val></_></_>
- <_>
- <!-- tree 94 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 10 16 8 -1.</_>
- <_>4 10 8 8 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0620026402175426</threshold>
- <left_val>0.0312366802245378</left_val>
- <right_val>-0.3877547979354858</right_val></_></_>
- <_>
- <!-- tree 95 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>13 1 8 8 -1.</_>
- <_>15 1 4 8 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>1.7331680282950401e-003</threshold>
- <left_val>-0.0766425207257271</left_val>
- <right_val>0.0587383098900318</right_val></_></_>
- <_>
- <!-- tree 96 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>1 1 8 8 -1.</_>
- <_>3 1 4 8 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0466489009559155</threshold>
- <left_val>0.4780037105083466</left_val>
- <right_val>-0.0282232593744993</right_val></_></_>
- <_>
- <!-- tree 97 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>14 8 3 8 -1.</_>
- <_>14 12 3 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0405850112438202</threshold>
- <left_val>0.1959132999181747</left_val>
- <right_val>-0.0296085495501757</right_val></_></_>
- <_>
- <!-- tree 98 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>10 4 7 6 -1.</_>
- <_>10 4 7 3 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>0.0142973596230149</threshold>
- <left_val>0.0804227814078331</left_val>
- <right_val>-0.2002439945936203</right_val></_></_>
- <_>
- <!-- tree 99 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>9 10 4 8 -1.</_>
- <_>9 14 4 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-1.4215649571269751e-003</threshold>
- <left_val>0.0976939424872398</left_val>
- <right_val>-0.1309012025594711</right_val></_></_>
- <_>
- <!-- tree 100 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>5 8 3 8 -1.</_>
- <_>5 12 3 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>5.2683628164231777e-003</threshold>
- <left_val>-0.0583763718605042</left_val>
- <right_val>0.2437804043292999</right_val></_></_></trees>
- <stage_threshold>-0.6976336836814880</stage_threshold>
- <parent>18</parent>
- <next>-1</next></_>
- <_>
- <!-- stage 20 -->
- <trees>
- <_>
- <!-- tree 0 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>6 9 4 9 -1.</_>
- <_>6 12 4 3 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-2.6198190171271563e-003</threshold>
- <left_val>0.1867370009422302</left_val>
- <right_val>-0.1912652999162674</right_val></_></_>
- <_>
- <!-- tree 1 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>6 3 16 4 -1.</_>
- <_>14 3 8 2 2.</_>
- <_>6 5 8 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0286290999501944</threshold>
- <left_val>0.1288710981607437</left_val>
- <right_val>-0.0261868499219418</right_val></_></_>
- <_>
- <!-- tree 2 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>1 3 20 4 -1.</_>
- <_>1 3 10 2 2.</_>
- <_>11 5 10 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>7.1718869730830193e-003</threshold>
- <left_val>0.0881585925817490</left_val>
- <right_val>-0.2032734006643295</right_val></_></_>
- <_>
- <!-- tree 3 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>9 5 6 12 -1.</_>
- <_>12 5 3 6 2.</_>
- <_>9 11 3 6 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0116410404443741</threshold>
- <left_val>-0.0210582502186298</left_val>
- <right_val>0.1759178936481476</right_val></_></_>
- <_>
- <!-- tree 4 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>1 6 2 12 -1.</_>
- <_>2 6 1 12 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>5.6764329783618450e-003</threshold>
- <left_val>0.0499411597847939</left_val>
- <right_val>-0.2732929885387421</right_val></_></_>
- <_>
- <!-- tree 5 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>19 0 2 16 -1.</_>
- <_>19 0 1 16 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0443926900625229</threshold>
- <left_val>0.5676612854003906</left_val>
- <right_val>-0.0186747796833515</right_val></_></_>
- <_>
- <!-- tree 6 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>1 0 2 16 -1.</_>
- <_>2 0 1 16 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>1.3367610517889261e-004</threshold>
- <left_val>-0.1299030929803848</left_val>
- <right_val>0.1354229003190994</right_val></_></_>
- <_>
- <!-- tree 7 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>13 5 5 9 -1.</_>
- <_>13 8 5 3 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0441119484603405</threshold>
- <left_val>0.2268483042716980</left_val>
- <right_val>-0.0133183998987079</right_val></_></_>
- <_>
- <!-- tree 8 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>5 16 12 2 -1.</_>
- <_>5 17 12 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>2.9443150851875544e-003</threshold>
- <left_val>0.0431614592671394</left_val>
- <right_val>-0.2931117117404938</right_val></_></_>
- <_>
- <!-- tree 9 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>5 14 12 4 -1.</_>
- <_>5 15 12 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>3.5300010349601507e-003</threshold>
- <left_val>0.0771937221288681</left_val>
- <right_val>-0.2632498145103455</right_val></_></_>
- <_>
- <!-- tree 10 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>5 3 12 9 -1.</_>
- <_>9 6 4 3 9.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.1011921018362045</threshold>
- <left_val>-0.0549242608249187</left_val>
- <right_val>0.3243021965026856</right_val></_></_>
- <_>
- <!-- tree 11 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>7 5 13 2 -1.</_>
- <_>7 6 13 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0223485697060823</threshold>
- <left_val>0.3080311119556427</left_val>
- <right_val>-0.0225184895098209</right_val></_></_>
- <_>
- <!-- tree 12 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>8 1 12 2 -1.</_>
- <_>8 1 12 1 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>6.4755380153656006e-003</threshold>
- <left_val>-0.1204577013850212</left_val>
- <right_val>0.1318611055612564</right_val></_></_>
- <_>
- <!-- tree 13 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 4 22 8 -1.</_>
- <_>11 4 11 4 2.</_>
- <_>0 8 11 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0109043195843697</threshold>
- <left_val>0.1021798998117447</left_val>
- <right_val>-0.1830884963274002</right_val></_></_>
- <_>
- <!-- tree 14 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>2 3 6 4 -1.</_>
- <_>5 3 3 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0112566296011209</threshold>
- <left_val>-0.2918663918972015</left_val>
- <right_val>0.0554912202060223</right_val></_></_>
- <_>
- <!-- tree 15 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>7 11 15 3 -1.</_>
- <_>7 12 15 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>3.6791800521314144e-003</threshold>
- <left_val>-0.0506146885454655</left_val>
- <right_val>0.0826633125543594</right_val></_></_>
- <_>
- <!-- tree 16 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>5 7 6 7 -1.</_>
- <_>8 7 3 7 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0917212888598442</threshold>
- <left_val>-0.7712755203247070</left_val>
- <right_val>0.0193129591643810</right_val></_></_>
- <_>
- <!-- tree 17 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>7 12 12 4 -1.</_>
- <_>13 12 6 2 2.</_>
- <_>7 14 6 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0400998890399933</threshold>
- <left_val>7.8663527965545654e-003</left_val>
- <right_val>-0.8130282759666443</right_val></_></_>
- <_>
- <!-- tree 18 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 11 16 2 -1.</_>
- <_>8 11 8 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0549564287066460</threshold>
- <left_val>0.2905952036380768</left_val>
- <right_val>-0.0598255805671215</right_val></_></_>
- <_>
- <!-- tree 19 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>18 3 4 10 -1.</_>
- <_>18 3 4 5 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>0.2480465024709702</threshold>
- <left_val>0.0116651896387339</left_val>
- <right_val>-0.6912195086479187</right_val></_></_>
- <_>
- <!-- tree 20 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>2 2 17 3 -1.</_>
- <_>2 3 17 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0342848002910614</threshold>
- <left_val>0.4535839855670929</left_val>
- <right_val>-0.0320712514221668</right_val></_></_>
- <_>
- <!-- tree 21 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>10 14 12 4 -1.</_>
- <_>16 14 6 2 2.</_>
- <_>10 16 6 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0254392307251692</threshold>
- <left_val>0.0194671507924795</left_val>
- <right_val>-0.3792799115180969</right_val></_></_>
- <_>
- <!-- tree 22 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>1 9 11 6 -1.</_>
- <_>1 11 11 2 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0127206603065133</threshold>
- <left_val>-0.2121143043041229</left_val>
- <right_val>0.0615338310599327</right_val></_></_>
- <_>
- <!-- tree 23 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>4 9 18 3 -1.</_>
- <_>4 10 18 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0108310002833605</threshold>
- <left_val>-0.0514436811208725</left_val>
- <right_val>0.1694768965244293</right_val></_></_>
- <_>
- <!-- tree 24 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 9 18 3 -1.</_>
- <_>0 10 18 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0219315700232983</threshold>
- <left_val>0.2483938932418823</left_val>
- <right_val>-0.0566363595426083</right_val></_></_>
- <_>
- <!-- tree 25 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>11 5 11 12 -1.</_>
- <_>11 11 11 6 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.2939789891242981</threshold>
- <left_val>0.0114115299656987</left_val>
- <right_val>-0.9369606971740723</right_val></_></_>
- <_>
- <!-- tree 26 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>5 12 6 6 -1.</_>
- <_>5 14 6 2 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0163422599434853</threshold>
- <left_val>-0.3158954977989197</left_val>
- <right_val>0.0443719811737537</right_val></_></_>
- <_>
- <!-- tree 27 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>14 10 6 8 -1.</_>
- <_>17 10 3 4 2.</_>
- <_>14 14 3 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0442804992198944</threshold>
- <left_val>0.2033734023571014</left_val>
- <right_val>-0.0214623194187880</right_val></_></_>
- <_>
- <!-- tree 28 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 5 11 12 -1.</_>
- <_>0 11 11 6 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.2650330960750580</threshold>
- <left_val>0.0116331502795219</left_val>
- <right_val>-0.9122017025947571</right_val></_></_>
- <_>
- <!-- tree 29 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>15 3 2 12 -1.</_>
- <_>15 3 2 6 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-0.0763784795999527</threshold>
- <left_val>0.1868827044963837</left_val>
- <right_val>-0.0196720808744431</right_val></_></_>
- <_>
- <!-- tree 30 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>3 0 12 4 -1.</_>
- <_>3 0 6 2 2.</_>
- <_>9 2 6 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0100615704432130</threshold>
- <left_val>-0.2646203935146332</left_val>
- <right_val>0.0466202609241009</right_val></_></_>
- <_>
- <!-- tree 31 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>14 10 6 8 -1.</_>
- <_>17 10 3 4 2.</_>
- <_>14 14 3 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0249217301607132</threshold>
- <left_val>-0.0191313903778791</left_val>
- <right_val>0.2015450000762940</right_val></_></_>
- <_>
- <!-- tree 32 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>5 12 8 6 -1.</_>
- <_>5 12 4 3 2.</_>
- <_>9 15 4 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>1.5098409676284064e-005</threshold>
- <left_val>-0.1624169051647186</left_val>
- <right_val>0.0761839672923088</right_val></_></_>
- <_>
- <!-- tree 33 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>8 11 10 5 -1.</_>
- <_>8 11 5 5 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.1008191034197807</threshold>
- <left_val>-1.</left_val>
- <right_val>7.4751500505954027e-004</right_val></_></_>
- <_>
- <!-- tree 34 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>4 11 10 5 -1.</_>
- <_>9 11 5 5 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0650585964322090</threshold>
- <left_val>-0.0404686406254768</left_val>
- <right_val>0.3516007959842682</right_val></_></_>
- <_>
- <!-- tree 35 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>6 6 12 12 -1.</_>
- <_>12 6 6 6 2.</_>
- <_>6 12 6 6 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.1219023987650871</threshold>
- <left_val>-0.5362455844879150</left_val>
- <right_val>0.0186370201408863</right_val></_></_>
- <_>
- <!-- tree 36 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>7 10 6 8 -1.</_>
- <_>7 12 6 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-9.8520738538354635e-004</threshold>
- <left_val>0.1139819994568825</left_val>
- <right_val>-0.1129883006215096</right_val></_></_>
- <_>
- <!-- tree 37 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>7 8 15 10 -1.</_>
- <_>7 13 15 5 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.2530061900615692</threshold>
- <left_val>-0.4337590932846069</left_val>
- <right_val>0.0123674003407359</right_val></_></_>
- <_>
- <!-- tree 38 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 0 22 4 -1.</_>
- <_>0 0 11 2 2.</_>
- <_>11 2 11 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>7.5246659107506275e-003</threshold>
- <left_val>0.0673554763197899</left_val>
- <right_val>-0.1858396977186203</right_val></_></_>
- <_>
- <!-- tree 39 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>10 3 12 3 -1.</_>
- <_>10 4 12 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>4.8102210275828838e-003</threshold>
- <left_val>-0.0658700615167618</left_val>
- <right_val>0.1284891068935394</right_val></_></_>
- <_>
- <!-- tree 40 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 3 13 3 -1.</_>
- <_>0 4 13 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-1.4562129508703947e-003</threshold>
- <left_val>0.1811068952083588</left_val>
- <right_val>-0.1124845966696739</right_val></_></_>
- <_>
- <!-- tree 41 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>9 3 4 12 -1.</_>
- <_>9 6 4 6 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-5.6546321138739586e-003</threshold>
- <left_val>0.1036984026432037</left_val>
- <right_val>-0.1411557048559189</right_val></_></_>
- <_>
- <!-- tree 42 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>4 5 9 6 -1.</_>
- <_>4 8 9 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0319512896239758</threshold>
- <left_val>-0.3297160863876343</left_val>
- <right_val>0.0482818111777306</right_val></_></_>
- <_>
- <!-- tree 43 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>11 6 2 9 -1.</_>
- <_>11 6 1 9 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>0.0421903803944588</threshold>
- <left_val>-0.0116448104381561</left_val>
- <right_val>0.1370130032300949</right_val></_></_>
- <_>
- <!-- tree 44 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>9 2 4 8 -1.</_>
- <_>9 6 4 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0126066599041224</threshold>
- <left_val>-0.0603958815336227</left_val>
- <right_val>0.2421005964279175</right_val></_></_>
- <_>
- <!-- tree 45 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>7 0 8 10 -1.</_>
- <_>7 5 8 5 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-6.0083861462771893e-003</threshold>
- <left_val>0.0956776067614555</left_val>
- <right_val>-0.2024825960397720</right_val></_></_>
- <_>
- <!-- tree 46 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>11 5 9 2 -1.</_>
- <_>11 5 9 1 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>0.0406763888895512</threshold>
- <left_val>-0.0385064296424389</left_val>
- <right_val>0.3982402980327606</right_val></_></_>
- <_>
- <!-- tree 47 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>17 0 3 11 -1.</_>
- <_>18 1 1 11 3.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-0.0130102196708322</threshold>
- <left_val>-0.0778704434633255</left_val>
- <right_val>0.0325333103537560</right_val></_></_>
- <_>
- <!-- tree 48 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>5 0 11 3 -1.</_>
- <_>4 1 11 1 3.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-0.0566469691693783</threshold>
- <left_val>-0.9529355168342590</left_val>
- <right_val>0.0173756591975689</right_val></_></_>
- <_>
- <!-- tree 49 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>9 6 4 7 -1.</_>
- <_>9 6 2 7 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0373079702258110</threshold>
- <left_val>-0.0332614406943321</left_val>
- <right_val>0.4685631990432739</right_val></_></_>
- <_>
- <!-- tree 50 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>3 11 6 6 -1.</_>
- <_>3 13 6 2 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0279863793402910</threshold>
- <left_val>-0.4635669887065888</left_val>
- <right_val>0.0285240299999714</right_val></_></_>
- <_>
- <!-- tree 51 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>6 10 16 8 -1.</_>
- <_>6 12 16 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0750148966908455</threshold>
- <left_val>0.2451989948749542</left_val>
- <right_val>-0.0158301591873169</right_val></_></_>
- <_>
- <!-- tree 52 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>11 6 9 3 -1.</_>
- <_>10 7 9 1 3.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>0.0276730805635452</threshold>
- <left_val>-0.0364583581686020</left_val>
- <right_val>0.3721557855606079</right_val></_></_>
- <_>
- <!-- tree 53 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>12 11 8 6 -1.</_>
- <_>12 13 8 2 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0173129606992006</threshold>
- <left_val>-0.2211765944957733</left_val>
- <right_val>0.0432326197624207</right_val></_></_>
- <_>
- <!-- tree 54 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 10 16 8 -1.</_>
- <_>0 12 16 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0588939487934113</threshold>
- <left_val>0.3972674906253815</left_val>
- <right_val>-0.0376325286924839</right_val></_></_>
- <_>
- <!-- tree 55 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>10 14 12 4 -1.</_>
- <_>16 14 6 2 2.</_>
- <_>10 16 6 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0131936799734831</threshold>
- <left_val>0.0248577296733856</left_val>
- <right_val>-0.1751435995101929</right_val></_></_>
- <_>
- <!-- tree 56 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>2 11 8 6 -1.</_>
- <_>2 13 8 2 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0382306799292564</threshold>
- <left_val>0.0296351108700037</left_val>
- <right_val>-0.4345274865627289</right_val></_></_>
- <_>
- <!-- tree 57 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>6 11 16 4 -1.</_>
- <_>14 11 8 2 2.</_>
- <_>6 13 8 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0168453995138407</threshold>
- <left_val>0.0393387489020824</left_val>
- <right_val>-0.2376572042703629</right_val></_></_>
- <_>
- <!-- tree 58 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 11 22 6 -1.</_>
- <_>11 11 11 6 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.1155946031212807</threshold>
- <left_val>-0.4000687897205353</left_val>
- <right_val>0.0323905386030674</right_val></_></_>
- <_>
- <!-- tree 59 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>14 10 6 8 -1.</_>
- <_>17 10 3 4 2.</_>
- <_>14 14 3 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-1.7385910032317042e-003</threshold>
- <left_val>0.0485458187758923</left_val>
- <right_val>-0.0614746809005737</right_val></_></_>
- <_>
- <!-- tree 60 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>2 10 6 8 -1.</_>
- <_>2 10 3 4 2.</_>
- <_>5 14 3 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0336976684629917</threshold>
- <left_val>0.2434500008821487</left_val>
- <right_val>-0.0655046030879021</right_val></_></_>
- <_>
- <!-- tree 61 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>6 4 15 12 -1.</_>
- <_>11 8 5 4 9.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.3472279906272888</threshold>
- <left_val>-0.3361206054687500</left_val>
- <right_val>0.0155012002214789</right_val></_></_>
- <_>
- <!-- tree 62 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 4 18 12 -1.</_>
- <_>6 8 6 4 9.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0586680397391319</threshold>
- <left_val>0.0680680572986603</left_val>
- <right_val>-0.2210492938756943</right_val></_></_>
- <_>
- <!-- tree 63 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>15 7 2 8 -1.</_>
- <_>15 7 1 8 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>0.0237181894481182</threshold>
- <left_val>-0.0147795695811510</left_val>
- <right_val>0.4732834100723267</right_val></_></_>
- <_>
- <!-- tree 64 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>3 3 10 3 -1.</_>
- <_>2 4 10 1 3.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>0.0288127008825541</threshold>
- <left_val>0.0333098806440830</left_val>
- <right_val>-0.4679769873619080</right_val></_></_>
- <_>
- <!-- tree 65 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>4 2 14 3 -1.</_>
- <_>4 3 14 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0410237498581409</threshold>
- <left_val>-0.0282930005341768</left_val>
- <right_val>0.4942755103111267</right_val></_></_>
- <_>
- <!-- tree 66 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>10 8 8 2 -1.</_>
- <_>10 8 8 1 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-1.2017590051982552e-004</threshold>
- <left_val>0.1036365032196045</left_val>
- <right_val>-0.1210749000310898</right_val></_></_>
- <_>
- <!-- tree 67 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>15 5 4 7 -1.</_>
- <_>15 5 2 7 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-0.1090807020664215</threshold>
- <left_val>-1.</left_val>
- <right_val>3.2971999607980251e-003</right_val></_></_>
- <_>
- <!-- tree 68 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>3 6 5 6 -1.</_>
- <_>3 9 5 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0459673590958118</threshold>
- <left_val>0.6481946110725403</left_val>
- <right_val>-0.0192335192114115</right_val></_></_>
- <_>
- <!-- tree 69 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>14 1 8 6 -1.</_>
- <_>18 1 4 3 2.</_>
- <_>14 4 4 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0193457193672657</threshold>
- <left_val>-0.3314554989337921</left_val>
- <right_val>0.0390085391700268</right_val></_></_>
- <_>
- <!-- tree 70 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 1 8 6 -1.</_>
- <_>0 1 4 3 2.</_>
- <_>4 4 4 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0123127903789282</threshold>
- <left_val>0.0410296283662319</left_val>
- <right_val>-0.2794392108917236</right_val></_></_>
- <_>
- <!-- tree 71 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>17 0 4 12 -1.</_>
- <_>18 0 2 12 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>2.1535221021622419e-003</threshold>
- <left_val>-0.0675450563430786</left_val>
- <right_val>0.1164774000644684</right_val></_></_>
- <_>
- <!-- tree 72 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>1 0 4 12 -1.</_>
- <_>2 0 2 12 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0321587882936001</threshold>
- <left_val>0.5474163889884949</left_val>
- <right_val>-0.0237302295863628</right_val></_></_>
- <_>
- <!-- tree 73 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>9 16 12 2 -1.</_>
- <_>9 17 12 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0275923591107130</threshold>
- <left_val>-0.7531942129135132</left_val>
- <right_val>8.4066214039921761e-003</right_val></_></_>
- <_>
- <!-- tree 74 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>1 16 12 2 -1.</_>
- <_>1 17 12 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0222645103931427</threshold>
- <left_val>0.0121467402204871</left_val>
- <right_val>-0.9029129743576050</right_val></_></_>
- <_>
- <!-- tree 75 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>10 15 12 3 -1.</_>
- <_>10 16 12 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0153613798320293</threshold>
- <left_val>-0.0316411890089512</left_val>
- <right_val>0.3213280141353607</right_val></_></_>
- <_>
- <!-- tree 76 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 15 12 3 -1.</_>
- <_>0 16 12 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0123606603592634</threshold>
- <left_val>0.2924863100051880</left_val>
- <right_val>-0.0453037582337856</right_val></_></_>
- <_>
- <!-- tree 77 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>10 14 12 4 -1.</_>
- <_>16 14 6 2 2.</_>
- <_>10 16 6 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0229787491261959</threshold>
- <left_val>-0.0120544796809554</left_val>
- <right_val>0.1906094998121262</right_val></_></_>
- <_>
- <!-- tree 78 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 14 12 4 -1.</_>
- <_>0 14 6 2 2.</_>
- <_>6 16 6 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0232963804155588</threshold>
- <left_val>0.0314090512692928</left_val>
- <right_val>-0.5185608267784119</right_val></_></_>
- <_>
- <!-- tree 79 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>9 11 12 4 -1.</_>
- <_>15 11 6 2 2.</_>
- <_>9 13 6 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>5.7384249521419406e-004</threshold>
- <left_val>-0.1029348969459534</left_val>
- <right_val>0.0815484523773193</right_val></_></_>
- <_>
- <!-- tree 80 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 11 16 4 -1.</_>
- <_>0 11 8 2 2.</_>
- <_>8 13 8 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0330204702913761</threshold>
- <left_val>0.4247055947780609</left_val>
- <right_val>-0.0447946786880493</right_val></_></_>
- <_>
- <!-- tree 81 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>8 12 9 6 -1.</_>
- <_>8 14 9 2 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0217130295932293</threshold>
- <left_val>-0.1482526063919067</left_val>
- <right_val>0.0129598798230290</right_val></_></_>
- <_>
- <!-- tree 82 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>5 12 9 6 -1.</_>
- <_>5 14 9 2 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-9.7430922323837876e-005</threshold>
- <left_val>0.1189963966608048</left_val>
- <right_val>-0.1475397050380707</right_val></_></_>
- <_>
- <!-- tree 83 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>4 5 16 2 -1.</_>
- <_>4 5 8 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-9.2907734215259552e-003</threshold>
- <left_val>-0.1163543015718460</left_val>
- <right_val>0.0541046410799026</right_val></_></_>
- <_>
- <!-- tree 84 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>1 10 10 8 -1.</_>
- <_>1 10 5 4 2.</_>
- <_>6 14 5 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0372448489069939</threshold>
- <left_val>-0.0344212017953396</left_val>
- <right_val>0.3794392943382263</right_val></_></_>
- <_>
- <!-- tree 85 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>16 2 5 9 -1.</_>
- <_>13 5 5 3 3.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>0.1527702957391739</threshold>
- <left_val>7.2725401259958744e-003</left_val>
- <right_val>-0.3415508866310120</right_val></_></_>
- <_>
- <!-- tree 86 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>4 4 4 6 -1.</_>
- <_>6 4 2 6 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0126634500920773</threshold>
- <left_val>-0.3059667050838471</left_val>
- <right_val>0.0382312610745430</right_val></_></_>
- <_>
- <!-- tree 87 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>9 2 9 7 -1.</_>
- <_>12 2 3 7 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0748884230852127</threshold>
- <left_val>-0.3465895056724548</left_val>
- <right_val>0.0155016500502825</right_val></_></_>
- <_>
- <!-- tree 88 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>4 2 9 7 -1.</_>
- <_>7 2 3 7 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0401145890355110</threshold>
- <left_val>0.3262982070446014</left_val>
- <right_val>-0.0413136705756187</right_val></_></_>
- <_>
- <!-- tree 89 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>16 2 5 9 -1.</_>
- <_>13 5 5 3 3.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-0.0964921116828918</threshold>
- <left_val>0.1017284989356995</left_val>
- <right_val>-0.0171560104936361</right_val></_></_>
- <_>
- <!-- tree 90 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>6 2 9 5 -1.</_>
- <_>9 5 3 5 3.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-0.1671283990144730</threshold>
- <left_val>-0.7765511870384216</left_val>
- <right_val>0.0180295594036579</right_val></_></_>
- <_>
- <!-- tree 91 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>5 12 14 6 -1.</_>
- <_>5 14 14 2 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-8.2981940358877182e-003</threshold>
- <left_val>-0.1439713984727860</left_val>
- <right_val>0.0589481405913830</right_val></_></_>
- <_>
- <!-- tree 92 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>6 4 4 12 -1.</_>
- <_>6 4 2 6 2.</_>
- <_>8 10 2 6 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-3.7844169419258833e-003</threshold>
- <left_val>0.1709517985582352</left_val>
- <right_val>-0.0782564431428909</right_val></_></_>
- <_>
- <!-- tree 93 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>9 4 10 8 -1.</_>
- <_>9 4 5 8 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.1607642024755478</threshold>
- <left_val>0.2313822954893112</left_val>
- <right_val>-0.0134280500933528</right_val></_></_>
- <_>
- <!-- tree 94 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>7 5 6 8 -1.</_>
- <_>7 5 3 4 2.</_>
- <_>10 9 3 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>6.4544437918812037e-004</threshold>
- <left_val>-0.1442440003156662</left_val>
- <right_val>0.0832878202199936</right_val></_></_>
- <_>
- <!-- tree 95 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>8 7 6 8 -1.</_>
- <_>11 7 3 4 2.</_>
- <_>8 11 3 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0227373093366623</threshold>
- <left_val>-0.0341558195650578</left_val>
- <right_val>0.3551980853080750</right_val></_></_>
- <_>
- <!-- tree 96 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>2 4 11 2 -1.</_>
- <_>2 4 11 1 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-3.9030050393193960e-003</threshold>
- <left_val>-0.1873676925897598</left_val>
- <right_val>0.0646280124783516</right_val></_></_>
- <_>
- <!-- tree 97 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>16 0 3 13 -1.</_>
- <_>17 0 1 13 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0511454306542873</threshold>
- <left_val>0.6689270734786987</left_val>
- <right_val>-0.0111800497397780</right_val></_></_>
- <_>
- <!-- tree 98 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>2 0 18 3 -1.</_>
- <_>2 1 18 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-6.0482369735836983e-003</threshold>
- <left_val>0.1862275004386902</left_val>
- <right_val>-0.0630187019705772</right_val></_></_>
- <_>
- <!-- tree 99 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>15 8 6 4 -1.</_>
- <_>15 8 3 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0117435697466135</threshold>
- <left_val>0.0254492796957493</left_val>
- <right_val>-0.1333124935626984</right_val></_></_>
- <_>
- <!-- tree 100 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>2 0 13 3 -1.</_>
- <_>2 1 13 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>8.4120890824124217e-004</threshold>
- <left_val>-0.0933334678411484</left_val>
- <right_val>0.1331588029861450</right_val></_></_>
- <_>
- <!-- tree 101 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>4 4 18 4 -1.</_>
- <_>4 6 18 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0377561710774899</threshold>
- <left_val>-0.2313880026340485</left_val>
- <right_val>0.0405697897076607</right_val></_></_>
- <_>
- <!-- tree 102 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>3 3 10 9 -1.</_>
- <_>8 3 5 9 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0208675600588322</threshold>
- <left_val>0.1005609035491943</left_val>
- <right_val>-0.1174419000744820</right_val></_></_>
- <_>
- <!-- tree 103 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>2 7 18 6 -1.</_>
- <_>8 9 6 2 9.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0398021787405014</threshold>
- <left_val>-0.1158571988344193</left_val>
- <right_val>0.1266818940639496</right_val></_></_></trees>
- <stage_threshold>-0.6897674202919006</stage_threshold>
- <parent>19</parent>
- <next>-1</next></_>
- <_>
- <!-- stage 21 -->
- <trees>
- <_>
- <!-- tree 0 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>10 4 11 2 -1.</_>
- <_>10 4 11 1 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>8.4546189755201340e-003</threshold>
- <left_val>-0.1628966033458710</left_val>
- <right_val>0.1983439028263092</right_val></_></_>
- <_>
- <!-- tree 1 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>14 6 6 12 -1.</_>
- <_>17 6 3 6 2.</_>
- <_>14 12 3 6 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0516104511916637</threshold>
- <left_val>-0.0308270901441574</left_val>
- <right_val>0.3374255001544952</right_val></_></_>
- <_>
- <!-- tree 2 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>2 6 6 12 -1.</_>
- <_>2 6 3 6 2.</_>
- <_>5 12 3 6 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0649094432592392</threshold>
- <left_val>0.2860228121280670</left_val>
- <right_val>-0.0598486512899399</right_val></_></_>
- <_>
- <!-- tree 3 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>3 4 16 6 -1.</_>
- <_>3 6 16 2 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-4.3951408006250858e-003</threshold>
- <left_val>0.1130265966057777</left_val>
- <right_val>-0.1263208985328674</right_val></_></_>
- <_>
- <!-- tree 4 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>1 11 16 3 -1.</_>
- <_>5 11 8 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0827568024396896</threshold>
- <left_val>-0.6079095005989075</left_val>
- <right_val>0.0219671800732613</right_val></_></_>
- <_>
- <!-- tree 5 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>12 10 8 3 -1.</_>
- <_>12 10 4 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-4.8698862083256245e-003</threshold>
- <left_val>0.0858661904931068</left_val>
- <right_val>-0.0890095233917236</right_val></_></_>
- <_>
- <!-- tree 6 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 9 17 9 -1.</_>
- <_>0 12 17 3 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0915124416351318</threshold>
- <left_val>-0.0533453486859798</left_val>
- <right_val>0.2673287093639374</right_val></_></_>
- <_>
- <!-- tree 7 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>8 4 6 10 -1.</_>
- <_>11 4 3 5 2.</_>
- <_>8 9 3 5 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>3.6815661005675793e-003</threshold>
- <left_val>0.0709156990051270</left_val>
- <right_val>-0.1794120967388153</right_val></_></_>
- <_>
- <!-- tree 8 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>2 4 16 8 -1.</_>
- <_>2 4 8 4 2.</_>
- <_>10 8 8 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>6.3032708130776882e-003</threshold>
- <left_val>0.1237815022468567</left_val>
- <right_val>-0.1239148005843163</right_val></_></_>
- <_>
- <!-- tree 9 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>9 6 12 4 -1.</_>
- <_>15 6 6 2 2.</_>
- <_>9 8 6 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>5.8764131972566247e-004</threshold>
- <left_val>-0.0638136565685272</left_val>
- <right_val>0.0955457687377930</right_val></_></_>
- <_>
- <!-- tree 10 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>9 3 4 6 -1.</_>
- <_>9 6 4 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0146803203970194</threshold>
- <left_val>-0.0491835288703442</left_val>
- <right_val>0.2904059886932373</right_val></_></_>
- <_>
- <!-- tree 11 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>15 5 7 4 -1.</_>
- <_>15 5 7 2 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>3.5624930169433355e-003</threshold>
- <left_val>-0.0975631475448608</left_val>
- <right_val>0.0489328317344189</right_val></_></_>
- <_>
- <!-- tree 12 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 6 18 6 -1.</_>
- <_>0 6 9 3 2.</_>
- <_>9 9 9 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-7.4473340064287186e-003</threshold>
- <left_val>-0.1595246046781540</left_val>
- <right_val>0.0847726464271545</right_val></_></_>
- <_>
- <!-- tree 13 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>4 2 15 3 -1.</_>
- <_>4 3 15 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0540109910070896</threshold>
- <left_val>-0.0205651503056288</left_val>
- <right_val>0.5734071731567383</right_val></_></_>
- <_>
- <!-- tree 14 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>2 0 6 6 -1.</_>
- <_>5 0 3 6 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-2.3613919038325548e-003</threshold>
- <left_val>0.1495765000581741</left_val>
- <right_val>-0.0751481130719185</right_val></_></_>
- <_>
- <!-- tree 15 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>13 4 8 6 -1.</_>
- <_>17 4 4 3 2.</_>
- <_>13 7 4 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0406654588878155</threshold>
- <left_val>0.0147623997181654</left_val>
- <right_val>-0.5968567132949829</right_val></_></_>
- <_>
- <!-- tree 16 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>4 2 13 6 -1.</_>
- <_>4 4 13 2 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0932583808898926</threshold>
- <left_val>0.0130362100899220</left_val>
- <right_val>-0.6864386200904846</right_val></_></_>
- <_>
- <!-- tree 17 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>9 8 12 3 -1.</_>
- <_>9 9 12 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>2.8593749739229679e-003</threshold>
- <left_val>-0.0549046397209167</left_val>
- <right_val>0.0980746671557426</right_val></_></_>
- <_>
- <!-- tree 18 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>1 8 16 3 -1.</_>
- <_>1 9 16 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-4.9756402149796486e-003</threshold>
- <left_val>0.1675197035074234</left_val>
- <right_val>-0.0825638324022293</right_val></_></_>
- <_>
- <!-- tree 19 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>11 4 5 8 -1.</_>
- <_>11 8 5 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-2.2061138879507780e-003</threshold>
- <left_val>0.0714861825108528</left_val>
- <right_val>-0.0846847966313362</right_val></_></_>
- <_>
- <!-- tree 20 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>3 4 11 2 -1.</_>
- <_>3 4 11 1 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>4.3787518516182899e-003</threshold>
- <left_val>0.0752964392304420</left_val>
- <right_val>-0.1698897033929825</right_val></_></_>
- <_>
- <!-- tree 21 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>10 7 12 3 -1.</_>
- <_>10 8 12 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-4.9143321812152863e-003</threshold>
- <left_val>0.1627433001995087</left_val>
- <right_val>-0.0575791895389557</right_val></_></_>
- <_>
- <!-- tree 22 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>9 3 7 8 -1.</_>
- <_>9 3 7 4 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-3.0191219411790371e-003</threshold>
- <left_val>-0.1245009973645210</left_val>
- <right_val>0.1152698025107384</right_val></_></_>
- <_>
- <!-- tree 23 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>13 2 2 12 -1.</_>
- <_>13 2 2 6 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>6.8227178417146206e-003</threshold>
- <left_val>0.0371669717133045</left_val>
- <right_val>-0.1009344980120659</right_val></_></_>
- <_>
- <!-- tree 24 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 9 12 4 -1.</_>
- <_>0 9 6 2 2.</_>
- <_>6 11 6 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0351169817149639</threshold>
- <left_val>-0.0429974310100079</left_val>
- <right_val>0.3295919895172119</right_val></_></_>
- <_>
- <!-- tree 25 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>11 7 8 6 -1.</_>
- <_>13 7 4 6 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-1.4400649815797806e-003</threshold>
- <left_val>-0.0989222601056099</left_val>
- <right_val>0.0671088919043541</right_val></_></_>
- <_>
- <!-- tree 26 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 8 6 6 -1.</_>
- <_>2 8 2 6 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-4.6699359081685543e-003</threshold>
- <left_val>-0.1800343990325928</left_val>
- <right_val>0.0680383965373039</right_val></_></_>
- <_>
- <!-- tree 27 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>11 7 8 6 -1.</_>
- <_>13 7 4 6 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0376477204263210</threshold>
- <left_val>-0.0210317503660917</left_val>
- <right_val>0.1662711948156357</right_val></_></_>
- <_>
- <!-- tree 28 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>3 7 8 6 -1.</_>
- <_>5 7 4 6 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>5.1745469681918621e-003</threshold>
- <left_val>-0.1184609010815620</left_val>
- <right_val>0.1091919019818306</right_val></_></_>
- <_>
- <!-- tree 29 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>10 6 6 4 -1.</_>
- <_>10 6 3 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>7.7274879440665245e-003</threshold>
- <left_val>-0.0550973303616047</left_val>
- <right_val>0.2275228053331375</right_val></_></_>
- <_>
- <!-- tree 30 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>4 8 12 10 -1.</_>
- <_>4 8 6 5 2.</_>
- <_>10 13 6 5 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0291588492691517</threshold>
- <left_val>0.0778855830430985</left_val>
- <right_val>-0.1777552068233490</right_val></_></_>
- <_>
- <!-- tree 31 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>15 7 6 10 -1.</_>
- <_>17 7 2 10 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>2.9885378899052739e-004</threshold>
- <left_val>-0.0788752809166908</left_val>
- <right_val>0.0511631108820438</right_val></_></_>
- <_>
- <!-- tree 32 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>6 14 6 4 -1.</_>
- <_>9 14 3 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>1.4456070493906736e-004</threshold>
- <left_val>-0.1609764993190765</left_val>
- <right_val>0.0815740302205086</right_val></_></_>
- <_>
- <!-- tree 33 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>8 13 10 4 -1.</_>
- <_>8 13 5 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0478407405316830</threshold>
- <left_val>0.0142105501145124</left_val>
- <right_val>-0.3131667971611023</right_val></_></_>
- <_>
- <!-- tree 34 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>2 0 4 18 -1.</_>
- <_>4 0 2 18 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0439434684813023</threshold>
- <left_val>-0.0310024805366993</left_val>
- <right_val>0.4245035052299500</right_val></_></_>
- <_>
- <!-- tree 35 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>11 0 8 10 -1.</_>
- <_>11 0 8 5 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-0.1760338991880417</threshold>
- <left_val>-0.2162521928548813</left_val>
- <right_val>0.0137106403708458</right_val></_></_>
- <_>
- <!-- tree 36 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 7 12 3 -1.</_>
- <_>0 8 12 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0270105507224798</threshold>
- <left_val>0.4544829130172730</left_val>
- <right_val>-0.0285076200962067</right_val></_></_>
- <_>
- <!-- tree 37 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>17 0 2 10 -1.</_>
- <_>17 0 1 10 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>6.4534661360085011e-003</threshold>
- <left_val>-0.0496607087552547</left_val>
- <right_val>0.0830717235803604</right_val></_></_>
- <_>
- <!-- tree 38 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>5 6 6 4 -1.</_>
- <_>5 8 6 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-7.1115070022642612e-003</threshold>
- <left_val>-0.2250981032848358</left_val>
- <right_val>0.0650333613157272</right_val></_></_>
- <_>
- <!-- tree 39 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>15 10 7 6 -1.</_>
- <_>15 12 7 2 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0251848492771387</threshold>
- <left_val>-0.1748033016920090</left_val>
- <right_val>0.0187510997056961</right_val></_></_>
- <_>
- <!-- tree 40 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 10 7 6 -1.</_>
- <_>0 12 7 2 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-8.8047432655002922e-005</threshold>
- <left_val>0.1267789006233215</left_val>
- <right_val>-0.1070457994937897</right_val></_></_>
- <_>
- <!-- tree 41 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>13 12 6 6 -1.</_>
- <_>15 12 2 6 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0360202193260193</threshold>
- <left_val>0.2464960068464279</left_val>
- <right_val>-0.0497720800340176</right_val></_></_>
- <_>
- <!-- tree 42 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>1 11 20 7 -1.</_>
- <_>11 11 10 7 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>7.6084570027887821e-003</threshold>
- <left_val>0.1004144027829170</left_val>
- <right_val>-0.1367384046316147</right_val></_></_>
- <_>
- <!-- tree 43 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>13 5 4 9 -1.</_>
- <_>13 8 4 3 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-8.2404967397451401e-003</threshold>
- <left_val>0.1170326024293900</left_val>
- <right_val>-0.0527819618582726</right_val></_></_>
- <_>
- <!-- tree 44 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>2 12 8 6 -1.</_>
- <_>2 12 4 3 2.</_>
- <_>6 15 4 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-7.2474818443879485e-004</threshold>
- <left_val>-0.1165003031492233</left_val>
- <right_val>0.1133349016308785</right_val></_></_>
- <_>
- <!-- tree 45 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>9 14 6 4 -1.</_>
- <_>9 16 6 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-7.8272278187796474e-005</threshold>
- <left_val>0.0644256770610809</left_val>
- <right_val>-0.1589460968971252</right_val></_></_>
- <_>
- <!-- tree 46 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>7 12 8 6 -1.</_>
- <_>7 12 4 3 2.</_>
- <_>11 15 4 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-2.0254699047654867e-003</threshold>
- <left_val>-0.1702708005905151</left_val>
- <right_val>0.0712168663740158</right_val></_></_>
- <_>
- <!-- tree 47 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>6 1 12 14 -1.</_>
- <_>12 1 6 7 2.</_>
- <_>6 8 6 7 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.1188203021883965</threshold>
- <left_val>0.3287855088710785</left_val>
- <right_val>-0.0153252100571990</right_val></_></_>
- <_>
- <!-- tree 48 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>5 5 4 9 -1.</_>
- <_>5 8 4 3 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0162584297358990</threshold>
- <left_val>0.2184889018535614</left_val>
- <right_val>-0.0562531985342503</right_val></_></_>
- <_>
- <!-- tree 49 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>5 13 12 4 -1.</_>
- <_>11 13 6 2 2.</_>
- <_>5 15 6 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-6.8429792299866676e-003</threshold>
- <left_val>-0.2331349998712540</left_val>
- <right_val>0.0571078211069107</right_val></_></_>
- <_>
- <!-- tree 50 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>9 7 8 3 -1.</_>
- <_>8 8 8 1 3.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>0.0349397100508213</threshold>
- <left_val>-0.0273338295519352</left_val>
- <right_val>0.4565196931362152</right_val></_></_>
- <_>
- <!-- tree 51 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>7 5 8 10 -1.</_>
- <_>7 10 8 5 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.2297977954149246</threshold>
- <left_val>0.0145089896395803</left_val>
- <right_val>-0.8716508746147156</right_val></_></_>
- <_>
- <!-- tree 52 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>7 1 8 3 -1.</_>
- <_>6 2 8 1 3.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>0.0433605983853340</threshold>
- <left_val>8.4467595443129539e-003</left_val>
- <right_val>-0.8750032782554627</right_val></_></_>
- <_>
- <!-- tree 53 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>10 14 12 3 -1.</_>
- <_>10 15 12 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-1.1806190013885498e-003</threshold>
- <left_val>0.0781866982579231</left_val>
- <right_val>-0.0528342090547085</right_val></_></_>
- <_>
- <!-- tree 54 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 6 18 12 -1.</_>
- <_>0 12 18 6 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.4177268147468567</threshold>
- <left_val>-0.8072922229766846</left_val>
- <right_val>0.0130481300875545</right_val></_></_>
- <_>
- <!-- tree 55 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>9 8 6 6 -1.</_>
- <_>9 11 6 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0463152304291725</threshold>
- <left_val>0.2937507927417755</left_val>
- <right_val>-0.0351923890411854</right_val></_></_>
- <_>
- <!-- tree 56 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>3 2 4 12 -1.</_>
- <_>3 2 2 6 2.</_>
- <_>5 8 2 6 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0402713008224964</threshold>
- <left_val>-0.5817453265190125</left_val>
- <right_val>0.0197685007005930</right_val></_></_>
- <_>
- <!-- tree 57 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>13 2 2 12 -1.</_>
- <_>13 2 2 6 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-0.0430124402046204</threshold>
- <left_val>0.1088251024484634</left_val>
- <right_val>-0.0269776098430157</right_val></_></_>
- <_>
- <!-- tree 58 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>2 4 6 8 -1.</_>
- <_>2 4 3 4 2.</_>
- <_>5 8 3 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>2.8285770677030087e-003</threshold>
- <left_val>0.0768370479345322</left_val>
- <right_val>-0.1572055071592331</right_val></_></_>
- <_>
- <!-- tree 59 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>14 10 4 6 -1.</_>
- <_>14 10 2 6 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0332046113908291</threshold>
- <left_val>-0.2315258979797363</left_val>
- <right_val>0.0159325394779444</right_val></_></_>
- <_>
- <!-- tree 60 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 0 2 12 -1.</_>
- <_>0 6 2 6 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-4.8097351100295782e-004</threshold>
- <left_val>0.1104374006390572</left_val>
- <right_val>-0.1158946007490158</right_val></_></_>
- <_>
- <!-- tree 61 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>13 2 2 12 -1.</_>
- <_>13 2 2 6 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>2.9704240150749683e-003</threshold>
- <left_val>-0.0342437401413918</left_val>
- <right_val>0.0691073983907700</right_val></_></_>
- <_>
- <!-- tree 62 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>9 2 12 2 -1.</_>
- <_>9 2 6 2 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>0.0118931904435158</threshold>
- <left_val>0.0801228806376457</left_val>
- <right_val>-0.2050309032201767</right_val></_></_>
- <_>
- <!-- tree 63 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>10 9 12 4 -1.</_>
- <_>16 9 6 2 2.</_>
- <_>10 11 6 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0639636069536209</threshold>
- <left_val>-0.8553075194358826</left_val>
- <right_val>6.4783529378473759e-003</right_val></_></_>
- <_>
- <!-- tree 64 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 9 12 4 -1.</_>
- <_>0 9 6 2 2.</_>
- <_>6 11 6 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-5.6093540042638779e-003</threshold>
- <left_val>0.1627894937992096</left_val>
- <right_val>-0.1007907018065453</right_val></_></_>
- <_>
- <!-- tree 65 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>17 9 4 9 -1.</_>
- <_>17 12 4 3 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>7.5979339890182018e-003</threshold>
- <left_val>0.0541234090924263</left_val>
- <right_val>-0.1243126988410950</right_val></_></_>
- <_>
- <!-- tree 66 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>1 9 10 6 -1.</_>
- <_>1 9 5 3 2.</_>
- <_>6 12 5 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0134808197617531</threshold>
- <left_val>-0.0637513026595116</left_val>
- <right_val>0.2525062859058380</right_val></_></_>
- <_>
- <!-- tree 67 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>8 12 9 4 -1.</_>
- <_>8 14 9 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-9.4613758847117424e-004</threshold>
- <left_val>0.0428358688950539</left_val>
- <right_val>-0.0768371000885963</right_val></_></_>
- <_>
- <!-- tree 68 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>2 8 6 10 -1.</_>
- <_>2 8 3 5 2.</_>
- <_>5 13 3 5 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0380624905228615</threshold>
- <left_val>0.1925217956304550</left_val>
- <right_val>-0.0639471337199211</right_val></_></_>
- <_>
- <!-- tree 69 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>7 10 12 6 -1.</_>
- <_>10 10 6 6 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.1241089999675751</threshold>
- <left_val>7.9416595399379730e-003</left_val>
- <right_val>-0.4265302121639252</right_val></_></_>
- <_>
- <!-- tree 70 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>3 10 12 6 -1.</_>
- <_>6 10 6 6 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0922284424304962</threshold>
- <left_val>-0.5521062016487122</left_val>
- <right_val>0.0289649106562138</right_val></_></_>
- <_>
- <!-- tree 71 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>20 0 2 12 -1.</_>
- <_>20 6 2 6 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0151067702099681</threshold>
- <left_val>0.0276093408465385</left_val>
- <right_val>-0.1668844968080521</right_val></_></_>
- <_>
- <!-- tree 72 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 0 2 12 -1.</_>
- <_>0 6 2 6 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0236542504280806</threshold>
- <left_val>-0.3437967896461487</left_val>
- <right_val>0.0395133309066296</right_val></_></_>
- <_>
- <!-- tree 73 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>14 3 4 15 -1.</_>
- <_>14 3 2 15 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0478813908994198</threshold>
- <left_val>8.0661084502935410e-003</left_val>
- <right_val>-0.1818519979715347</right_val></_></_>
- <_>
- <!-- tree 74 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 1 16 14 -1.</_>
- <_>0 1 8 7 2.</_>
- <_>8 8 8 7 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0854152888059616</threshold>
- <left_val>-0.0467524081468582</left_val>
- <right_val>0.2716900110244751</right_val></_></_>
- <_>
- <!-- tree 75 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>11 0 8 10 -1.</_>
- <_>11 0 8 5 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>3.1524940859526396e-003</threshold>
- <left_val>-0.0864214003086090</left_val>
- <right_val>0.0683360025286675</right_val></_></_>
- <_>
- <!-- tree 76 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 3 16 4 -1.</_>
- <_>0 3 8 2 2.</_>
- <_>8 5 8 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-3.0099870637059212e-003</threshold>
- <left_val>0.0893362089991570</left_val>
- <right_val>-0.1362684965133667</right_val></_></_>
- <_>
- <!-- tree 77 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>13 0 7 12 -1.</_>
- <_>13 4 7 4 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0581125207245350</threshold>
- <left_val>-0.1974812000989914</left_val>
- <right_val>0.0265364404767752</right_val></_></_>
- <_>
- <!-- tree 78 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>5 3 11 15 -1.</_>
- <_>5 8 11 5 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.1277566999197006</threshold>
- <left_val>-0.0498380400240421</left_val>
- <right_val>0.3489640057086945</right_val></_></_>
- <_>
- <!-- tree 79 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>13 0 7 12 -1.</_>
- <_>13 4 7 4 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.1201129034161568</threshold>
- <left_val>-6.3313432037830353e-003</left_val>
- <right_val>0.3793754875659943</right_val></_></_>
- <_>
- <!-- tree 80 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>2 0 7 12 -1.</_>
- <_>2 4 7 4 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>4.7567482106387615e-003</threshold>
- <left_val>0.1049041971564293</left_val>
- <right_val>-0.1354257017374039</right_val></_></_>
- <_>
- <!-- tree 81 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>4 5 18 12 -1.</_>
- <_>10 9 6 4 9.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0159023497253656</threshold>
- <left_val>0.0617863014340401</left_val>
- <right_val>-0.0983760803937912</right_val></_></_>
- <_>
- <!-- tree 82 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>4 7 14 6 -1.</_>
- <_>4 7 7 3 2.</_>
- <_>11 10 7 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0564237087965012</threshold>
- <left_val>-0.6337103247642517</left_val>
- <right_val>0.0202245991677046</right_val></_></_>
- <_>
- <!-- tree 83 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>7 9 13 3 -1.</_>
- <_>7 10 13 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0796413272619247</threshold>
- <left_val>-1.</left_val>
- <right_val>8.7428308324888349e-004</right_val></_></_>
- <_>
- <!-- tree 84 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>2 9 13 3 -1.</_>
- <_>2 10 13 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-2.0731301046907902e-003</threshold>
- <left_val>0.1384645998477936</left_val>
- <right_val>-0.0958653017878532</right_val></_></_>
- <_>
- <!-- tree 85 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>5 9 17 3 -1.</_>
- <_>5 10 17 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>5.8470368385314941e-003</threshold>
- <left_val>-0.0570338405668736</left_val>
- <right_val>0.1169179975986481</right_val></_></_>
- <_>
- <!-- tree 86 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>1 1 10 9 -1.</_>
- <_>1 4 10 3 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0261389501392841</threshold>
- <left_val>-0.2236243933439255</left_val>
- <right_val>0.0555466301739216</right_val></_></_>
- <_>
- <!-- tree 87 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>4 1 16 8 -1.</_>
- <_>4 3 16 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-6.5781630109995604e-004</threshold>
- <left_val>0.0929992273449898</left_val>
- <right_val>-0.0841521173715591</right_val></_></_>
- <_>
- <!-- tree 88 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>6 5 6 12 -1.</_>
- <_>8 5 2 12 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0560413897037506</threshold>
- <left_val>0.3507285118103027</left_val>
- <right_val>-0.0314722806215286</right_val></_></_>
- <_>
- <!-- tree 89 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>11 7 6 5 -1.</_>
- <_>11 7 3 5 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>0.0977998003363609</threshold>
- <left_val>0.0101244300603867</left_val>
- <right_val>-0.3771406114101410</right_val></_></_>
- <_>
- <!-- tree 90 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>5 4 9 5 -1.</_>
- <_>8 4 3 5 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>4.5515140518546104e-003</threshold>
- <left_val>-0.0783113613724709</left_val>
- <right_val>0.1416697055101395</right_val></_></_>
- <_>
- <!-- tree 91 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>2 12 18 4 -1.</_>
- <_>11 12 9 2 2.</_>
- <_>2 14 9 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0101683801040053</threshold>
- <left_val>0.0521139912307262</left_val>
- <right_val>-0.2442279011011124</right_val></_></_>
- <_>
- <!-- tree 92 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>11 4 9 3 -1.</_>
- <_>10 5 9 1 3.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>0.0628854036331177</threshold>
- <left_val>-0.0182555094361305</left_val>
- <right_val>0.6284729242324829</right_val></_></_>
- <_>
- <!-- tree 93 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>15 0 2 10 -1.</_>
- <_>15 0 1 10 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-0.0480641312897205</threshold>
- <left_val>-0.8681743144989014</left_val>
- <right_val>6.6064838320016861e-003</right_val></_></_>
- <_>
- <!-- tree 94 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 5 18 12 -1.</_>
- <_>6 9 6 4 9.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0184799004346132</threshold>
- <left_val>0.0699778124690056</left_val>
- <right_val>-0.1592939943075180</right_val></_></_>
- <_>
- <!-- tree 95 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>14 9 4 6 -1.</_>
- <_>14 9 2 6 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0245498400181532</threshold>
- <left_val>-0.0175191201269627</left_val>
- <right_val>0.1796191930770874</right_val></_></_>
- <_>
- <!-- tree 96 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>5 6 3 12 -1.</_>
- <_>5 10 3 4 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0392274707555771</threshold>
- <left_val>-0.0474179908633232</left_val>
- <right_val>0.2794578969478607</right_val></_></_>
- <_>
- <!-- tree 97 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>11 0 3 9 -1.</_>
- <_>12 1 1 9 3.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>0.0412481985986233</threshold>
- <left_val>0.0114593701437116</left_val>
- <right_val>-0.4347747862339020</right_val></_></_>
- <_>
- <!-- tree 98 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>1 9 4 9 -1.</_>
- <_>1 12 4 3 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-8.4321142639964819e-004</threshold>
- <left_val>0.1275885999202728</left_val>
- <right_val>-0.0970105603337288</right_val></_></_>
- <_>
- <!-- tree 99 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>18 9 4 9 -1.</_>
- <_>18 12 4 3 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0136887403205037</threshold>
- <left_val>-0.1623619049787521</left_val>
- <right_val>0.0432909503579140</right_val></_></_>
- <_>
- <!-- tree 100 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>6 9 6 4 -1.</_>
- <_>9 9 3 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0559825114905834</threshold>
- <left_val>-0.7543113827705383</left_val>
- <right_val>0.0157977100461721</right_val></_></_>
- <_>
- <!-- tree 101 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>11 0 3 9 -1.</_>
- <_>12 1 1 9 3.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>0.0735782682895660</threshold>
- <left_val>-1.4777439646422863e-003</left_val>
- <right_val>-1.0000350475311279</right_val></_></_>
- <_>
- <!-- tree 102 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>11 0 9 3 -1.</_>
- <_>10 1 9 1 3.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>3.7084969226270914e-003</threshold>
- <left_val>-0.0971846431493759</left_val>
- <right_val>0.1243532970547676</right_val></_></_>
- <_>
- <!-- tree 103 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>5 15 12 2 -1.</_>
- <_>5 16 12 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-1.4889879821566865e-005</threshold>
- <left_val>0.0714653432369232</left_val>
- <right_val>-0.1684084981679916</right_val></_></_>
- <_>
- <!-- tree 104 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 0 22 2 -1.</_>
- <_>11 0 11 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.1048756018280983</threshold>
- <left_val>0.0150766503065825</left_val>
- <right_val>-0.7115948200225830</right_val></_></_>
- <_>
- <!-- tree 105 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>20 0 2 13 -1.</_>
- <_>20 0 1 13 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0125874895602465</threshold>
- <left_val>-0.0207713004201651</left_val>
- <right_val>0.1746868044137955</right_val></_></_>
- <_>
- <!-- tree 106 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 0 2 13 -1.</_>
- <_>1 0 1 13 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-2.2228389570955187e-004</threshold>
- <left_val>0.1178164035081863</left_val>
- <right_val>-0.0926274582743645</right_val></_></_>
- <_>
- <!-- tree 107 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>10 1 6 6 -1.</_>
- <_>12 1 2 6 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0777604132890701</threshold>
- <left_val>-0.7460541129112244</left_val>
- <right_val>3.6328181158751249e-003</right_val></_></_>
- <_>
- <!-- tree 108 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>6 1 6 6 -1.</_>
- <_>8 1 2 6 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0450434200465679</threshold>
- <left_val>0.0222178697586060</left_val>
- <right_val>-0.5005291104316711</right_val></_></_>
- <_>
- <!-- tree 109 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>10 7 12 3 -1.</_>
- <_>10 8 12 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>3.5614410880953074e-003</threshold>
- <left_val>-0.0512132197618485</left_val>
- <right_val>0.0899865031242371</right_val></_></_>
- <_>
- <!-- tree 110 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 7 12 3 -1.</_>
- <_>0 8 12 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-7.4102368671447039e-004</threshold>
- <left_val>0.1393804997205734</left_val>
- <right_val>-0.1027221977710724</right_val></_></_></trees>
- <stage_threshold>-0.6816900968551636</stage_threshold>
- <parent>20</parent>
- <next>-1</next></_>
- <_>
- <!-- stage 22 -->
- <trees>
- <_>
- <!-- tree 0 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>1 9 8 6 -1.</_>
- <_>1 9 4 3 2.</_>
- <_>5 12 4 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-8.5600130259990692e-003</threshold>
- <left_val>0.1657890975475311</left_val>
- <right_val>-0.1641291975975037</right_val></_></_>
- <_>
- <!-- tree 1 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>10 10 7 4 -1.</_>
- <_>10 12 7 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0307988096028566</threshold>
- <left_val>-0.0334956496953964</left_val>
- <right_val>0.2857865095138550</right_val></_></_>
- <_>
- <!-- tree 2 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>8 10 4 6 -1.</_>
- <_>10 10 2 6 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-3.7319411057978868e-004</threshold>
- <left_val>0.1252344995737076</left_val>
- <right_val>-0.1211517006158829</right_val></_></_>
- <_>
- <!-- tree 3 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>13 6 8 4 -1.</_>
- <_>13 6 4 4 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-0.0192538499832153</threshold>
- <left_val>-0.0877408832311630</left_val>
- <right_val>0.0390665717422962</right_val></_></_>
- <_>
- <!-- tree 4 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>10 1 8 7 -1.</_>
- <_>12 3 4 7 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-8.5401646792888641e-003</threshold>
- <left_val>0.1315227001905441</left_val>
- <right_val>-0.1300774067640305</right_val></_></_>
- <_>
- <!-- tree 5 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>8 5 8 7 -1.</_>
- <_>8 5 4 7 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.1242434978485107</threshold>
- <left_val>0.0190199799835682</left_val>
- <right_val>-0.7824705243110657</right_val></_></_>
- <_>
- <!-- tree 6 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>6 5 8 7 -1.</_>
- <_>10 5 4 7 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0400934182107449</threshold>
- <left_val>-0.0407437682151794</left_val>
- <right_val>0.3885174989700317</right_val></_></_>
- <_>
- <!-- tree 7 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>6 3 16 12 -1.</_>
- <_>14 3 8 6 2.</_>
- <_>6 9 8 6 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-4.4169559259898961e-005</threshold>
- <left_val>0.0455269701778889</left_val>
- <right_val>-0.0880638062953949</right_val></_></_>
- <_>
- <!-- tree 8 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>4 11 6 6 -1.</_>
- <_>4 13 6 2 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0176628492772579</threshold>
- <left_val>-0.3137181103229523</left_val>
- <right_val>0.0517943389713764</right_val></_></_>
- <_>
- <!-- tree 9 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>4 2 18 14 -1.</_>
- <_>13 2 9 7 2.</_>
- <_>4 9 9 7 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0523685105144978</threshold>
- <left_val>-0.0358459986746311</left_val>
- <right_val>0.1500973999500275</right_val></_></_>
- <_>
- <!-- tree 10 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>5 0 11 12 -1.</_>
- <_>5 3 11 6 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0287192799150944</threshold>
- <left_val>-0.1984937936067581</left_val>
- <right_val>0.0780990719795227</right_val></_></_>
- <_>
- <!-- tree 11 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>4 7 16 9 -1.</_>
- <_>4 10 16 3 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0694357901811600</threshold>
- <left_val>-0.0550737306475639</left_val>
- <right_val>0.2178084999322891</right_val></_></_>
- <_>
- <!-- tree 12 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 1 18 3 -1.</_>
- <_>0 2 18 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0547944381833076</threshold>
- <left_val>-0.0302236899733543</left_val>
- <right_val>0.6299396753311157</right_val></_></_>
- <_>
- <!-- tree 13 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>12 13 6 4 -1.</_>
- <_>12 15 6 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0153155000880361</threshold>
- <left_val>-0.1505279988050461</left_val>
- <right_val>0.0201943702995777</right_val></_></_>
- <_>
- <!-- tree 14 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>1 10 6 8 -1.</_>
- <_>1 10 3 4 2.</_>
- <_>4 14 3 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0290019698441029</threshold>
- <left_val>-0.0207389891147614</left_val>
- <right_val>0.4564509987831116</right_val></_></_>
- <_>
- <!-- tree 15 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>14 12 8 6 -1.</_>
- <_>18 12 4 3 2.</_>
- <_>14 15 4 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0232647694647312</threshold>
- <left_val>0.1467252969741821</left_val>
- <right_val>-0.0380813516676426</right_val></_></_>
- <_>
- <!-- tree 16 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>9 3 12 3 -1.</_>
- <_>13 7 4 3 3.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>0.0190631095319986</threshold>
- <left_val>0.0729212388396263</left_val>
- <right_val>-0.2272370010614395</right_val></_></_>
- <_>
- <!-- tree 17 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>8 12 6 6 -1.</_>
- <_>8 12 3 6 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>1.2208239641040564e-003</threshold>
- <left_val>0.0734713226556778</left_val>
- <right_val>-0.1912292987108231</right_val></_></_>
- <_>
- <!-- tree 18 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>4 8 14 10 -1.</_>
- <_>4 13 14 5 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.1756591051816940</threshold>
- <left_val>0.2592468857765198</left_val>
- <right_val>-0.0560151189565659</right_val></_></_>
- <_>
- <!-- tree 19 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>11 2 8 8 -1.</_>
- <_>11 2 4 8 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-0.0380421318113804</threshold>
- <left_val>0.1611361056566238</left_val>
- <right_val>-0.0437588207423687</right_val></_></_>
- <_>
- <!-- tree 20 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>9 6 4 8 -1.</_>
- <_>9 6 4 4 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>0.0301302596926689</threshold>
- <left_val>0.0578308291733265</left_val>
- <right_val>-0.2977417111396790</right_val></_></_>
- <_>
- <!-- tree 21 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>18 3 4 10 -1.</_>
- <_>18 3 4 5 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>0.0200892202556133</threshold>
- <left_val>-0.0605096295475960</left_val>
- <right_val>0.0334416814148426</right_val></_></_>
- <_>
- <!-- tree 22 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>5 15 12 3 -1.</_>
- <_>9 15 4 3 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>2.6193389203399420e-004</threshold>
- <left_val>-0.1517544984817505</left_val>
- <right_val>0.1109410971403122</right_val></_></_>
- <_>
- <!-- tree 23 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>11 8 4 6 -1.</_>
- <_>11 8 4 3 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>0.0403106287121773</threshold>
- <left_val>0.0174771193414927</left_val>
- <right_val>-0.1418537944555283</right_val></_></_>
- <_>
- <!-- tree 24 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>11 8 6 4 -1.</_>
- <_>11 8 3 4 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-2.9343019705265760e-003</threshold>
- <left_val>-0.1696013957262039</left_val>
- <right_val>0.0935302525758743</right_val></_></_>
- <_>
- <!-- tree 25 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>3 13 16 5 -1.</_>
- <_>7 13 8 5 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0145545201376081</threshold>
- <left_val>-0.0758445262908936</left_val>
- <right_val>0.2777166068553925</right_val></_></_>
- <_>
- <!-- tree 26 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>6 2 4 12 -1.</_>
- <_>6 2 2 6 2.</_>
- <_>8 8 2 6 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>3.4086001105606556e-003</threshold>
- <left_val>0.0739333108067513</left_val>
- <right_val>-0.1962659060955048</right_val></_></_>
- <_>
- <!-- tree 27 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>2 14 18 4 -1.</_>
- <_>11 14 9 2 2.</_>
- <_>2 16 9 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-6.7988429218530655e-003</threshold>
- <left_val>-0.2013248056173325</left_val>
- <right_val>0.0582760386168957</right_val></_></_>
- <_>
- <!-- tree 28 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>3 1 12 3 -1.</_>
- <_>3 2 12 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-5.0457930192351341e-003</threshold>
- <left_val>0.1944606006145477</left_val>
- <right_val>-0.0716915801167488</right_val></_></_>
- <_>
- <!-- tree 29 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>6 1 16 3 -1.</_>
- <_>6 2 16 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0104650100693107</threshold>
- <left_val>-0.0473145917057991</left_val>
- <right_val>0.1931611001491547</right_val></_></_>
- <_>
- <!-- tree 30 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>5 3 8 3 -1.</_>
- <_>9 3 4 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-1.6713530058041215e-003</threshold>
- <left_val>0.0929151475429535</left_val>
- <right_val>-0.1189012974500656</right_val></_></_>
- <_>
- <!-- tree 31 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>16 3 4 6 -1.</_>
- <_>16 3 4 3 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-0.0427043586969376</threshold>
- <left_val>0.1696103960275650</left_val>
- <right_val>-0.0206326507031918</right_val></_></_>
- <_>
- <!-- tree 32 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>4 3 10 4 -1.</_>
- <_>4 3 5 4 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>0.2036782950162888</threshold>
- <left_val>0.0232468992471695</left_val>
- <right_val>-0.4942026138305664</right_val></_></_>
- <_>
- <!-- tree 33 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>14 5 6 8 -1.</_>
- <_>17 5 3 4 2.</_>
- <_>14 9 3 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-8.3379482384771109e-004</threshold>
- <left_val>0.0500010699033737</left_val>
- <right_val>-0.0737798064947128</right_val></_></_>
- <_>
- <!-- tree 34 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>1 2 14 12 -1.</_>
- <_>1 5 14 6 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.1785476952791214</threshold>
- <left_val>0.0155882900580764</left_val>
- <right_val>-0.7765008211135864</right_val></_></_>
- <_>
- <!-- tree 35 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>11 2 6 12 -1.</_>
- <_>11 5 6 6 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.1353528946638107</threshold>
- <left_val>-0.5229911208152771</left_val>
- <right_val>3.1595760956406593e-003</right_val></_></_>
- <_>
- <!-- tree 36 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>5 2 6 12 -1.</_>
- <_>5 5 6 6 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0465552695095539</threshold>
- <left_val>-0.0418910607695580</left_val>
- <right_val>0.3032479882240295</right_val></_></_>
- <_>
- <!-- tree 37 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>11 5 8 5 -1.</_>
- <_>11 5 4 5 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>0.0226636491715908</threshold>
- <left_val>0.0388511605560780</left_val>
- <right_val>-0.0851962268352509</right_val></_></_>
- <_>
- <!-- tree 38 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>4 0 9 18 -1.</_>
- <_>7 0 3 18 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.2302772998809815</threshold>
- <left_val>-0.9350309967994690</left_val>
- <right_val>0.0139423497021198</right_val></_></_>
- <_>
- <!-- tree 39 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>11 14 6 4 -1.</_>
- <_>11 16 6 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0257141403853893</threshold>
- <left_val>-9.1460775583982468e-003</left_val>
- <right_val>0.7806320190429688</right_val></_></_>
- <_>
- <!-- tree 40 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>5 14 6 4 -1.</_>
- <_>5 16 6 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-7.3728510869841557e-006</threshold>
- <left_val>0.0627309232950211</left_val>
- <right_val>-0.2004217058420181</right_val></_></_>
- <_>
- <!-- tree 41 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>12 13 6 4 -1.</_>
- <_>12 15 6 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0197578892111778</threshold>
- <left_val>-0.2343472987413406</left_val>
- <right_val>0.0146009000018239</right_val></_></_>
- <_>
- <!-- tree 42 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>1 6 13 3 -1.</_>
- <_>1 7 13 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-4.1893101297318935e-003</threshold>
- <left_val>0.1497139930725098</left_val>
- <right_val>-0.0693688690662384</right_val></_></_>
- <_>
- <!-- tree 43 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>10 6 12 3 -1.</_>
- <_>10 7 12 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>1.1314969742670655e-003</threshold>
- <left_val>-0.0692035928368568</left_val>
- <right_val>0.1044744029641151</right_val></_></_>
- <_>
- <!-- tree 44 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>1 8 6 4 -1.</_>
- <_>4 8 3 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>6.3914088532328606e-003</threshold>
- <left_val>0.0561340302228928</left_val>
- <right_val>-0.1986276954412460</right_val></_></_>
- <_>
- <!-- tree 45 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>14 12 6 6 -1.</_>
- <_>16 12 2 6 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-3.7047569639980793e-003</threshold>
- <left_val>0.0968172922730446</left_val>
- <right_val>-0.0952822864055634</right_val></_></_>
- <_>
- <!-- tree 46 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>2 12 6 6 -1.</_>
- <_>4 12 2 6 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0306274592876434</threshold>
- <left_val>-0.0500796400010586</left_val>
- <right_val>0.2602388858795166</right_val></_></_>
- <_>
- <!-- tree 47 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>7 15 12 3 -1.</_>
- <_>11 15 4 3 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0324444398283958</threshold>
- <left_val>0.0310999397188425</left_val>
- <right_val>-0.2078860998153687</right_val></_></_>
- <_>
- <!-- tree 48 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>1 12 8 5 -1.</_>
- <_>5 12 4 5 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0116515597328544</threshold>
- <left_val>-0.0583119504153728</left_val>
- <right_val>0.2537410855293274</right_val></_></_>
- <_>
- <!-- tree 49 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>14 5 6 8 -1.</_>
- <_>17 5 3 4 2.</_>
- <_>14 9 3 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0365152209997177</threshold>
- <left_val>-0.2674919068813324</left_val>
- <right_val>0.0205362495034933</right_val></_></_>
- <_>
- <!-- tree 50 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>2 5 6 8 -1.</_>
- <_>2 5 3 4 2.</_>
- <_>5 9 3 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0174746308475733</threshold>
- <left_val>0.0474169813096523</left_val>
- <right_val>-0.3371900916099548</right_val></_></_>
- <_>
- <!-- tree 51 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>14 11 8 6 -1.</_>
- <_>18 11 4 3 2.</_>
- <_>14 14 4 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-1.5204170485958457e-003</threshold>
- <left_val>0.0589338093996048</left_val>
- <right_val>-0.0958449468016624</right_val></_></_>
- <_>
- <!-- tree 52 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>4 0 8 6 -1.</_>
- <_>4 0 4 3 2.</_>
- <_>8 3 4 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0477611795067787</threshold>
- <left_val>0.0108497003093362</left_val>
- <right_val>-0.8663501739501953</right_val></_></_>
- <_>
- <!-- tree 53 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>14 3 7 4 -1.</_>
- <_>14 3 7 2 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-0.0635691136121750</threshold>
- <left_val>0.2585859894752502</left_val>
- <right_val>-0.0181565806269646</right_val></_></_>
- <_>
- <!-- tree 54 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 11 8 6 -1.</_>
- <_>0 11 4 3 2.</_>
- <_>4 14 4 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-1.7476839711889625e-003</threshold>
- <left_val>0.0757502466440201</left_val>
- <right_val>-0.1429527997970581</right_val></_></_>
- <_>
- <!-- tree 55 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>4 13 14 4 -1.</_>
- <_>4 15 14 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-4.6762558631598949e-003</threshold>
- <left_val>-0.0912233963608742</left_val>
- <right_val>0.1313527971506119</right_val></_></_>
- <_>
- <!-- tree 56 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>5 3 9 8 -1.</_>
- <_>8 3 3 8 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0222021006047726</threshold>
- <left_val>-0.0533974505960941</left_val>
- <right_val>0.2074397951364517</right_val></_></_>
- <_>
- <!-- tree 57 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>5 0 15 8 -1.</_>
- <_>10 0 5 8 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.2464735954999924</threshold>
- <left_val>-0.4561021924018860</left_val>
- <right_val>3.5777890589088202e-003</right_val></_></_>
- <_>
- <!-- tree 58 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>2 0 15 8 -1.</_>
- <_>7 0 5 8 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>5.0148782320320606e-003</threshold>
- <left_val>0.0888718292117119</left_val>
- <right_val>-0.1623649001121521</right_val></_></_>
- <_>
- <!-- tree 59 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>14 0 6 11 -1.</_>
- <_>16 0 2 11 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0420239716768265</threshold>
- <left_val>0.1280557960271835</left_val>
- <right_val>-0.0119267599657178</right_val></_></_>
- <_>
- <!-- tree 60 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 16 18 2 -1.</_>
- <_>6 16 6 2 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.1089551970362663</threshold>
- <left_val>-0.6646612286567688</left_val>
- <right_val>0.0159055497497320</right_val></_></_>
- <_>
- <!-- tree 61 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>5 3 12 9 -1.</_>
- <_>9 6 4 3 9.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.3667292892932892</threshold>
- <left_val>0.3637480139732361</left_val>
- <right_val>-0.0312062297016382</right_val></_></_>
- <_>
- <!-- tree 62 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>8 3 4 7 -1.</_>
- <_>8 3 2 7 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>9.5884501934051514e-003</threshold>
- <left_val>0.0910735502839088</left_val>
- <right_val>-0.1249236017465591</right_val></_></_>
- <_>
- <!-- tree 63 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>10 3 6 8 -1.</_>
- <_>12 3 2 8 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>1.6124530229717493e-003</threshold>
- <left_val>0.0337519794702530</left_val>
- <right_val>-0.0587492398917675</right_val></_></_>
- <_>
- <!-- tree 64 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>6 3 6 8 -1.</_>
- <_>8 3 2 8 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0178824309259653</threshold>
- <left_val>0.2099276930093765</left_val>
- <right_val>-0.0632152333855629</right_val></_></_>
- <_>
- <!-- tree 65 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>7 13 12 4 -1.</_>
- <_>7 15 12 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-6.6655018599703908e-005</threshold>
- <left_val>0.0550200305879116</left_val>
- <right_val>-0.1790881007909775</right_val></_></_>
- <_>
- <!-- tree 66 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>3 9 16 8 -1.</_>
- <_>3 9 8 4 2.</_>
- <_>11 13 8 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0109126102179289</threshold>
- <left_val>-0.1787886023521423</left_val>
- <right_val>0.0640889033675194</right_val></_></_>
- <_>
- <!-- tree 67 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>9 0 13 3 -1.</_>
- <_>9 1 13 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-1.9031569827347994e-003</threshold>
- <left_val>0.1101256012916565</left_val>
- <right_val>-0.0625764429569244</right_val></_></_>
- <_>
- <!-- tree 68 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>4 0 4 12 -1.</_>
- <_>4 0 2 6 2.</_>
- <_>6 6 2 6 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>4.7322059981524944e-003</threshold>
- <left_val>0.0606118105351925</left_val>
- <right_val>-0.1752125024795532</right_val></_></_>
- <_>
- <!-- tree 69 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>1 11 20 4 -1.</_>
- <_>6 11 10 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.1795500069856644</threshold>
- <left_val>-0.0264137107878923</left_val>
- <right_val>0.5146319866180420</right_val></_></_>
- <_>
- <!-- tree 70 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>3 14 6 4 -1.</_>
- <_>6 14 3 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-1.8869279883801937e-003</threshold>
- <left_val>0.0707328692078590</left_val>
- <right_val>-0.1897756010293961</right_val></_></_>
- <_>
- <!-- tree 71 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>10 6 12 3 -1.</_>
- <_>10 7 12 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-3.5322420299053192e-003</threshold>
- <left_val>0.0958002880215645</left_val>
- <right_val>-0.0492516607046127</right_val></_></_>
- <_>
- <!-- tree 72 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 6 12 3 -1.</_>
- <_>0 7 12 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>1.0818409500643611e-003</threshold>
- <left_val>-0.0970824882388115</left_val>
- <right_val>0.1409244984388351</right_val></_></_>
- <_>
- <!-- tree 73 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>6 2 14 6 -1.</_>
- <_>6 4 14 2 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0954552590847015</threshold>
- <left_val>-0.6837651729583740</left_val>
- <right_val>8.8187018409371376e-003</right_val></_></_>
- <_>
- <!-- tree 74 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>4 1 6 4 -1.</_>
- <_>4 1 6 2 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>1.6179149970412254e-003</threshold>
- <left_val>-0.0951295793056488</left_val>
- <right_val>0.1135148033499718</right_val></_></_>
- <_>
- <!-- tree 75 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>1 0 21 18 -1.</_>
- <_>8 0 7 18 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.6554787755012512</threshold>
- <left_val>9.7635984420776367e-003</left_val>
- <right_val>-0.5658118724822998</right_val></_></_>
- <_>
- <!-- tree 76 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>5 0 14 2 -1.</_>
- <_>5 0 7 2 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-0.0779737234115601</threshold>
- <left_val>0.3557372987270355</left_val>
- <right_val>-0.0331261307001114</right_val></_></_>
- <_>
- <!-- tree 77 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>14 8 4 9 -1.</_>
- <_>14 11 4 3 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0202090293169022</threshold>
- <left_val>0.0393016114830971</left_val>
- <right_val>-0.1358025074005127</right_val></_></_>
- <_>
- <!-- tree 78 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>2 0 6 10 -1.</_>
- <_>4 0 2 10 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0903235897421837</threshold>
- <left_val>-0.0159329306334257</left_val>
- <right_val>0.6940913200378418</right_val></_></_>
- <_>
- <!-- tree 79 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>5 11 12 4 -1.</_>
- <_>11 11 6 2 2.</_>
- <_>5 13 6 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-6.2048831023275852e-003</threshold>
- <left_val>-0.1703765988349915</left_val>
- <right_val>0.0680906772613525</right_val></_></_>
- <_>
- <!-- tree 80 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>8 5 4 6 -1.</_>
- <_>10 5 2 6 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0157372504472733</threshold>
- <left_val>0.1625010967254639</left_val>
- <right_val>-0.0665289387106895</right_val></_></_>
- <_>
- <!-- tree 81 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>7 1 15 9 -1.</_>
- <_>12 4 5 3 9.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0353970415890217</threshold>
- <left_val>-0.0897665470838547</left_val>
- <right_val>0.0491357408463955</right_val></_></_>
- <_>
- <!-- tree 82 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 1 15 9 -1.</_>
- <_>5 4 5 3 9.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0328508615493774</threshold>
- <left_val>0.0851581394672394</left_val>
- <right_val>-0.1300231963396072</right_val></_></_>
- <_>
- <!-- tree 83 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>5 0 12 16 -1.</_>
- <_>11 0 6 8 2.</_>
- <_>5 8 6 8 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0840240567922592</threshold>
- <left_val>0.3065848946571350</left_val>
- <right_val>-0.0393136218190193</right_val></_></_>
- <_>
- <!-- tree 84 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>8 10 6 5 -1.</_>
- <_>11 10 3 5 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>2.1347659640014172e-003</threshold>
- <left_val>0.0833869501948357</left_val>
- <right_val>-0.1223948001861572</right_val></_></_>
- <_>
- <!-- tree 85 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>10 4 8 9 -1.</_>
- <_>10 7 8 3 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.1792261004447937</threshold>
- <left_val>2.6004109531641006e-003</left_val>
- <right_val>-0.9998909235000610</right_val></_></_>
- <_>
- <!-- tree 86 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>4 4 8 9 -1.</_>
- <_>4 7 8 3 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.1185439005494118</threshold>
- <left_val>0.0110983699560165</left_val>
- <right_val>-0.8962950706481934</right_val></_></_>
- <_>
- <!-- tree 87 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>8 3 12 3 -1.</_>
- <_>8 4 12 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-2.7351840399205685e-003</threshold>
- <left_val>0.1158913001418114</left_val>
- <right_val>-0.0635892078280449</right_val></_></_>
- <_>
- <!-- tree 88 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 3 13 3 -1.</_>
- <_>0 4 13 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>6.6092880442738533e-003</threshold>
- <left_val>-0.0794914290308952</left_val>
- <right_val>0.1850122958421707</right_val></_></_>
- <_>
- <!-- tree 89 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>10 1 12 3 -1.</_>
- <_>14 1 4 3 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0210720095783472</threshold>
- <left_val>-0.1470849961042404</left_val>
- <right_val>0.0260712802410126</right_val></_></_>
- <_>
- <!-- tree 90 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 1 12 3 -1.</_>
- <_>4 1 4 3 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0134116197004914</threshold>
- <left_val>0.0486455895006657</left_val>
- <right_val>-0.2204180061817169</right_val></_></_>
- <_>
- <!-- tree 91 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>8 3 12 3 -1.</_>
- <_>8 4 12 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0206615403294563</threshold>
- <left_val>0.2137404978275299</left_val>
- <right_val>-0.0222432296723127</right_val></_></_>
- <_>
- <!-- tree 92 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>8 4 6 4 -1.</_>
- <_>8 4 3 4 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-0.1093925014138222</threshold>
- <left_val>-0.7923508882522583</left_val>
- <right_val>0.0119324997067451</right_val></_></_>
- <_>
- <!-- tree 93 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>13 2 2 11 -1.</_>
- <_>13 2 1 11 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>0.0545732714235783</threshold>
- <left_val>-8.7064085528254509e-003</left_val>
- <right_val>0.3822610974311829</right_val></_></_>
- <_>
- <!-- tree 94 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>9 2 11 2 -1.</_>
- <_>9 2 11 1 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-0.0278459899127483</threshold>
- <left_val>0.4209634065628052</left_val>
- <right_val>-0.0343008190393448</right_val></_></_>
- <_>
- <!-- tree 95 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>11 1 3 16 -1.</_>
- <_>11 9 3 8 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.1497317999601364</threshold>
- <left_val>5.5857440456748009e-003</left_val>
- <right_val>-0.7102707028388977</right_val></_></_>
- <_>
- <!-- tree 96 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>7 1 4 9 -1.</_>
- <_>7 4 4 3 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0545480214059353</threshold>
- <left_val>0.0192897692322731</left_val>
- <right_val>-0.5506185293197632</right_val></_></_>
- <_>
- <!-- tree 97 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>12 4 4 8 -1.</_>
- <_>12 8 4 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>5.4990737698972225e-003</threshold>
- <left_val>0.0436438918113709</left_val>
- <right_val>-0.1223369985818863</right_val></_></_>
- <_>
- <!-- tree 98 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>1 7 6 4 -1.</_>
- <_>1 9 6 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>3.5988059244118631e-004</threshold>
- <left_val>-0.0950050204992294</left_val>
- <right_val>0.1250164061784744</right_val></_></_>
- <_>
- <!-- tree 99 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>12 4 4 8 -1.</_>
- <_>12 8 4 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0510030686855316</threshold>
- <left_val>-0.3464818894863129</left_val>
- <right_val>0.0141243999823928</right_val></_></_>
- <_>
- <!-- tree 100 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>6 4 4 8 -1.</_>
- <_>6 8 4 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0593791306018829</threshold>
- <left_val>0.6884043216705322</left_val>
- <right_val>-0.0207809992134571</right_val></_></_>
- <_>
- <!-- tree 101 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>19 3 3 12 -1.</_>
- <_>20 4 1 12 3.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>0.0689760372042656</threshold>
- <left_val>8.5678137838840485e-003</left_val>
- <right_val>-0.6909855008125305</right_val></_></_>
- <_>
- <!-- tree 102 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>3 3 12 3 -1.</_>
- <_>2 4 12 1 3.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-4.3954830616712570e-003</threshold>
- <left_val>-0.1738288998603821</left_val>
- <right_val>0.0691059902310371</right_val></_></_>
- <_>
- <!-- tree 103 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>13 6 3 7 -1.</_>
- <_>14 7 1 7 3.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>0.0138380303978920</threshold>
- <left_val>-0.0293981190770864</left_val>
- <right_val>0.1968578994274139</right_val></_></_>
- <_>
- <!-- tree 104 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>8 12 6 4 -1.</_>
- <_>11 12 3 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-7.5316978618502617e-003</threshold>
- <left_val>-0.3579084873199463</left_val>
- <right_val>0.0396854504942894</right_val></_></_>
- <_>
- <!-- tree 105 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>10 8 10 10 -1.</_>
- <_>15 8 5 5 2.</_>
- <_>10 13 5 5 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0882997065782547</threshold>
- <left_val>-0.2377042025327683</left_val>
- <right_val>3.0232321005314589e-003</right_val></_></_>
- <_>
- <!-- tree 106 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>2 8 10 10 -1.</_>
- <_>2 8 5 5 2.</_>
- <_>7 13 5 5 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0441387593746185</threshold>
- <left_val>0.2654140889644623</left_val>
- <right_val>-0.0518651790916920</right_val></_></_></trees>
- <stage_threshold>-0.6068928837776184</stage_threshold>
- <parent>21</parent>
- <next>-1</next></_>
- <_>
- <!-- stage 23 -->
- <trees>
- <_>
- <!-- tree 0 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>1 11 20 3 -1.</_>
- <_>6 11 10 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0925825834274292</threshold>
- <left_val>0.3618328869342804</left_val>
- <right_val>-0.0782759636640549</right_val></_></_>
- <_>
- <!-- tree 1 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>13 8 6 4 -1.</_>
- <_>13 8 3 4 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-4.8143980093300343e-003</threshold>
- <left_val>-0.1268171966075897</left_val>
- <right_val>0.0677237883210182</right_val></_></_>
- <_>
- <!-- tree 2 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>4 11 8 4 -1.</_>
- <_>8 11 4 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0323651283979416</threshold>
- <left_val>-0.0460871085524559</left_val>
- <right_val>0.3269202113151550</right_val></_></_>
- <_>
- <!-- tree 3 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>9 5 10 6 -1.</_>
- <_>9 5 5 6 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0170285701751709</threshold>
- <left_val>0.0913064032793045</left_val>
- <right_val>-0.1166059002280235</right_val></_></_>
- <_>
- <!-- tree 4 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>4 8 6 9 -1.</_>
- <_>7 8 3 9 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.1130862012505531</threshold>
- <left_val>-0.7963135838508606</left_val>
- <right_val>0.0584269911050797</right_val></_></_>
- <_>
- <!-- tree 5 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>4 5 16 4 -1.</_>
- <_>4 5 8 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-3.5633759107440710e-003</threshold>
- <left_val>-0.0826106220483780</left_val>
- <right_val>0.1016670018434525</right_val></_></_>
- <_>
- <!-- tree 6 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>2 4 18 6 -1.</_>
- <_>8 6 6 2 9.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.2410956025123596</threshold>
- <left_val>0.2792722880840302</left_val>
- <right_val>-0.0807449668645859</right_val></_></_>
- <_>
- <!-- tree 7 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>11 1 2 11 -1.</_>
- <_>11 1 1 11 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>0.0225992891937494</threshold>
- <left_val>0.0517445988953114</left_val>
- <right_val>-0.2886540889739990</right_val></_></_>
- <_>
- <!-- tree 8 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>7 1 6 8 -1.</_>
- <_>7 1 3 4 2.</_>
- <_>10 5 3 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0200022701174021</threshold>
- <left_val>-0.0579623617231846</left_val>
- <right_val>0.2904478907585144</right_val></_></_>
- <_>
- <!-- tree 9 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>7 10 8 6 -1.</_>
- <_>9 10 4 6 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-1.9348099594935775e-003</threshold>
- <left_val>0.0988086834549904</left_val>
- <right_val>-0.1236845999956131</right_val></_></_>
- <_>
- <!-- tree 10 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>6 12 9 4 -1.</_>
- <_>9 12 3 4 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-7.5757717713713646e-003</threshold>
- <left_val>-0.2007191032171249</left_val>
- <right_val>0.0927412882447243</right_val></_></_>
- <_>
- <!-- tree 11 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>10 12 9 4 -1.</_>
- <_>13 12 3 4 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0333818197250366</threshold>
- <left_val>-0.0345307588577271</left_val>
- <right_val>0.3087649941444397</right_val></_></_>
- <_>
- <!-- tree 12 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>8 0 10 8 -1.</_>
- <_>8 0 5 8 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>0.0474189817905426</threshold>
- <left_val>-0.1356326937675476</left_val>
- <right_val>0.1101675033569336</right_val></_></_>
- <_>
- <!-- tree 13 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>9 6 12 4 -1.</_>
- <_>15 6 6 2 2.</_>
- <_>9 8 6 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-5.4173129610717297e-003</threshold>
- <left_val>-0.1605008989572525</left_val>
- <right_val>0.0726122930645943</right_val></_></_>
- <_>
- <!-- tree 14 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>4 9 14 5 -1.</_>
- <_>11 9 7 5 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-9.6942558884620667e-003</threshold>
- <left_val>-0.1637648940086365</left_val>
- <right_val>0.0844264701008797</right_val></_></_>
- <_>
- <!-- tree 15 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>14 6 6 6 -1.</_>
- <_>12 8 6 2 3.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-0.0606321692466736</threshold>
- <left_val>0.1647441983222961</left_val>
- <right_val>-0.0269814003258944</right_val></_></_>
- <_>
- <!-- tree 16 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>6 4 6 7 -1.</_>
- <_>8 4 2 7 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>5.0302860327064991e-003</threshold>
- <left_val>-0.1099682971835136</left_val>
- <right_val>0.1348073035478592</right_val></_></_>
- <_>
- <!-- tree 17 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>14 9 6 6 -1.</_>
- <_>14 12 6 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0877922028303146</threshold>
- <left_val>-0.6831796765327454</left_val>
- <right_val>0.0108346100896597</right_val></_></_>
- <_>
- <!-- tree 18 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>2 9 6 6 -1.</_>
- <_>2 12 6 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0303904097527266</threshold>
- <left_val>-0.0424505695700645</left_val>
- <right_val>0.3077059984207153</right_val></_></_>
- <_>
- <!-- tree 19 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>13 8 4 8 -1.</_>
- <_>13 8 2 8 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0515663400292397</threshold>
- <left_val>-0.6284000873565674</left_val>
- <right_val>9.7069833427667618e-003</right_val></_></_>
- <_>
- <!-- tree 20 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>5 8 4 9 -1.</_>
- <_>7 8 2 9 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-4.2446999577805400e-004</threshold>
- <left_val>0.0845956131815910</left_val>
- <right_val>-0.1807512938976288</right_val></_></_>
- <_>
- <!-- tree 21 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>2 4 18 12 -1.</_>
- <_>8 8 6 4 9.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.1213535964488983</threshold>
- <left_val>-0.1271748989820480</left_val>
- <right_val>0.0965750589966774</right_val></_></_>
- <_>
- <!-- tree 22 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>3 5 10 6 -1.</_>
- <_>8 5 5 6 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0151505600661039</threshold>
- <left_val>0.0930375531315804</left_val>
- <right_val>-0.1312790066003799</right_val></_></_>
- <_>
- <!-- tree 23 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>6 0 12 8 -1.</_>
- <_>6 0 6 8 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0394464097917080</threshold>
- <left_val>0.0255436394363642</left_val>
- <right_val>-0.1146064028143883</right_val></_></_>
- <_>
- <!-- tree 24 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 11 8 7 -1.</_>
- <_>2 11 4 7 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-8.2465475425124168e-003</threshold>
- <left_val>0.2400871068239212</left_val>
- <right_val>-0.0516802482306957</right_val></_></_>
- <_>
- <!-- tree 25 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>15 11 6 7 -1.</_>
- <_>17 11 2 7 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0352623611688614</threshold>
- <left_val>-0.0335550494492054</left_val>
- <right_val>0.2057549953460693</right_val></_></_>
- <_>
- <!-- tree 26 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>3 16 14 2 -1.</_>
- <_>3 17 14 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0117030600085855</threshold>
- <left_val>0.0235292501747608</left_val>
- <right_val>-0.4998390078544617</right_val></_></_>
- <_>
- <!-- tree 27 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>9 15 13 3 -1.</_>
- <_>9 16 13 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0429699681699276</threshold>
- <left_val>-0.0126833301037550</left_val>
- <right_val>0.5404338836669922</right_val></_></_>
- <_>
- <!-- tree 28 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 15 13 3 -1.</_>
- <_>0 16 13 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0158117990940809</threshold>
- <left_val>0.3956415057182312</left_val>
- <right_val>-0.0355683900415897</right_val></_></_>
- <_>
- <!-- tree 29 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>5 13 12 3 -1.</_>
- <_>5 14 12 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>4.6253358013927937e-003</threshold>
- <left_val>0.0523705407977104</left_val>
- <right_val>-0.2298993021249771</right_val></_></_>
- <_>
- <!-- tree 30 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 14 14 3 -1.</_>
- <_>0 15 14 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-1.5898230485618114e-003</threshold>
- <left_val>0.1379200965166092</left_val>
- <right_val>-0.0867831930518150</right_val></_></_>
- <_>
- <!-- tree 31 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>13 5 6 6 -1.</_>
- <_>15 5 2 6 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>6.2329089269042015e-004</threshold>
- <left_val>-0.0866438299417496</left_val>
- <right_val>0.0577100291848183</right_val></_></_>
- <_>
- <!-- tree 32 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>3 5 6 6 -1.</_>
- <_>5 5 2 6 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>7.0994929410517216e-003</threshold>
- <left_val>0.0757976174354553</left_val>
- <right_val>-0.1689887046813965</right_val></_></_>
- <_>
- <!-- tree 33 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>2 3 20 4 -1.</_>
- <_>7 3 10 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0696087777614594</threshold>
- <left_val>-0.0124546997249126</left_val>
- <right_val>0.2084520012140274</right_val></_></_>
- <_>
- <!-- tree 34 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>4 13 12 2 -1.</_>
- <_>4 14 12 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0187595207244158</threshold>
- <left_val>-0.5500862002372742</left_val>
- <right_val>0.0210402794182301</right_val></_></_>
- <_>
- <!-- tree 35 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>9 6 9 6 -1.</_>
- <_>12 6 3 6 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0465137884020805</threshold>
- <left_val>-0.0259040091186762</left_val>
- <right_val>0.1832201927900314</right_val></_></_>
- <_>
- <!-- tree 36 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>8 5 6 7 -1.</_>
- <_>10 5 2 7 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0216385796666145</threshold>
- <left_val>-0.0388739109039307</left_val>
- <right_val>0.2991969883441925</right_val></_></_>
- <_>
- <!-- tree 37 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>15 0 3 10 -1.</_>
- <_>16 1 1 10 3.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-0.0767725706100464</threshold>
- <left_val>-1.</left_val>
- <right_val>3.9020550902932882e-003</right_val></_></_>
- <_>
- <!-- tree 38 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>7 0 10 3 -1.</_>
- <_>6 1 10 1 3.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>0.0405355282127857</threshold>
- <left_val>0.0188806802034378</left_val>
- <right_val>-0.6603388786315918</right_val></_></_>
- <_>
- <!-- tree 39 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>11 4 8 6 -1.</_>
- <_>15 4 4 3 2.</_>
- <_>11 7 4 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0403387583792210</threshold>
- <left_val>9.2877401039004326e-003</left_val>
- <right_val>-0.3442203104496002</right_val></_></_>
- <_>
- <!-- tree 40 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>7 0 12 3 -1.</_>
- <_>6 1 12 1 3.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>0.0434042401611805</threshold>
- <left_val>-0.0221117790788412</left_val>
- <right_val>0.5122771263122559</right_val></_></_>
- <_>
- <!-- tree 41 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>19 4 3 11 -1.</_>
- <_>20 5 1 11 3.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>0.0168951302766800</threshold>
- <left_val>0.0300584807991982</left_val>
- <right_val>-0.1864860057830811</right_val></_></_>
- <_>
- <!-- tree 42 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>1 11 6 7 -1.</_>
- <_>3 11 2 7 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>3.0269259586930275e-003</threshold>
- <left_val>-0.1397909969091415</left_val>
- <right_val>0.0875445604324341</right_val></_></_>
- <_>
- <!-- tree 43 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>7 4 15 14 -1.</_>
- <_>7 11 15 7 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.3717184066772461</threshold>
- <left_val>-0.2967667877674103</left_val>
- <right_val>0.0162415504455566</right_val></_></_>
- <_>
- <!-- tree 44 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>3 4 11 3 -1.</_>
- <_>2 5 11 1 3.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-0.0257987398654222</threshold>
- <left_val>-0.4371350109577179</left_val>
- <right_val>0.0267681498080492</right_val></_></_>
- <_>
- <!-- tree 45 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>14 6 3 8 -1.</_>
- <_>15 7 1 8 3.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-9.0826600790023804e-003</threshold>
- <left_val>0.0995484963059425</left_val>
- <right_val>-0.0385005399584770</right_val></_></_>
- <_>
- <!-- tree 46 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>3 0 3 18 -1.</_>
- <_>4 0 1 18 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-1.7977179959416389e-003</threshold>
- <left_val>0.1381019949913025</left_val>
- <right_val>-0.0753872320055962</right_val></_></_>
- <_>
- <!-- tree 47 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>14 3 8 4 -1.</_>
- <_>14 3 8 2 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>0.1243569999933243</threshold>
- <left_val>4.6064029447734356e-003</left_val>
- <right_val>-0.3690980076789856</right_val></_></_>
- <_>
- <!-- tree 48 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>8 3 4 8 -1.</_>
- <_>8 3 2 8 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-0.0129014896228909</threshold>
- <left_val>-0.2043330073356628</left_val>
- <right_val>0.0531336106359959</right_val></_></_>
- <_>
- <!-- tree 49 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>18 2 4 12 -1.</_>
- <_>15 5 4 6 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-0.0133520998060703</threshold>
- <left_val>-0.1051217019557953</left_val>
- <right_val>0.0597462393343449</right_val></_></_>
- <_>
- <!-- tree 50 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>2 9 17 3 -1.</_>
- <_>2 10 17 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0306505206972361</threshold>
- <left_val>0.3436650037765503</left_val>
- <right_val>-0.0396178103983402</right_val></_></_>
- <_>
- <!-- tree 51 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>7 9 14 3 -1.</_>
- <_>7 10 14 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>2.0778391044586897e-003</threshold>
- <left_val>-0.0507552884519100</left_val>
- <right_val>0.0729307532310486</right_val></_></_>
- <_>
- <!-- tree 52 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>8 2 6 8 -1.</_>
- <_>8 2 3 4 2.</_>
- <_>11 6 3 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0611611790955067</threshold>
- <left_val>0.7837166786193848</left_val>
- <right_val>-0.0139401303604245</right_val></_></_>
- <_>
- <!-- tree 53 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>11 4 8 6 -1.</_>
- <_>15 4 4 3 2.</_>
- <_>11 7 4 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0666819736361504</threshold>
- <left_val>-0.6701030731201172</left_val>
- <right_val>4.2770858854055405e-003</right_val></_></_>
- <_>
- <!-- tree 54 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>3 4 8 6 -1.</_>
- <_>3 4 4 3 2.</_>
- <_>7 7 4 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0273598507046700</threshold>
- <left_val>0.0242531802505255</left_val>
- <right_val>-0.4267185926437378</right_val></_></_>
- <_>
- <!-- tree 55 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>3 1 18 3 -1.</_>
- <_>3 2 18 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-2.4731201119720936e-003</threshold>
- <left_val>0.0964932367205620</left_val>
- <right_val>-0.0574338398873806</right_val></_></_>
- <_>
- <!-- tree 56 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 9 8 3 -1.</_>
- <_>4 9 4 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0107214897871017</threshold>
- <left_val>-0.2157561033964157</left_val>
- <right_val>0.0442569702863693</right_val></_></_>
- <_>
- <!-- tree 57 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>13 2 9 10 -1.</_>
- <_>13 7 9 5 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.1393698006868362</threshold>
- <left_val>-0.3637753129005432</left_val>
- <right_val>0.0100051397457719</right_val></_></_>
- <_>
- <!-- tree 58 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>1 2 8 12 -1.</_>
- <_>1 2 4 6 2.</_>
- <_>5 8 4 6 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0568677112460136</threshold>
- <left_val>0.3032726943492889</left_val>
- <right_val>-0.0372307896614075</right_val></_></_>
- <_>
- <!-- tree 59 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>12 5 8 6 -1.</_>
- <_>16 5 4 3 2.</_>
- <_>12 8 4 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0657765120267868</threshold>
- <left_val>-1.</left_val>
- <right_val>1.2443619780242443e-003</right_val></_></_>
- <_>
- <!-- tree 60 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>1 0 17 3 -1.</_>
- <_>1 1 17 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-1.5500129666179419e-003</threshold>
- <left_val>0.1289858072996140</left_val>
- <right_val>-0.0855282470583916</right_val></_></_>
- <_>
- <!-- tree 61 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>4 0 15 2 -1.</_>
- <_>4 1 15 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>8.7909551803022623e-004</threshold>
- <left_val>-0.0799063816666603</left_val>
- <right_val>0.1284713000059128</right_val></_></_>
- <_>
- <!-- tree 62 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>5 0 12 4 -1.</_>
- <_>5 2 12 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>2.9614660888910294e-003</threshold>
- <left_val>0.0894338414072990</left_val>
- <right_val>-0.1704798042774200</right_val></_></_>
- <_>
- <!-- tree 63 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>7 4 15 14 -1.</_>
- <_>7 11 15 7 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.5073503851890564</threshold>
- <left_val>-0.8419762849807739</left_val>
- <right_val>2.3592109791934490e-003</right_val></_></_>
- <_>
- <!-- tree 64 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>8 2 9 2 -1.</_>
- <_>8 2 9 1 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>0.0354092009365559</threshold>
- <left_val>0.0171374902129173</left_val>
- <right_val>-0.5905207991600037</right_val></_></_>
- <_>
- <!-- tree 65 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>16 0 2 13 -1.</_>
- <_>16 0 1 13 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-0.0462202392518520</threshold>
- <left_val>0.4738368988037109</left_val>
- <right_val>-0.0114230895414948</right_val></_></_>
- <_>
- <!-- tree 66 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>6 0 13 2 -1.</_>
- <_>6 0 13 1 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>0.0408750995993614</threshold>
- <left_val>-0.0267140790820122</left_val>
- <right_val>0.4213987886905670</right_val></_></_>
- <_>
- <!-- tree 67 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>12 7 2 9 -1.</_>
- <_>12 7 1 9 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-0.0576518103480339</threshold>
- <left_val>0.5602129101753235</left_val>
- <right_val>-9.5757292583584785e-003</right_val></_></_>
- <_>
- <!-- tree 68 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>10 7 9 2 -1.</_>
- <_>10 7 9 1 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>3.3733060117810965e-003</threshold>
- <left_val>0.0723236203193665</left_val>
- <right_val>-0.1551048010587692</right_val></_></_>
- <_>
- <!-- tree 69 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>9 0 11 10 -1.</_>
- <_>9 5 11 5 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.3409616053104401</threshold>
- <left_val>-1.</left_val>
- <right_val>-3.1605950789526105e-004</right_val></_></_>
- <_>
- <!-- tree 70 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>8 5 9 2 -1.</_>
- <_>8 5 9 1 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-5.5850511416792870e-003</threshold>
- <left_val>-0.1576807051897049</left_val>
- <right_val>0.0736257433891296</right_val></_></_>
- <_>
- <!-- tree 71 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>13 2 9 10 -1.</_>
- <_>13 7 9 5 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.1106723994016647</threshold>
- <left_val>0.2364044040441513</left_val>
- <right_val>-0.0126707796007395</right_val></_></_>
- <_>
- <!-- tree 72 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 2 9 10 -1.</_>
- <_>0 7 9 5 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0432464107871056</threshold>
- <left_val>-0.0493464209139347</left_val>
- <right_val>0.3011310100555420</right_val></_></_>
- <_>
- <!-- tree 73 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>17 2 3 8 -1.</_>
- <_>17 6 3 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-5.8916499838232994e-003</threshold>
- <left_val>-0.1472765058279038</left_val>
- <right_val>0.0613457001745701</right_val></_></_>
- <_>
- <!-- tree 74 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>2 2 3 8 -1.</_>
- <_>2 6 3 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-2.8674090572167188e-005</threshold>
- <left_val>0.1153924018144608</left_val>
- <right_val>-0.1469265073537827</right_val></_></_>
- <_>
- <!-- tree 75 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>4 4 18 4 -1.</_>
- <_>13 4 9 2 2.</_>
- <_>4 6 9 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0261749103665352</threshold>
- <left_val>-0.0229605808854103</left_val>
- <right_val>0.2100441008806229</right_val></_></_>
- <_>
- <!-- tree 76 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 4 18 4 -1.</_>
- <_>0 4 9 2 2.</_>
- <_>9 6 9 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-1.9902619533240795e-003</threshold>
- <left_val>0.0972506329417229</left_val>
- <right_val>-0.1324492990970612</right_val></_></_>
- <_>
- <!-- tree 77 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>4 1 14 4 -1.</_>
- <_>11 1 7 2 2.</_>
- <_>4 3 7 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0169608406722546</threshold>
- <left_val>-0.3194906115531921</left_val>
- <right_val>0.0361882895231247</right_val></_></_>
- <_>
- <!-- tree 78 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 0 21 8 -1.</_>
- <_>7 0 7 8 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.1563473939895630</threshold>
- <left_val>0.3193452954292297</left_val>
- <right_val>-0.0419170707464218</right_val></_></_>
- <_>
- <!-- tree 79 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>5 0 14 18 -1.</_>
- <_>12 0 7 9 2.</_>
- <_>5 9 7 9 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.2386395037174225</threshold>
- <left_val>0.3818357884883881</left_val>
- <right_val>-8.6567532271146774e-003</right_val></_></_>
- <_>
- <!-- tree 80 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>1 11 16 4 -1.</_>
- <_>5 11 8 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0776415020227432</threshold>
- <left_val>-0.3315665125846863</left_val>
- <right_val>0.0334911495447159</right_val></_></_>
- <_>
- <!-- tree 81 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>6 9 10 6 -1.</_>
- <_>6 11 10 2 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0452578999102116</threshold>
- <left_val>0.4605852961540222</left_val>
- <right_val>-0.0313548594713211</right_val></_></_>
- <_>
- <!-- tree 82 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>5 10 12 4 -1.</_>
- <_>5 11 12 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0333907902240753</threshold>
- <left_val>-0.7297474741935730</left_val>
- <right_val>0.0162069909274578</right_val></_></_>
- <_>
- <!-- tree 83 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>15 4 6 6 -1.</_>
- <_>15 4 3 6 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>0.0730794668197632</threshold>
- <left_val>-0.0192014500498772</left_val>
- <right_val>0.3401190936565399</right_val></_></_>
- <_>
- <!-- tree 84 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>7 4 6 6 -1.</_>
- <_>7 4 6 3 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-0.0545362308621407</threshold>
- <left_val>0.3322716057300568</left_val>
- <right_val>-0.0331634283065796</right_val></_></_>
- <_>
- <!-- tree 85 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>12 5 8 6 -1.</_>
- <_>16 5 4 3 2.</_>
- <_>12 8 4 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0395526885986328</threshold>
- <left_val>0.0118175595998764</left_val>
- <right_val>-0.3213171958923340</right_val></_></_>
- <_>
- <!-- tree 86 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>5 5 8 4 -1.</_>
- <_>5 5 8 2 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>5.9160130331292748e-004</threshold>
- <left_val>-0.1176635026931763</left_val>
- <right_val>0.0880023613572121</right_val></_></_>
- <_>
- <!-- tree 87 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>17 6 3 12 -1.</_>
- <_>17 10 3 4 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0353797301650047</threshold>
- <left_val>0.0182861909270287</left_val>
- <right_val>-0.1620689034461975</right_val></_></_>
- <_>
- <!-- tree 88 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>5 7 9 2 -1.</_>
- <_>5 7 9 1 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>0.0201524905860424</threshold>
- <left_val>0.0228259395807981</left_val>
- <right_val>-0.4303478896617889</right_val></_></_>
- <_>
- <!-- tree 89 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>14 6 3 8 -1.</_>
- <_>15 7 1 8 3.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-0.0291852895170450</threshold>
- <left_val>0.1825695931911469</left_val>
- <right_val>-0.0163763090968132</right_val></_></_>
- <_>
- <!-- tree 90 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>5 7 12 2 -1.</_>
- <_>5 8 12 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0217057801783085</threshold>
- <left_val>-0.6697772145271301</left_val>
- <right_val>0.0167823601514101</right_val></_></_>
- <_>
- <!-- tree 91 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>4 5 18 3 -1.</_>
- <_>4 6 18 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0425842702388763</threshold>
- <left_val>-0.0168524999171495</left_val>
- <right_val>0.3436039984226227</right_val></_></_>
- <_>
- <!-- tree 92 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>1 6 15 9 -1.</_>
- <_>6 6 5 9 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.1266373991966248</threshold>
- <left_val>0.2674858868122101</left_val>
- <right_val>-0.0361077897250652</right_val></_></_>
- <_>
- <!-- tree 93 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>19 4 3 10 -1.</_>
- <_>19 4 3 5 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>0.1426007002592087</threshold>
- <left_val>0.0144452704116702</left_val>
- <right_val>-0.1972950994968414</right_val></_></_>
- <_>
- <!-- tree 94 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 12 18 6 -1.</_>
- <_>0 15 18 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0535609312355518</threshold>
- <left_val>0.0173247996717691</left_val>
- <right_val>-0.5960922241210938</right_val></_></_>
- <_>
- <!-- tree 95 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>6 13 13 4 -1.</_>
- <_>6 15 13 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-5.9380959719419479e-003</threshold>
- <left_val>-0.0651562735438347</left_val>
- <right_val>0.0596456006169319</right_val></_></_>
- <_>
- <!-- tree 96 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>3 5 8 9 -1.</_>
- <_>3 8 8 3 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-6.6497321240603924e-003</threshold>
- <left_val>0.1427001953125000</left_val>
- <right_val>-0.0796698182821274</right_val></_></_>
- <_>
- <!-- tree 97 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>6 8 10 8 -1.</_>
- <_>6 10 10 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-3.0137640424072742e-003</threshold>
- <left_val>0.1399628967046738</left_val>
- <right_val>-0.0948317572474480</right_val></_></_>
- <_>
- <!-- tree 98 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>4 6 13 6 -1.</_>
- <_>4 9 13 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0172130502760410</threshold>
- <left_val>-0.1726574003696442</left_val>
- <right_val>0.0694516524672508</right_val></_></_>
- <_>
- <!-- tree 99 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>14 3 2 12 -1.</_>
- <_>14 3 2 6 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>0.1077570989727974</threshold>
- <left_val>-4.6757548116147518e-003</left_val>
- <right_val>0.9216187000274658</right_val></_></_>
- <_>
- <!-- tree 100 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>8 3 12 2 -1.</_>
- <_>8 3 6 2 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>0.0587385408580303</threshold>
- <left_val>-0.0424589812755585</left_val>
- <right_val>0.2883234918117523</right_val></_></_>
- <_>
- <!-- tree 101 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>13 1 5 12 -1.</_>
- <_>13 1 5 6 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-0.3047547936439514</threshold>
- <left_val>-1.</left_val>
- <right_val>2.6918480216409080e-005</right_val></_></_>
- <_>
- <!-- tree 102 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>9 1 12 5 -1.</_>
- <_>9 1 6 5 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>0.2039577960968018</threshold>
- <left_val>0.0253179892897606</left_val>
- <right_val>-0.5027515888214111</right_val></_></_>
- <_>
- <!-- tree 103 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>8 12 8 3 -1.</_>
- <_>8 12 4 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-9.7794281318783760e-003</threshold>
- <left_val>-0.1906087994575501</left_val>
- <right_val>0.0305771399289370</right_val></_></_>
- <_>
- <!-- tree 104 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>5 12 12 4 -1.</_>
- <_>8 12 6 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0227754991501570</threshold>
- <left_val>0.2704837024211884</left_val>
- <right_val>-0.0510012097656727</right_val></_></_>
- <_>
- <!-- tree 105 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>13 8 6 4 -1.</_>
- <_>13 8 3 4 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>9.8080374300479889e-003</threshold>
- <left_val>0.0241802502423525</left_val>
- <right_val>-0.0750008374452591</right_val></_></_>
- <_>
- <!-- tree 106 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>9 8 4 6 -1.</_>
- <_>9 8 4 3 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-0.0111309699714184</threshold>
- <left_val>-0.2382574975490570</left_val>
- <right_val>0.0643887221813202</right_val></_></_></trees>
- <stage_threshold>-0.5688105821609497</stage_threshold>
- <parent>22</parent>
- <next>-1</next></_>
- <_>
- <!-- stage 24 -->
- <trees>
- <_>
- <!-- tree 0 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>1 7 20 11 -1.</_>
- <_>6 7 10 11 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.2138068974018097</threshold>
- <left_val>0.2768664062023163</left_val>
- <right_val>-0.0927778184413910</right_val></_></_>
- <_>
- <!-- tree 1 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>10 13 12 3 -1.</_>
- <_>10 14 12 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-3.3374479971826077e-003</threshold>
- <left_val>0.1411923021078110</left_val>
- <right_val>-0.0519071593880653</right_val></_></_>
- <_>
- <!-- tree 2 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>1 10 6 4 -1.</_>
- <_>4 10 3 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0287385508418083</threshold>
- <left_val>-0.3624325096607208</left_val>
- <right_val>0.0319380201399326</right_val></_></_>
- <_>
- <!-- tree 3 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>15 10 6 4 -1.</_>
- <_>15 10 3 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-3.5554158966988325e-003</threshold>
- <left_val>0.1196912005543709</left_val>
- <right_val>-0.0523067489266396</right_val></_></_>
- <_>
- <!-- tree 4 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 13 12 3 -1.</_>
- <_>0 14 12 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0107324598357081</threshold>
- <left_val>0.2860266864299774</left_val>
- <right_val>-0.0605550594627857</right_val></_></_>
- <_>
- <!-- tree 5 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>4 10 14 8 -1.</_>
- <_>4 14 14 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0873102396726608</threshold>
- <left_val>-0.0336133912205696</left_val>
- <right_val>0.4778678119182587</right_val></_></_>
- <_>
- <!-- tree 6 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>5 14 12 4 -1.</_>
- <_>5 15 12 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>2.1971999667584896e-003</threshold>
- <left_val>0.0602079704403877</left_val>
- <right_val>-0.2154375016689301</right_val></_></_>
- <_>
- <!-- tree 7 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>5 16 12 2 -1.</_>
- <_>5 17 12 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-7.4302748544141650e-005</threshold>
- <left_val>0.1414128988981247</left_val>
- <right_val>-0.1271156072616577</right_val></_></_>
- <_>
- <!-- tree 8 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>1 0 20 12 -1.</_>
- <_>6 0 10 12 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.2931401133537293</threshold>
- <left_val>-0.5559828877449036</left_val>
- <right_val>7.8105749562382698e-003</right_val></_></_>
- <_>
- <!-- tree 9 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>7 12 15 5 -1.</_>
- <_>12 12 5 5 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0779965370893478</threshold>
- <left_val>-0.0202381405979395</left_val>
- <right_val>0.2223376929759979</right_val></_></_>
- <_>
- <!-- tree 10 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>6 0 15 2 -1.</_>
- <_>6 0 15 1 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>4.9733570776879787e-003</threshold>
- <left_val>-0.1541032940149307</left_val>
- <right_val>0.0988745167851448</right_val></_></_>
- <_>
- <!-- tree 11 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>6 5 12 8 -1.</_>
- <_>12 5 6 4 2.</_>
- <_>6 9 6 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0622326508164406</threshold>
- <left_val>-0.2525390982627869</left_val>
- <right_val>0.0258643291890621</right_val></_></_>
- <_>
- <!-- tree 12 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>4 5 12 8 -1.</_>
- <_>4 5 6 4 2.</_>
- <_>10 9 6 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-7.4750548228621483e-003</threshold>
- <left_val>-0.1907179057598114</left_val>
- <right_val>0.0845282003283501</right_val></_></_>
- <_>
- <!-- tree 13 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>6 2 16 6 -1.</_>
- <_>14 2 8 3 2.</_>
- <_>6 5 8 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0222460106015205</threshold>
- <left_val>-0.0310246292501688</left_val>
- <right_val>0.1528923958539963</right_val></_></_>
- <_>
- <!-- tree 14 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>1 2 16 14 -1.</_>
- <_>1 2 8 7 2.</_>
- <_>9 9 8 7 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0123052597045898</threshold>
- <left_val>0.1169324964284897</left_val>
- <right_val>-0.1109255999326706</right_val></_></_>
- <_>
- <!-- tree 15 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>11 14 6 4 -1.</_>
- <_>11 14 3 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-1.3985290424898267e-003</threshold>
- <left_val>-0.2043567001819611</left_val>
- <right_val>0.0875922590494156</right_val></_></_>
- <_>
- <!-- tree 16 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>3 8 12 9 -1.</_>
- <_>7 11 4 3 9.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.3636125028133392</threshold>
- <left_val>-0.0187503192573786</left_val>
- <right_val>0.8505452871322632</right_val></_></_>
- <_>
- <!-- tree 17 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>8 3 14 4 -1.</_>
- <_>15 3 7 2 2.</_>
- <_>8 5 7 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-3.8815739098936319e-003</threshold>
- <left_val>0.0806438773870468</left_val>
- <right_val>-0.1052099987864494</right_val></_></_>
- <_>
- <!-- tree 18 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>9 0 6 8 -1.</_>
- <_>11 2 2 8 3.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-0.0525006316602230</threshold>
- <left_val>0.3800252079963684</left_val>
- <right_val>-0.0360490791499615</right_val></_></_>
- <_>
- <!-- tree 19 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>12 13 6 4 -1.</_>
- <_>12 15 6 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-7.9602311598137021e-004</threshold>
- <left_val>0.0337949693202972</left_val>
- <right_val>-0.0756038799881935</right_val></_></_>
- <_>
- <!-- tree 20 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>4 13 6 4 -1.</_>
- <_>4 15 6 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0200660899281502</threshold>
- <left_val>-0.4384298920631409</left_val>
- <right_val>0.0333891995251179</right_val></_></_>
- <_>
- <!-- tree 21 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>6 16 16 2 -1.</_>
- <_>6 17 16 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-2.4233239237219095e-003</threshold>
- <left_val>-0.0930052474141121</left_val>
- <right_val>0.0497728288173676</right_val></_></_>
- <_>
- <!-- tree 22 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 3 12 3 -1.</_>
- <_>0 4 12 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-6.8737422116100788e-003</threshold>
- <left_val>0.2037483006715775</left_val>
- <right_val>-0.0581658482551575</right_val></_></_>
- <_>
- <!-- tree 23 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>8 3 14 3 -1.</_>
- <_>8 4 14 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>6.5535600297152996e-003</threshold>
- <left_val>-0.0702933967113495</left_val>
- <right_val>0.1440014988183975</right_val></_></_>
- <_>
- <!-- tree 24 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>6 2 3 16 -1.</_>
- <_>6 6 3 8 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0167806800454855</threshold>
- <left_val>-0.3222652077674866</left_val>
- <right_val>0.0437172502279282</right_val></_></_>
- <_>
- <!-- tree 25 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>5 2 14 14 -1.</_>
- <_>12 2 7 7 2.</_>
- <_>5 9 7 7 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0254480708390474</threshold>
- <left_val>0.0434619188308716</left_val>
- <right_val>-0.1537698954343796</right_val></_></_>
- <_>
- <!-- tree 26 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>5 8 3 8 -1.</_>
- <_>5 12 3 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>3.4656568896025419e-003</threshold>
- <left_val>-0.0631199926137924</left_val>
- <right_val>0.2139452993869782</right_val></_></_>
- <_>
- <!-- tree 27 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>14 7 7 4 -1.</_>
- <_>14 7 7 2 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>0.1013225018978119</threshold>
- <left_val>-0.0170958302915096</left_val>
- <right_val>0.1885329931974411</right_val></_></_>
- <_>
- <!-- tree 28 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>4 6 12 9 -1.</_>
- <_>8 9 4 3 9.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.1071430966258049</threshold>
- <left_val>0.0354068912565708</left_val>
- <right_val>-0.3486903905868530</right_val></_></_>
- <_>
- <!-- tree 29 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>7 11 15 6 -1.</_>
- <_>12 11 5 6 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0145009998232126</threshold>
- <left_val>0.0379035808146000</left_val>
- <right_val>-0.0491692088544369</right_val></_></_>
- <_>
- <!-- tree 30 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 11 15 6 -1.</_>
- <_>5 11 5 6 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.1535475999116898</threshold>
- <left_val>0.3504832088947296</left_val>
- <right_val>-0.0327740088105202</right_val></_></_>
- <_>
- <!-- tree 31 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>15 7 6 8 -1.</_>
- <_>18 7 3 4 2.</_>
- <_>15 11 3 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0651375874876976</threshold>
- <left_val>-0.4138002097606659</left_val>
- <right_val>7.3137627914547920e-003</right_val></_></_>
- <_>
- <!-- tree 32 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 7 22 10 -1.</_>
- <_>0 7 11 5 2.</_>
- <_>11 12 11 5 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-2.9204839374870062e-003</threshold>
- <left_val>-0.1375668048858643</left_val>
- <right_val>0.0907953903079033</right_val></_></_>
- <_>
- <!-- tree 33 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>1 8 20 8 -1.</_>
- <_>6 8 10 8 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.3410457074642181</threshold>
- <left_val>-0.6725202798843384</left_val>
- <right_val>0.0152002302929759</right_val></_></_>
- <_>
- <!-- tree 34 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>2 5 7 6 -1.</_>
- <_>2 7 7 2 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-4.4478259951574728e-005</threshold>
- <left_val>0.0965799465775490</left_val>
- <right_val>-0.1040342003107071</right_val></_></_>
- <_>
- <!-- tree 35 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>7 2 15 8 -1.</_>
- <_>7 4 15 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.1117222979664803</threshold>
- <left_val>-0.4223442077636719</left_val>
- <right_val>4.9457307904958725e-003</right_val></_></_>
- <_>
- <!-- tree 36 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>3 1 14 8 -1.</_>
- <_>3 3 14 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>2.0429869182407856e-003</threshold>
- <left_val>0.0994746983051300</left_val>
- <right_val>-0.1038454025983810</right_val></_></_>
- <_>
- <!-- tree 37 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>9 2 13 2 -1.</_>
- <_>9 3 13 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-7.2571309283375740e-003</threshold>
- <left_val>-0.1504963040351868</left_val>
- <right_val>0.0297248400747776</right_val></_></_>
- <_>
- <!-- tree 38 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>8 3 6 8 -1.</_>
- <_>10 3 2 8 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-8.4451176226139069e-003</threshold>
- <left_val>0.0956485792994499</left_val>
- <right_val>-0.1180536970496178</right_val></_></_>
- <_>
- <!-- tree 39 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>7 1 15 2 -1.</_>
- <_>7 2 15 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0301949698477983</threshold>
- <left_val>0.4657062888145447</left_val>
- <right_val>-0.0143868997693062</right_val></_></_>
- <_>
- <!-- tree 40 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 1 15 2 -1.</_>
- <_>0 2 15 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>5.7423918042331934e-004</threshold>
- <left_val>-0.1038231030106545</left_val>
- <right_val>0.1505282968282700</right_val></_></_>
- <_>
- <!-- tree 41 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>6 0 12 3 -1.</_>
- <_>6 1 12 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>8.2014611689373851e-004</threshold>
- <left_val>-0.0751325264573097</left_val>
- <right_val>0.1036375984549522</right_val></_></_>
- <_>
- <!-- tree 42 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>4 0 9 4 -1.</_>
- <_>7 0 3 4 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>7.0748180150985718e-003</threshold>
- <left_val>0.0660621672868729</left_val>
- <right_val>-0.1763841956853867</right_val></_></_>
- <_>
- <!-- tree 43 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>12 3 8 3 -1.</_>
- <_>12 3 4 3 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>0.0483046695590019</threshold>
- <left_val>-0.0177676603198051</left_val>
- <right_val>0.2682015895843506</right_val></_></_>
- <_>
- <!-- tree 44 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>8 12 6 4 -1.</_>
- <_>11 12 3 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>7.9041812568902969e-003</threshold>
- <left_val>0.0515227392315865</left_val>
- <right_val>-0.2063236981630325</right_val></_></_>
- <_>
- <!-- tree 45 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>12 1 10 4 -1.</_>
- <_>12 1 5 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0847054868936539</threshold>
- <left_val>7.2250380180776119e-003</left_val>
- <right_val>-0.5951473712921143</right_val></_></_>
- <_>
- <!-- tree 46 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 1 10 4 -1.</_>
- <_>5 1 5 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>3.9120440487749875e-004</threshold>
- <left_val>-0.1066353023052216</left_val>
- <right_val>0.1110381036996841</right_val></_></_>
- <_>
- <!-- tree 47 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>16 13 6 5 -1.</_>
- <_>16 13 3 5 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0159593205899000</threshold>
- <left_val>-0.0485736913979054</left_val>
- <right_val>0.2583200931549072</right_val></_></_>
- <_>
- <!-- tree 48 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 13 6 5 -1.</_>
- <_>3 13 3 5 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-1.8649259582161903e-003</threshold>
- <left_val>0.1155126988887787</left_val>
- <right_val>-0.1504859030246735</right_val></_></_>
- <_>
- <!-- tree 49 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>18 11 4 7 -1.</_>
- <_>18 11 2 7 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0127279795706272</threshold>
- <left_val>0.0479302406311035</left_val>
- <right_val>-0.3031023144721985</right_val></_></_>
- <_>
- <!-- tree 50 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 11 4 7 -1.</_>
- <_>2 11 2 7 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-1.5954229747876525e-003</threshold>
- <left_val>-0.1553757041692734</left_val>
- <right_val>0.0832148864865303</right_val></_></_>
- <_>
- <!-- tree 51 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>15 0 6 14 -1.</_>
- <_>17 0 2 14 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.2023489028215408</threshold>
- <left_val>1.1625860352069139e-003</left_val>
- <right_val>-1.0000209808349609</right_val></_></_>
- <_>
- <!-- tree 52 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>1 0 6 14 -1.</_>
- <_>3 0 2 14 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0391968712210655</threshold>
- <left_val>0.3088454902172089</left_val>
- <right_val>-0.0445240214467049</right_val></_></_>
- <_>
- <!-- tree 53 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>13 0 4 14 -1.</_>
- <_>15 0 2 7 2.</_>
- <_>13 7 2 7 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0158106405287981</threshold>
- <left_val>-0.0159273296594620</left_val>
- <right_val>0.1014444977045059</right_val></_></_>
- <_>
- <!-- tree 54 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>5 0 4 14 -1.</_>
- <_>5 0 2 7 2.</_>
- <_>7 7 2 7 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-2.1568681113421917e-003</threshold>
- <left_val>0.0952053815126419</left_val>
- <right_val>-0.1291096061468124</right_val></_></_>
- <_>
- <!-- tree 55 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>13 2 6 4 -1.</_>
- <_>13 2 3 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0346043594181538</threshold>
- <left_val>0.2784355878829956</left_val>
- <right_val>-0.0107750603929162</right_val></_></_>
- <_>
- <!-- tree 56 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>1 7 12 4 -1.</_>
- <_>1 7 6 2 2.</_>
- <_>7 9 6 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-2.6206790935248137e-003</threshold>
- <left_val>-0.1374453008174896</left_val>
- <right_val>0.0929454565048218</right_val></_></_>
- <_>
- <!-- tree 57 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>4 13 18 3 -1.</_>
- <_>4 14 18 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>4.6692821197211742e-003</threshold>
- <left_val>-0.0583318211138248</left_val>
- <right_val>0.1573383957147598</right_val></_></_>
- <_>
- <!-- tree 58 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>2 6 2 12 -1.</_>
- <_>2 12 2 6 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0786235332489014</threshold>
- <left_val>0.0111308302730322</left_val>
- <right_val>-0.9713814854621887</right_val></_></_>
- <_>
- <!-- tree 59 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>4 11 16 4 -1.</_>
- <_>12 11 8 2 2.</_>
- <_>4 13 8 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0395567305386066</threshold>
- <left_val>2.1708509884774685e-003</left_val>
- <right_val>-0.4342544972896576</right_val></_></_>
- <_>
- <!-- tree 60 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>2 11 16 4 -1.</_>
- <_>2 11 8 2 2.</_>
- <_>10 13 8 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>4.0571438148617744e-003</threshold>
- <left_val>0.0861207172274590</left_val>
- <right_val>-0.1557939946651459</right_val></_></_>
- <_>
- <!-- tree 61 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>10 12 12 4 -1.</_>
- <_>16 12 6 2 2.</_>
- <_>10 14 6 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0150146698579192</threshold>
- <left_val>0.1352397948503494</left_val>
- <right_val>-0.0257240198552608</right_val></_></_>
- <_>
- <!-- tree 62 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 12 12 4 -1.</_>
- <_>0 12 6 2 2.</_>
- <_>6 14 6 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>4.6183250378817320e-004</threshold>
- <left_val>-0.1076688989996910</left_val>
- <right_val>0.1363386958837509</right_val></_></_>
- <_>
- <!-- tree 63 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>12 12 10 6 -1.</_>
- <_>17 12 5 3 2.</_>
- <_>12 15 5 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0528752095997334</threshold>
- <left_val>5.4555749520659447e-003</left_val>
- <right_val>-0.3938291072845459</right_val></_></_>
- <_>
- <!-- tree 64 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 10 10 8 -1.</_>
- <_>0 10 5 4 2.</_>
- <_>5 14 5 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0595108605921268</threshold>
- <left_val>0.2869082093238831</left_val>
- <right_val>-0.0428760796785355</right_val></_></_>
- <_>
- <!-- tree 65 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>8 0 7 4 -1.</_>
- <_>8 2 7 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0166503600776196</threshold>
- <left_val>0.0286052990704775</left_val>
- <right_val>-0.3034949004650116</right_val></_></_>
- <_>
- <!-- tree 66 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 3 14 3 -1.</_>
- <_>0 4 14 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0149596296250820</threshold>
- <left_val>-0.0526990294456482</left_val>
- <right_val>0.2182525992393494</right_val></_></_>
- <_>
- <!-- tree 67 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>15 1 6 8 -1.</_>
- <_>18 1 3 4 2.</_>
- <_>15 5 3 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-9.6224267035722733e-003</threshold>
- <left_val>-0.2143145054578781</left_val>
- <right_val>0.0483506284654140</right_val></_></_>
- <_>
- <!-- tree 68 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>2 3 7 4 -1.</_>
- <_>2 5 7 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0453042611479759</threshold>
- <left_val>-0.8730847835540772</left_val>
- <right_val>0.0124497702345252</right_val></_></_>
- <_>
- <!-- tree 69 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>13 2 6 4 -1.</_>
- <_>13 2 3 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-7.4465242214500904e-003</threshold>
- <left_val>-0.1358620971441269</left_val>
- <right_val>0.0330873206257820</right_val></_></_>
- <_>
- <!-- tree 70 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>3 2 6 4 -1.</_>
- <_>6 2 3 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-1.1953880311921239e-003</threshold>
- <left_val>0.1484857052564621</left_val>
- <right_val>-0.0852916464209557</right_val></_></_>
- <_>
- <!-- tree 71 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>5 1 16 4 -1.</_>
- <_>5 2 16 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>5.6622507981956005e-003</threshold>
- <left_val>-0.0532124489545822</left_val>
- <right_val>0.1296795010566711</right_val></_></_>
- <_>
- <!-- tree 72 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>4 15 13 3 -1.</_>
- <_>4 16 13 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0139713604003191</threshold>
- <left_val>0.0253388304263353</left_val>
- <right_val>-0.4209741055965424</right_val></_></_>
- <_>
- <!-- tree 73 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>12 6 3 12 -1.</_>
- <_>13 6 1 12 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-4.5216218568384647e-003</threshold>
- <left_val>0.1262152940034866</left_val>
- <right_val>-0.0631354302167892</right_val></_></_>
- <_>
- <!-- tree 74 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 16 16 2 -1.</_>
- <_>8 16 8 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>4.7776158899068832e-003</threshold>
- <left_val>-0.0628999173641205</left_val>
- <right_val>0.1772444993257523</right_val></_></_>
- <_>
- <!-- tree 75 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>3 2 16 10 -1.</_>
- <_>3 7 16 5 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-5.8305878192186356e-003</threshold>
- <left_val>0.0879060029983521</left_val>
- <right_val>-0.1555338054895401</right_val></_></_>
- <_>
- <!-- tree 76 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>7 1 12 4 -1.</_>
- <_>10 4 6 4 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-0.0158792808651924</threshold>
- <left_val>-0.1269443035125732</left_val>
- <right_val>0.1028029993176460</right_val></_></_>
- <_>
- <!-- tree 77 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>14 1 2 9 -1.</_>
- <_>14 1 1 9 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>1.9526369869709015e-003</threshold>
- <left_val>-0.0768034532666206</left_val>
- <right_val>0.0472977496683598</right_val></_></_>
- <_>
- <!-- tree 78 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>4 10 3 8 -1.</_>
- <_>4 14 3 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0245216507464647</threshold>
- <left_val>-0.0277146808803082</left_val>
- <right_val>0.4035046994686127</right_val></_></_>
- <_>
- <!-- tree 79 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>11 12 6 6 -1.</_>
- <_>11 14 6 2 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0845293998718262</threshold>
- <left_val>1.</left_val>
- <right_val>-2.1367999725043774e-003</right_val></_></_>
- <_>
- <!-- tree 80 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>5 12 6 6 -1.</_>
- <_>5 14 6 2 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>1.6844070050865412e-003</threshold>
- <left_val>0.0740434005856514</left_val>
- <right_val>-0.1633481979370117</right_val></_></_>
- <_>
- <!-- tree 81 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>12 6 3 12 -1.</_>
- <_>13 6 1 12 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0133990598842502</threshold>
- <left_val>-0.0424531809985638</left_val>
- <right_val>0.2416412979364395</right_val></_></_>
- <_>
- <!-- tree 82 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>10 6 8 3 -1.</_>
- <_>9 7 8 1 3.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>0.0441826395690441</threshold>
- <left_val>0.0180395692586899</left_val>
- <right_val>-0.6439684033393860</right_val></_></_>
- <_>
- <!-- tree 83 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>12 6 3 12 -1.</_>
- <_>13 6 1 12 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0383272394537926</threshold>
- <left_val>7.5849238783121109e-003</left_val>
- <right_val>-0.3653421103954315</right_val></_></_>
- <_>
- <!-- tree 84 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>7 6 3 12 -1.</_>
- <_>8 6 1 12 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>2.5997089687734842e-003</threshold>
- <left_val>-0.0885534808039665</left_val>
- <right_val>0.1376366019248962</right_val></_></_>
- <_>
- <!-- tree 85 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>14 1 2 9 -1.</_>
- <_>14 1 1 9 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>0.0107754804193974</threshold>
- <left_val>0.0457531698048115</left_val>
- <right_val>-0.1195600032806397</right_val></_></_>
- <_>
- <!-- tree 86 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>11 4 10 3 -1.</_>
- <_>10 5 10 1 3.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-0.0204336494207382</threshold>
- <left_val>0.2202017009258270</left_val>
- <right_val>-0.0519258417189121</right_val></_></_>
- <_>
- <!-- tree 87 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>8 11 9 4 -1.</_>
- <_>11 11 3 4 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.1240272969007492</threshold>
- <left_val>0.8884658217430115</left_val>
- <right_val>-5.1234480924904346e-003</right_val></_></_>
- <_>
- <!-- tree 88 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>7 5 2 12 -1.</_>
- <_>8 5 1 12 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>4.7838478349149227e-003</threshold>
- <left_val>0.0530470311641693</left_val>
- <right_val>-0.2108590006828308</right_val></_></_>
- <_>
- <!-- tree 89 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>13 1 3 16 -1.</_>
- <_>14 1 1 16 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0458953492343426</threshold>
- <left_val>0.4448269009590149</left_val>
- <right_val>-0.0151171199977398</right_val></_></_>
- <_>
- <!-- tree 90 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>7 4 6 6 -1.</_>
- <_>9 4 2 6 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0144737903028727</threshold>
- <left_val>-0.0452014096081257</left_val>
- <right_val>0.2355625033378601</right_val></_></_>
- <_>
- <!-- tree 91 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>10 4 2 12 -1.</_>
- <_>10 4 1 12 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>1.8887920305132866e-003</threshold>
- <left_val>0.0764433816075325</left_val>
- <right_val>-0.1638537049293518</right_val></_></_>
- <_>
- <!-- tree 92 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 0 18 5 -1.</_>
- <_>9 0 9 5 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.1908206939697266</threshold>
- <left_val>0.6466202139854431</left_val>
- <right_val>-0.0182426199316978</right_val></_></_>
- <_>
- <!-- tree 93 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>16 3 2 12 -1.</_>
- <_>16 3 1 12 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>0.0721584632992744</threshold>
- <left_val>6.2836478464305401e-003</left_val>
- <right_val>-0.7482234835624695</right_val></_></_>
- <_>
- <!-- tree 94 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>6 3 12 2 -1.</_>
- <_>6 3 12 1 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>9.7802944947034121e-004</threshold>
- <left_val>0.0790631026029587</left_val>
- <right_val>-0.1316365003585815</right_val></_></_>
- <_>
- <!-- tree 95 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>13 6 4 7 -1.</_>
- <_>14 7 2 7 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>4.8602250171825290e-004</threshold>
- <left_val>-0.0425949096679688</left_val>
- <right_val>0.0694627612829208</right_val></_></_>
- <_>
- <!-- tree 96 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>7 3 13 2 -1.</_>
- <_>7 3 13 1 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-0.0108828004449606</threshold>
- <left_val>-0.2450307011604309</left_val>
- <right_val>0.0523261614143848</right_val></_></_>
- <_>
- <!-- tree 97 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>5 14 17 4 -1.</_>
- <_>5 15 17 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>1.1573769734241068e-004</threshold>
- <left_val>-0.0667293071746826</left_val>
- <right_val>0.0870889127254486</right_val></_></_>
- <_>
- <!-- tree 98 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 13 18 3 -1.</_>
- <_>0 14 18 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>2.0960739348083735e-003</threshold>
- <left_val>-0.0761545673012733</left_val>
- <right_val>0.1359816938638687</right_val></_></_>
- <_>
- <!-- tree 99 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>6 13 14 3 -1.</_>
- <_>6 14 14 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0436643511056900</threshold>
- <left_val>8.4812156856060028e-003</left_val>
- <right_val>-0.8109716773033142</right_val></_></_>
- <_>
- <!-- tree 100 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>2 13 14 3 -1.</_>
- <_>2 14 14 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-1.1464370181784034e-003</threshold>
- <left_val>0.1272123008966446</left_val>
- <right_val>-0.0847834199666977</right_val></_></_>
- <_>
- <!-- tree 101 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>5 13 12 2 -1.</_>
- <_>5 14 12 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-5.5613541044294834e-003</threshold>
- <left_val>-0.1972253024578095</left_val>
- <right_val>0.0544110685586929</right_val></_></_>
- <_>
- <!-- tree 102 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 5 4 8 -1.</_>
- <_>0 9 4 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0340838506817818</threshold>
- <left_val>-0.0323385484516621</left_val>
- <right_val>0.3406228125095367</right_val></_></_>
- <_>
- <!-- tree 103 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>15 7 6 8 -1.</_>
- <_>18 7 3 4 2.</_>
- <_>15 11 3 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0512270815670490</threshold>
- <left_val>-0.0132620399817824</left_val>
- <right_val>0.2395363003015518</right_val></_></_>
- <_>
- <!-- tree 104 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>9 2 4 7 -1.</_>
- <_>11 2 2 7 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0335317291319370</threshold>
- <left_val>0.0202799197286367</left_val>
- <right_val>-0.4833905100822449</right_val></_></_>
- <_>
- <!-- tree 105 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>8 4 14 3 -1.</_>
- <_>8 5 14 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0153962196782231</threshold>
- <left_val>-0.0293201897293329</left_val>
- <right_val>0.1586609929800034</right_val></_></_>
- <_>
- <!-- tree 106 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 4 12 3 -1.</_>
- <_>0 5 12 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0175507701933384</threshold>
- <left_val>0.2748897075653076</left_val>
- <right_val>-0.0377983190119267</right_val></_></_>
- <_>
- <!-- tree 107 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>13 2 4 9 -1.</_>
- <_>13 5 4 3 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0757056474685669</threshold>
- <left_val>-0.8221439719200134</left_val>
- <right_val>3.8814740255475044e-003</right_val></_></_>
- <_>
- <!-- tree 108 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>5 2 4 9 -1.</_>
- <_>5 5 4 3 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-5.3475350141525269e-003</threshold>
- <left_val>-0.1671075969934464</left_val>
- <right_val>0.0771806165575981</right_val></_></_>
- <_>
- <!-- tree 109 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>12 6 6 4 -1.</_>
- <_>12 8 6 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-3.3435279037803411e-003</threshold>
- <left_val>-0.1067349016666412</left_val>
- <right_val>0.0475754700601101</right_val></_></_>
- <_>
- <!-- tree 110 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>5 5 12 3 -1.</_>
- <_>11 5 6 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0193282701075077</threshold>
- <left_val>-0.0465632900595665</left_val>
- <right_val>0.2471656054258347</right_val></_></_>
- <_>
- <!-- tree 111 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>7 1 8 12 -1.</_>
- <_>7 4 8 6 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0853689834475517</threshold>
- <left_val>0.0232969205826521</left_val>
- <right_val>-0.5000224709510803</right_val></_></_>
- <_>
- <!-- tree 112 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>9 3 6 7 -1.</_>
- <_>11 5 2 7 3.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>2.5927850510925055e-003</threshold>
- <left_val>-0.1118225008249283</left_val>
- <right_val>0.1104608997702599</right_val></_></_>
- <_>
- <!-- tree 113 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>12 1 9 6 -1.</_>
- <_>10 3 9 2 3.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-9.1061238199472427e-003</threshold>
- <left_val>0.0471070110797882</left_val>
- <right_val>-0.0558076612651348</right_val></_></_>
- <_>
- <!-- tree 114 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>11 7 8 3 -1.</_>
- <_>11 7 4 3 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>0.1017069965600967</threshold>
- <left_val>-0.0159666091203690</left_val>
- <right_val>0.6985731720924377</right_val></_></_>
- <_>
- <!-- tree 115 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>14 1 2 9 -1.</_>
- <_>14 1 1 9 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>0.0228549800813198</threshold>
- <left_val>-0.0172262191772461</left_val>
- <right_val>0.1222568973898888</right_val></_></_>
- <_>
- <!-- tree 116 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>1 7 6 8 -1.</_>
- <_>1 7 3 4 2.</_>
- <_>4 11 3 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0165770798921585</threshold>
- <left_val>-0.2222582995891571</left_val>
- <right_val>0.0565783008933067</right_val></_></_>
- <_>
- <!-- tree 117 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>11 0 4 6 -1.</_>
- <_>11 0 2 6 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0236414205282927</threshold>
- <left_val>-0.2773405015468597</left_val>
- <right_val>0.0160768907517195</right_val></_></_>
- <_>
- <!-- tree 118 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>7 0 4 6 -1.</_>
- <_>9 0 2 6 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>5.6385230273008347e-003</threshold>
- <left_val>0.0454392805695534</left_val>
- <right_val>-0.2254963070154190</right_val></_></_>
- <_>
- <!-- tree 119 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 7 22 4 -1.</_>
- <_>11 7 11 2 2.</_>
- <_>0 9 11 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>5.7422029785811901e-003</threshold>
- <left_val>-0.0785687789320946</left_val>
- <right_val>0.1523496061563492</right_val></_></_>
- <_>
- <!-- tree 120 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>3 5 4 8 -1.</_>
- <_>3 9 4 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-4.3363519944250584e-004</threshold>
- <left_val>0.0959209501743317</left_val>
- <right_val>-0.1127424016594887</right_val></_></_>
- <_>
- <!-- tree 121 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>5 4 12 3 -1.</_>
- <_>9 4 4 3 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0102679198607802</threshold>
- <left_val>-0.0493329912424088</left_val>
- <right_val>0.2481082975864410</right_val></_></_>
- <_>
- <!-- tree 122 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>10 2 12 3 -1.</_>
- <_>10 2 6 3 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>0.0138657195493579</threshold>
- <left_val>0.0705479383468628</left_val>
- <right_val>-0.1859433054924011</right_val></_></_></trees>
- <stage_threshold>-0.6582424044609070</stage_threshold>
- <parent>23</parent>
- <next>-1</next></_>
- <_>
- <!-- stage 25 -->
- <trees>
- <_>
- <!-- tree 0 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>5 2 6 16 -1.</_>
- <_>5 10 6 8 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0469806306064129</threshold>
- <left_val>0.1707855015993118</left_val>
- <right_val>-0.1568731069564819</right_val></_></_>
- <_>
- <!-- tree 1 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>12 6 8 4 -1.</_>
- <_>12 6 8 2 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-0.1196796000003815</threshold>
- <left_val>0.5173841714859009</left_val>
- <right_val>-0.0117475902661681</right_val></_></_>
- <_>
- <!-- tree 2 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>3 12 6 6 -1.</_>
- <_>5 12 2 6 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0284771807491779</threshold>
- <left_val>0.2350520044565201</left_val>
- <right_val>-0.0574244111776352</right_val></_></_>
- <_>
- <!-- tree 3 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>12 1 3 12 -1.</_>
- <_>12 1 3 6 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>0.1969747990369797</threshold>
- <left_val>-9.3123828992247581e-004</left_val>
- <right_val>1.0037239789962769</right_val></_></_>
- <_>
- <!-- tree 4 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>10 1 12 3 -1.</_>
- <_>10 1 6 3 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>7.9039083793759346e-003</threshold>
- <left_val>0.0833574980497360</left_val>
- <right_val>-0.1652749925851822</right_val></_></_>
- <_>
- <!-- tree 5 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>4 8 16 4 -1.</_>
- <_>8 8 8 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0393389798700809</threshold>
- <left_val>-6.5605872077867389e-004</left_val>
- <right_val>0.3236146867275238</right_val></_></_>
- <_>
- <!-- tree 6 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>6 10 4 6 -1.</_>
- <_>8 10 2 6 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-1.5762429684400558e-003</threshold>
- <left_val>0.0911294668912888</left_val>
- <right_val>-0.1416433006525040</right_val></_></_>
- <_>
- <!-- tree 7 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>7 14 9 4 -1.</_>
- <_>10 14 3 4 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>2.0851049339398742e-004</threshold>
- <left_val>-0.1380268037319183</left_val>
- <right_val>0.0772129893302917</right_val></_></_>
- <_>
- <!-- tree 8 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>8 10 4 7 -1.</_>
- <_>10 10 2 7 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-2.6843539671972394e-004</threshold>
- <left_val>0.1364672034978867</left_val>
- <right_val>-0.0942557528614998</right_val></_></_>
- <_>
- <!-- tree 9 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>12 12 4 6 -1.</_>
- <_>12 12 2 6 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>8.8506387546658516e-003</threshold>
- <left_val>0.0246034208685160</left_val>
- <right_val>-0.1688468009233475</right_val></_></_>
- <_>
- <!-- tree 10 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>6 12 4 6 -1.</_>
- <_>8 12 2 6 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-8.4813922876492143e-004</threshold>
- <left_val>-0.1397240012884140</left_val>
- <right_val>0.1156672984361649</right_val></_></_>
- <_>
- <!-- tree 11 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>9 12 4 6 -1.</_>
- <_>9 15 4 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-3.7090150726726279e-005</threshold>
- <left_val>0.0752842724323273</left_val>
- <right_val>-0.1770814955234528</right_val></_></_>
- <_>
- <!-- tree 12 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>5 12 6 6 -1.</_>
- <_>7 12 2 6 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0215339101850986</threshold>
- <left_val>0.2023303061723709</left_val>
- <right_val>-0.0669784769415855</right_val></_></_>
- <_>
- <!-- tree 13 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>6 2 11 16 -1.</_>
- <_>6 6 11 8 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0117136603221297</threshold>
- <left_val>0.0868534892797470</left_val>
- <right_val>-0.1125181019306183</right_val></_></_>
- <_>
- <!-- tree 14 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>11 2 6 2 -1.</_>
- <_>11 2 6 1 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-9.8365638405084610e-003</threshold>
- <left_val>0.3016479015350342</left_val>
- <right_val>-0.0501796603202820</right_val></_></_>
- <_>
- <!-- tree 15 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>10 1 6 8 -1.</_>
- <_>13 1 3 4 2.</_>
- <_>10 5 3 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-6.2104999087750912e-003</threshold>
- <left_val>0.0682242289185524</left_val>
- <right_val>-0.0944418236613274</right_val></_></_>
- <_>
- <!-- tree 16 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>5 2 12 2 -1.</_>
- <_>11 2 6 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0200343001633883</threshold>
- <left_val>-0.2865754961967468</left_val>
- <right_val>0.0457285009324551</right_val></_></_>
- <_>
- <!-- tree 17 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>10 13 8 3 -1.</_>
- <_>10 13 4 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-2.2154829639475793e-004</threshold>
- <left_val>0.0716037601232529</left_val>
- <right_val>-0.0871150493621826</right_val></_></_>
- <_>
- <!-- tree 18 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>5 0 12 6 -1.</_>
- <_>11 0 6 6 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-5.2436119876801968e-003</threshold>
- <left_val>0.1343950033187866</left_val>
- <right_val>-0.0902889072895050</right_val></_></_>
- <_>
- <!-- tree 19 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>10 7 12 3 -1.</_>
- <_>10 8 12 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0117112295702100</threshold>
- <left_val>0.1487469971179962</left_val>
- <right_val>-0.0259517803788185</right_val></_></_>
- <_>
- <!-- tree 20 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 7 12 3 -1.</_>
- <_>0 8 12 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>5.8587929233908653e-003</threshold>
- <left_val>-0.0669820234179497</left_val>
- <right_val>0.1809632927179337</right_val></_></_>
- <_>
- <!-- tree 21 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>20 0 2 18 -1.</_>
- <_>20 9 2 9 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.1043256968259811</threshold>
- <left_val>0.0102093303576112</left_val>
- <right_val>-0.7954081296920776</right_val></_></_>
- <_>
- <!-- tree 22 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 0 2 18 -1.</_>
- <_>0 9 2 9 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0170491300523281</threshold>
- <left_val>-0.2051631063222885</left_val>
- <right_val>0.0644709914922714</right_val></_></_>
- <_>
- <!-- tree 23 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>14 6 6 12 -1.</_>
- <_>17 6 3 6 2.</_>
- <_>14 12 3 6 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0258776992559433</threshold>
- <left_val>-0.0300797205418348</left_val>
- <right_val>0.1604197025299072</right_val></_></_>
- <_>
- <!-- tree 24 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>1 5 6 10 -1.</_>
- <_>1 10 6 5 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-4.0637338533997536e-003</threshold>
- <left_val>0.1087096035480499</left_val>
- <right_val>-0.1166540011763573</right_val></_></_>
- <_>
- <!-- tree 25 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>16 1 4 12 -1.</_>
- <_>16 5 4 4 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0192867200821638</threshold>
- <left_val>-0.1250395029783249</left_val>
- <right_val>0.0280551891773939</right_val></_></_>
- <_>
- <!-- tree 26 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>2 1 4 12 -1.</_>
- <_>2 5 4 4 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-7.2130301305151079e-006</threshold>
- <left_val>0.1184526011347771</left_val>
- <right_val>-0.1236701980233192</right_val></_></_>
- <_>
- <!-- tree 27 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>3 12 16 4 -1.</_>
- <_>11 12 8 2 2.</_>
- <_>3 14 8 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-2.6098350062966347e-003</threshold>
- <left_val>-0.1449867039918900</left_val>
- <right_val>0.0823187604546547</right_val></_></_>
- <_>
- <!-- tree 28 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 2 12 2 -1.</_>
- <_>0 3 12 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>3.2303779153153300e-004</threshold>
- <left_val>-0.0958554968237877</left_val>
- <right_val>0.1199266016483307</right_val></_></_>
- <_>
- <!-- tree 29 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>6 2 13 3 -1.</_>
- <_>6 3 13 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-1.1308960383757949e-003</threshold>
- <left_val>0.1288295984268189</left_val>
- <right_val>-0.0826974734663963</right_val></_></_>
- <_>
- <!-- tree 30 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>1 0 10 6 -1.</_>
- <_>1 0 5 3 2.</_>
- <_>6 3 5 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0171764697879553</threshold>
- <left_val>0.0360246598720551</left_val>
- <right_val>-0.3087381124496460</right_val></_></_>
- <_>
- <!-- tree 31 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>9 11 12 5 -1.</_>
- <_>13 11 4 5 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0105153303593397</threshold>
- <left_val>0.0963303372263908</left_val>
- <right_val>-0.1078578010201454</right_val></_></_>
- <_>
- <!-- tree 32 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>2 6 6 12 -1.</_>
- <_>2 6 3 6 2.</_>
- <_>5 12 3 6 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0505835004150867</threshold>
- <left_val>-0.0347158014774323</left_val>
- <right_val>0.4513450860977173</right_val></_></_>
- <_>
- <!-- tree 33 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>9 12 8 6 -1.</_>
- <_>13 12 4 3 2.</_>
- <_>9 15 4 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>8.7582931155338883e-004</threshold>
- <left_val>-0.0956771522760391</left_val>
- <right_val>0.0736316889524460</right_val></_></_>
- <_>
- <!-- tree 34 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>1 7 6 8 -1.</_>
- <_>1 7 3 4 2.</_>
- <_>4 11 3 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0319572202861309</threshold>
- <left_val>-0.3147349059581757</left_val>
- <right_val>0.0363292805850506</right_val></_></_>
- <_>
- <!-- tree 35 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>14 6 3 8 -1.</_>
- <_>15 7 1 8 3.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>5.9863331262022257e-004</threshold>
- <left_val>-0.0426766909658909</left_val>
- <right_val>0.0543428994715214</right_val></_></_>
- <_>
- <!-- tree 36 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>2 14 12 4 -1.</_>
- <_>6 14 4 4 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-6.6270949319005013e-003</threshold>
- <left_val>0.0735109224915504</left_val>
- <right_val>-0.1730908006429672</right_val></_></_>
- <_>
- <!-- tree 37 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>14 4 2 11 -1.</_>
- <_>14 4 1 11 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-0.0731865167617798</threshold>
- <left_val>0.6877769231796265</left_val>
- <right_val>-5.6781149469316006e-003</right_val></_></_>
- <_>
- <!-- tree 38 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>8 6 8 3 -1.</_>
- <_>7 7 8 1 3.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>0.0202908404171467</threshold>
- <left_val>-0.0407205410301685</left_val>
- <right_val>0.3045086860656738</right_val></_></_>
- <_>
- <!-- tree 39 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>6 12 12 3 -1.</_>
- <_>6 13 12 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-3.0989840161055326e-003</threshold>
- <left_val>-0.1278737038373947</left_val>
- <right_val>0.0543296895921230</right_val></_></_>
- <_>
- <!-- tree 40 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>2 3 18 3 -1.</_>
- <_>2 4 18 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-1.1258859885856509e-003</threshold>
- <left_val>0.1198007985949516</left_val>
- <right_val>-0.0834772363305092</right_val></_></_>
- <_>
- <!-- tree 41 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>11 6 9 9 -1.</_>
- <_>14 6 3 9 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>3.9993048994801939e-004</threshold>
- <left_val>-0.0954270735383034</left_val>
- <right_val>0.0769529119133949</right_val></_></_>
- <_>
- <!-- tree 42 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>3 13 11 4 -1.</_>
- <_>3 15 11 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0112025402486324</threshold>
- <left_val>0.0251253098249435</left_val>
- <right_val>-0.4031470119953156</right_val></_></_>
- <_>
- <!-- tree 43 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>17 5 4 6 -1.</_>
- <_>17 5 2 6 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0217539705336094</threshold>
- <left_val>-0.2304240018129349</left_val>
- <right_val>0.0153385195881128</right_val></_></_>
- <_>
- <!-- tree 44 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>1 5 4 6 -1.</_>
- <_>3 5 2 6 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>7.6912459917366505e-005</threshold>
- <left_val>-0.0955814868211746</left_val>
- <right_val>0.1038817018270493</right_val></_></_>
- <_>
- <!-- tree 45 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>6 0 16 3 -1.</_>
- <_>10 0 8 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0910115391016006</threshold>
- <left_val>-8.7168300524353981e-003</left_val>
- <right_val>0.7559375166893005</right_val></_></_>
- <_>
- <!-- tree 46 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>8 6 3 12 -1.</_>
- <_>9 6 1 12 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-4.3160789646208286e-003</threshold>
- <left_val>0.1349443942308426</left_val>
- <right_val>-0.0701520964503288</right_val></_></_>
- <_>
- <!-- tree 47 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>14 2 2 8 -1.</_>
- <_>14 2 1 8 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-0.0505811907351017</threshold>
- <left_val>-0.6611269116401672</left_val>
- <right_val>2.2676400840282440e-003</right_val></_></_>
- <_>
- <!-- tree 48 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>9 0 12 3 -1.</_>
- <_>9 0 6 3 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-8.3926003426313400e-003</threshold>
- <left_val>-0.1288360953330994</left_val>
- <right_val>0.0779204815626144</right_val></_></_>
- <_>
- <!-- tree 49 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>6 0 16 3 -1.</_>
- <_>10 0 8 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0550406612455845</threshold>
- <left_val>7.7853789553046227e-003</left_val>
- <right_val>-0.2782005071640015</right_val></_></_>
- <_>
- <!-- tree 50 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 0 16 3 -1.</_>
- <_>4 0 8 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0418625511229038</threshold>
- <left_val>0.4333544969558716</left_val>
- <right_val>-0.0291946399956942</right_val></_></_>
- <_>
- <!-- tree 51 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>8 12 14 3 -1.</_>
- <_>8 13 14 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-7.4230520986020565e-003</threshold>
- <left_val>0.1315450072288513</left_val>
- <right_val>-0.0320475101470947</right_val></_></_>
- <_>
- <!-- tree 52 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>8 4 11 2 -1.</_>
- <_>8 4 11 1 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>1.9948489498347044e-003</threshold>
- <left_val>0.0832996889948845</left_val>
- <right_val>-0.1166255995631218</right_val></_></_>
- <_>
- <!-- tree 53 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>2 5 20 13 -1.</_>
- <_>2 5 10 13 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0418514311313629</threshold>
- <left_val>0.0414611697196960</left_val>
- <right_val>-0.1281515955924988</right_val></_></_>
- <_>
- <!-- tree 54 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 2 18 9 -1.</_>
- <_>6 5 6 3 9.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.2784438133239746</threshold>
- <left_val>-0.0226128101348877</left_val>
- <right_val>0.5223631858825684</right_val></_></_>
- <_>
- <!-- tree 55 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>10 13 12 3 -1.</_>
- <_>10 14 12 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-7.1095931343734264e-003</threshold>
- <left_val>0.1290251016616821</left_val>
- <right_val>-0.0279447995126247</right_val></_></_>
- <_>
- <!-- tree 56 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>8 11 6 7 -1.</_>
- <_>10 11 2 7 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0111756101250649</threshold>
- <left_val>0.0513666607439518</left_val>
- <right_val>-0.1955953985452652</right_val></_></_>
- <_>
- <!-- tree 57 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>5 6 12 11 -1.</_>
- <_>9 6 4 11 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0103642102330923</threshold>
- <left_val>-0.0726313814520836</left_val>
- <right_val>0.1519950926303864</right_val></_></_>
- <_>
- <!-- tree 58 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>3 6 6 6 -1.</_>
- <_>5 6 2 6 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-9.4094304367899895e-003</threshold>
- <left_val>-0.2099336981773377</left_val>
- <right_val>0.0533468611538410</right_val></_></_>
- <_>
- <!-- tree 59 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>13 4 6 13 -1.</_>
- <_>15 4 2 13 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.1037501022219658</threshold>
- <left_val>-0.3369319140911102</left_val>
- <right_val>3.9442018605768681e-003</right_val></_></_>
- <_>
- <!-- tree 60 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>3 4 6 13 -1.</_>
- <_>5 4 2 13 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-9.5977628370746970e-004</threshold>
- <left_val>0.1030761003494263</left_val>
- <right_val>-0.1057410016655922</right_val></_></_>
- <_>
- <!-- tree 61 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>5 10 12 3 -1.</_>
- <_>9 10 4 3 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0558168105781078</threshold>
- <left_val>0.2607400119304657</left_val>
- <right_val>-0.0448851808905602</right_val></_></_>
- <_>
- <!-- tree 62 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>5 8 12 6 -1.</_>
- <_>8 8 6 6 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.1343093961477280</threshold>
- <left_val>-0.8166074752807617</left_val>
- <right_val>0.0154108600690961</right_val></_></_>
- <_>
- <!-- tree 63 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>14 2 2 8 -1.</_>
- <_>14 2 1 8 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>0.0604569502174854</threshold>
- <left_val>-3.0265029054135084e-003</left_val>
- <right_val>-0.9999178051948547</right_val></_></_>
- <_>
- <!-- tree 64 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>8 2 8 2 -1.</_>
- <_>8 2 8 1 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>0.0243590790778399</threshold>
- <left_val>0.0241913106292486</left_val>
- <right_val>-0.4663215875625610</right_val></_></_>
- <_>
- <!-- tree 65 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>8 6 9 5 -1.</_>
- <_>11 6 3 5 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0527357794344425</threshold>
- <left_val>-0.0242667607963085</left_val>
- <right_val>0.2146047949790955</right_val></_></_>
- <_>
- <!-- tree 66 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 3 14 4 -1.</_>
- <_>0 3 7 2 2.</_>
- <_>7 5 7 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-5.5626039393246174e-003</threshold>
- <left_val>0.1087993979454041</left_val>
- <right_val>-0.1212090998888016</right_val></_></_>
- <_>
- <!-- tree 67 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>12 1 3 8 -1.</_>
- <_>13 2 1 8 3.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>0.0908552631735802</threshold>
- <left_val>1.0956900223391131e-004</left_val>
- <right_val>-0.9997577071189880</right_val></_></_>
- <_>
- <!-- tree 68 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>10 1 8 3 -1.</_>
- <_>9 2 8 1 3.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-0.0346811898052692</threshold>
- <left_val>-0.4540998041629791</left_val>
- <right_val>0.0236911494284868</right_val></_></_>
- <_>
- <!-- tree 69 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>14 3 6 6 -1.</_>
- <_>14 5 6 2 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-2.9579090551123954e-005</threshold>
- <left_val>0.0480313189327717</left_val>
- <right_val>-0.0498729683458805</right_val></_></_>
- <_>
- <!-- tree 70 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>4 1 6 10 -1.</_>
- <_>4 1 3 5 2.</_>
- <_>7 6 3 5 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0262771304696798</threshold>
- <left_val>-0.0294567607343197</left_val>
- <right_val>0.3397437036037445</right_val></_></_>
- <_>
- <!-- tree 71 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>18 1 3 13 -1.</_>
- <_>19 1 1 13 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0462760217487812</threshold>
- <left_val>0.4549660980701447</left_val>
- <right_val>-0.0103595796972513</right_val></_></_>
- <_>
- <!-- tree 72 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>1 1 3 13 -1.</_>
- <_>2 1 1 13 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>1.2048200005665421e-004</threshold>
- <left_val>-0.1057519987225533</left_val>
- <right_val>0.1009673029184341</right_val></_></_>
- <_>
- <!-- tree 73 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>11 1 2 8 -1.</_>
- <_>11 1 1 8 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>6.8154390901327133e-003</threshold>
- <left_val>0.0284956097602844</left_val>
- <right_val>-0.0997650697827339</right_val></_></_>
- <_>
- <!-- tree 74 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>11 1 8 2 -1.</_>
- <_>11 1 8 1 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>1.6169620212167501e-003</threshold>
- <left_val>-0.1325616985559464</left_val>
- <right_val>0.0878289788961411</right_val></_></_>
- <_>
- <!-- tree 75 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>8 4 6 6 -1.</_>
- <_>8 6 6 2 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0145633798092604</threshold>
- <left_val>-0.0430799014866352</left_val>
- <right_val>0.2511326074600220</right_val></_></_>
- <_>
- <!-- tree 76 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>5 4 7 6 -1.</_>
- <_>5 6 7 2 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0203529093414545</threshold>
- <left_val>0.0394636392593384</left_val>
- <right_val>-0.3251897096633911</right_val></_></_>
- <_>
- <!-- tree 77 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>9 11 13 3 -1.</_>
- <_>9 12 13 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0207892693579197</threshold>
- <left_val>0.1899335980415344</left_val>
- <right_val>-0.0212719999253750</right_val></_></_>
- <_>
- <!-- tree 78 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 11 13 3 -1.</_>
- <_>0 12 13 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0317801013588905</threshold>
- <left_val>-0.0237682200968266</left_val>
- <right_val>0.4395782947540283</right_val></_></_>
- <_>
- <!-- tree 79 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>12 10 9 8 -1.</_>
- <_>12 14 9 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.1245922967791557</threshold>
- <left_val>6.5275398083031178e-003</left_val>
- <right_val>-0.9999179840087891</right_val></_></_>
- <_>
- <!-- tree 80 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>1 10 9 8 -1.</_>
- <_>1 14 9 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0840070396661758</threshold>
- <left_val>-0.3562028110027313</left_val>
- <right_val>0.0289165601134300</right_val></_></_>
- <_>
- <!-- tree 81 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>4 10 18 8 -1.</_>
- <_>13 10 9 4 2.</_>
- <_>4 14 9 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>9.6772145479917526e-003</threshold>
- <left_val>0.0640739426016808</left_val>
- <right_val>-0.1548271030187607</right_val></_></_>
- <_>
- <!-- tree 82 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 10 18 8 -1.</_>
- <_>0 10 9 4 2.</_>
- <_>9 14 9 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.1040503978729248</threshold>
- <left_val>-0.0226520504802465</left_val>
- <right_val>0.5762320756912231</right_val></_></_>
- <_>
- <!-- tree 83 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>12 2 4 12 -1.</_>
- <_>12 2 2 12 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>0.0408144108951092</threshold>
- <left_val>-0.0373685695230961</left_val>
- <right_val>0.0772985070943832</right_val></_></_>
- <_>
- <!-- tree 84 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 5 20 13 -1.</_>
- <_>10 5 10 13 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.4691618978977203</threshold>
- <left_val>-0.7730463147163391</left_val>
- <right_val>0.0136070800945163</right_val></_></_>
- <_>
- <!-- tree 85 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>10 6 9 6 -1.</_>
- <_>10 8 9 2 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.1372341960668564</threshold>
- <left_val>-1.</left_val>
- <right_val>-1.7328710528090596e-003</right_val></_></_>
- <_>
- <!-- tree 86 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>3 6 9 6 -1.</_>
- <_>3 8 9 2 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0375694483518600</threshold>
- <left_val>0.0314127095043659</left_val>
- <right_val>-0.3551242947578430</right_val></_></_>
- <_>
- <!-- tree 87 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>7 4 15 8 -1.</_>
- <_>7 6 15 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0126453796401620</threshold>
- <left_val>-0.0713228806853294</left_val>
- <right_val>0.0418895483016968</right_val></_></_>
- <_>
- <!-- tree 88 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>9 2 12 2 -1.</_>
- <_>9 2 12 1 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>0.0399338603019714</threshold>
- <left_val>-0.0334470011293888</left_val>
- <right_val>0.3593294024467468</right_val></_></_>
- <_>
- <!-- tree 89 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>12 6 6 4 -1.</_>
- <_>12 6 6 2 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>0.0172074399888515</threshold>
- <left_val>0.0261265300214291</left_val>
- <right_val>-0.0776343792676926</right_val></_></_>
- <_>
- <!-- tree 90 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>7 0 13 3 -1.</_>
- <_>6 1 13 1 3.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>0.0597022287547588</threshold>
- <left_val>-0.0237179808318615</left_val>
- <right_val>0.5732179880142212</right_val></_></_>
- <_>
- <!-- tree 91 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>3 0 18 2 -1.</_>
- <_>3 0 9 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0799178034067154</threshold>
- <left_val>-9.7547564655542374e-003</left_val>
- <right_val>0.4346744120121002</right_val></_></_>
- <_>
- <!-- tree 92 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>4 5 13 12 -1.</_>
- <_>4 9 13 4 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.1135172024369240</threshold>
- <left_val>-0.0389219708740711</left_val>
- <right_val>0.2612080872058868</right_val></_></_>
- <_>
- <!-- tree 93 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>4 6 18 9 -1.</_>
- <_>10 9 6 3 9.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.4837945103645325</threshold>
- <left_val>7.8452667221426964e-003</left_val>
- <right_val>-0.6502416133880615</right_val></_></_>
- <_>
- <!-- tree 94 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>8 5 6 11 -1.</_>
- <_>10 5 2 11 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.1004507020115852</threshold>
- <left_val>-0.8007202148437500</left_val>
- <right_val>0.0122501999139786</right_val></_></_>
- <_>
- <!-- tree 95 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>6 2 16 16 -1.</_>
- <_>6 6 16 8 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.2717601954936981</threshold>
- <left_val>4.4636582024395466e-003</left_val>
- <right_val>-0.6939312219619751</right_val></_></_>
- <_>
- <!-- tree 96 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 2 16 16 -1.</_>
- <_>0 6 16 8 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.1230124980211258</threshold>
- <left_val>0.3248383998870850</left_val>
- <right_val>-0.0338415503501892</right_val></_></_>
- <_>
- <!-- tree 97 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>18 1 2 12 -1.</_>
- <_>18 7 2 6 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0611887499690056</threshold>
- <left_val>7.1536018513143063e-003</left_val>
- <right_val>-0.7781751751899719</right_val></_></_>
- <_>
- <!-- tree 98 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>2 1 2 12 -1.</_>
- <_>2 7 2 6 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-7.8828241676092148e-003</threshold>
- <left_val>-0.1975423991680145</left_val>
- <right_val>0.0677954331040382</right_val></_></_>
- <_>
- <!-- tree 99 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>8 3 14 9 -1.</_>
- <_>8 6 14 3 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.2558487951755524</threshold>
- <left_val>-1.</left_val>
- <right_val>1.4300020411610603e-003</right_val></_></_>
- <_>
- <!-- tree 100 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 3 14 9 -1.</_>
- <_>0 6 14 3 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.1309846937656403</threshold>
- <left_val>-0.0166683103889227</left_val>
- <right_val>0.7454720735549927</right_val></_></_>
- <_>
- <!-- tree 101 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>10 6 4 9 -1.</_>
- <_>10 9 4 3 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0845530778169632</threshold>
- <left_val>-0.6342390179634094</left_val>
- <right_val>8.3142798393964767e-003</right_val></_></_>
- <_>
- <!-- tree 102 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 6 3 12 -1.</_>
- <_>0 12 3 6 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0882977172732353</threshold>
- <left_val>-0.8570597171783447</left_val>
- <right_val>0.0105499401688576</right_val></_></_>
- <_>
- <!-- tree 103 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>16 2 6 9 -1.</_>
- <_>13 5 6 3 3.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-0.1037487983703613</threshold>
- <left_val>0.1207318007946014</left_val>
- <right_val>-0.0224885791540146</right_val></_></_>
- <_>
- <!-- tree 104 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>10 0 12 4 -1.</_>
- <_>9 1 12 2 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>1.4872249448671937e-003</threshold>
- <left_val>-0.1109644025564194</left_val>
- <right_val>0.1040541008114815</right_val></_></_>
- <_>
- <!-- tree 105 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>11 0 10 18 -1.</_>
- <_>16 0 5 9 2.</_>
- <_>11 9 5 9 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.2136403024196625</threshold>
- <left_val>7.3841079138219357e-003</left_val>
- <right_val>-0.4976033866405487</right_val></_></_>
- <_>
- <!-- tree 106 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>1 0 10 18 -1.</_>
- <_>1 0 5 9 2.</_>
- <_>6 9 5 9 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0262943096458912</threshold>
- <left_val>-0.0632127001881599</left_val>
- <right_val>0.2628476023674011</right_val></_></_>
- <_>
- <!-- tree 107 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>7 12 14 3 -1.</_>
- <_>7 12 7 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-2.6777000166475773e-003</threshold>
- <left_val>0.0564883500337601</left_val>
- <right_val>-0.1017431020736694</right_val></_></_>
- <_>
- <!-- tree 108 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>7 11 8 3 -1.</_>
- <_>11 11 4 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-2.1261540241539478e-003</threshold>
- <left_val>-0.1644288003444672</left_val>
- <right_val>0.0661599636077881</right_val></_></_>
- <_>
- <!-- tree 109 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>2 13 18 4 -1.</_>
- <_>2 13 9 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-8.2200914621353149e-003</threshold>
- <left_val>-0.1613277941942215</left_val>
- <right_val>0.0835154727101326</right_val></_></_>
- <_>
- <!-- tree 110 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>10 6 4 6 -1.</_>
- <_>10 6 2 6 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-0.0117018800228834</threshold>
- <left_val>0.2151619940996170</left_val>
- <right_val>-0.0591160506010056</right_val></_></_>
- <_>
- <!-- tree 111 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>8 9 6 9 -1.</_>
- <_>10 9 2 9 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-7.0460740244016051e-004</threshold>
- <left_val>0.0961422994732857</left_val>
- <right_val>-0.1300875991582871</right_val></_></_>
- <_>
- <!-- tree 112 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>3 11 13 3 -1.</_>
- <_>3 12 13 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-1.9671309273689985e-003</threshold>
- <left_val>0.1260503977537155</left_val>
- <right_val>-0.0885426402091980</right_val></_></_>
- <_>
- <!-- tree 113 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>18 10 4 6 -1.</_>
- <_>18 10 2 6 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-9.5004076138138771e-003</threshold>
- <left_val>-0.2360457926988602</left_val>
- <right_val>0.0459226295351982</right_val></_></_>
- <_>
- <!-- tree 114 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>5 5 9 5 -1.</_>
- <_>8 5 3 5 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0268023703247309</threshold>
- <left_val>-0.0489667691290379</left_val>
- <right_val>0.2388713061809540</right_val></_></_>
- <_>
- <!-- tree 115 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>13 0 2 14 -1.</_>
- <_>13 0 1 14 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0221774205565453</threshold>
- <left_val>-0.0125605901703238</left_val>
- <right_val>0.2708427011966705</right_val></_></_>
- <_>
- <!-- tree 116 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>2 0 18 7 -1.</_>
- <_>8 0 6 7 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0933828800916672</threshold>
- <left_val>0.0338358506560326</left_val>
- <right_val>-0.3970789015293121</right_val></_></_>
- <_>
- <!-- tree 117 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>13 4 6 8 -1.</_>
- <_>16 4 3 4 2.</_>
- <_>13 8 3 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0131510803475976</threshold>
- <left_val>-0.1136426031589508</left_val>
- <right_val>0.0259307399392128</right_val></_></_>
- <_>
- <!-- tree 118 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>3 4 6 8 -1.</_>
- <_>3 4 3 4 2.</_>
- <_>6 8 3 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>2.6929581072181463e-003</threshold>
- <left_val>0.0682023465633392</left_val>
- <right_val>-0.1629091054201126</right_val></_></_>
- <_>
- <!-- tree 119 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>8 5 12 2 -1.</_>
- <_>8 6 12 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-5.7519129477441311e-003</threshold>
- <left_val>0.1319772005081177</left_val>
- <right_val>-0.0577118992805481</right_val></_></_>
- <_>
- <!-- tree 120 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>7 0 3 12 -1.</_>
- <_>8 0 1 12 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-1.1071159970015287e-003</threshold>
- <left_val>0.1455008983612061</left_val>
- <right_val>-0.0773000419139862</right_val></_></_>
- <_>
- <!-- tree 121 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>15 0 3 10 -1.</_>
- <_>16 1 1 10 3.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>0.0318051800131798</threshold>
- <left_val>0.0141812795773149</left_val>
- <right_val>-0.2180342972278595</right_val></_></_>
- <_>
- <!-- tree 122 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>2 4 12 12 -1.</_>
- <_>6 8 4 4 9.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.4072949886322022</threshold>
- <left_val>-0.0137729402631521</left_val>
- <right_val>0.7485334873199463</right_val></_></_>
- <_>
- <!-- tree 123 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>5 10 13 3 -1.</_>
- <_>5 11 13 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0701730772852898</threshold>
- <left_val>0.0115358103066683</left_val>
- <right_val>-0.8609462976455689</right_val></_></_>
- <_>
- <!-- tree 124 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>5 15 12 2 -1.</_>
- <_>5 16 12 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-1.9437450100667775e-004</threshold>
- <left_val>0.0630099922418594</left_val>
- <right_val>-0.1511144042015076</right_val></_></_>
- <_>
- <!-- tree 125 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>17 8 5 6 -1.</_>
- <_>17 11 5 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0394255593419075</threshold>
- <left_val>0.0241153296083212</left_val>
- <right_val>-0.4725382030010223</right_val></_></_>
- <_>
- <!-- tree 126 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>5 12 6 6 -1.</_>
- <_>5 14 6 2 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>2.6128459721803665e-003</threshold>
- <left_val>0.0539631508290768</left_val>
- <right_val>-0.1742976009845734</right_val></_></_></trees>
- <stage_threshold>-30.6205997467041020</stage_threshold>
- <parent>24</parent>
- <next>-1</next></_>
- <_>
- <!-- stage 26 -->
- <trees>
- <_>
- <!-- tree 0 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>10 6 4 7 -1.</_>
- <_>10 6 2 7 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>0.1046843007206917</threshold>
- <left_val>-0.0475701093673706</left_val>
- <right_val>0.4245404899120331</right_val></_></_>
- <_>
- <!-- tree 1 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>12 3 4 10 -1.</_>
- <_>13 4 2 10 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-0.0429464206099510</threshold>
- <left_val>0.1632889062166214</left_val>
- <right_val>-0.0126551697030663</right_val></_></_>
- <_>
- <!-- tree 2 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>10 3 10 4 -1.</_>
- <_>9 4 10 2 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-8.1577729433774948e-003</threshold>
- <left_val>0.1023579984903336</left_val>
- <right_val>-0.1087663024663925</right_val></_></_>
- <_>
- <!-- tree 3 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>12 4 2 12 -1.</_>
- <_>12 4 1 12 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>2.1813691128045321e-003</threshold>
- <left_val>0.0879852473735809</left_val>
- <right_val>-0.0558997616171837</right_val></_></_>
- <_>
- <!-- tree 4 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>1 11 15 3 -1.</_>
- <_>6 11 5 3 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-6.5157511271536350e-003</threshold>
- <left_val>0.0828638523817062</left_val>
- <right_val>-0.1373631954193115</right_val></_></_>
- <_>
- <!-- tree 5 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>11 6 6 9 -1.</_>
- <_>13 6 2 9 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0247165001928806</threshold>
- <left_val>0.0167552102357149</left_val>
- <right_val>0.1337125003337860</right_val></_></_>
- <_>
- <!-- tree 6 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>5 6 6 9 -1.</_>
- <_>7 6 2 9 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-5.9396267170086503e-004</threshold>
- <left_val>-0.1377137005329132</left_val>
- <right_val>0.1050129011273384</right_val></_></_>
- <_>
- <!-- tree 7 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>8 5 6 6 -1.</_>
- <_>10 5 2 6 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0293738208711147</threshold>
- <left_val>-0.0445813983678818</left_val>
- <right_val>0.4273186028003693</right_val></_></_>
- <_>
- <!-- tree 8 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>1 2 6 8 -1.</_>
- <_>1 2 3 4 2.</_>
- <_>4 6 3 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0165769197046757</threshold>
- <left_val>-0.2982746064662933</left_val>
- <right_val>0.0297183692455292</right_val></_></_>
- <_>
- <!-- tree 9 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>14 0 4 9 -1.</_>
- <_>14 3 4 3 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>9.4569493085145950e-003</threshold>
- <left_val>0.0536169484257698</left_val>
- <right_val>-0.0766755267977715</right_val></_></_>
- <_>
- <!-- tree 10 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 0 18 9 -1.</_>
- <_>0 3 18 3 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0745819136500359</threshold>
- <left_val>-0.0465544089674950</left_val>
- <right_val>0.3017961084842682</right_val></_></_>
- <_>
- <!-- tree 11 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>9 5 5 12 -1.</_>
- <_>9 8 5 6 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0380556210875511</threshold>
- <left_val>-0.2825511991977692</left_val>
- <right_val>0.0203556902706623</right_val></_></_>
- <_>
- <!-- tree 12 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>3 5 16 3 -1.</_>
- <_>3 6 16 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0110655399039388</threshold>
- <left_val>-0.0539425984025002</left_val>
- <right_val>0.2313262969255447</right_val></_></_>
- <_>
- <!-- tree 13 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>16 2 6 8 -1.</_>
- <_>19 2 3 4 2.</_>
- <_>16 6 3 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0135382199659944</threshold>
- <left_val>0.0281029809266329</left_val>
- <right_val>-0.2180289030075073</right_val></_></_>
- <_>
- <!-- tree 14 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 2 6 8 -1.</_>
- <_>0 2 3 4 2.</_>
- <_>3 6 3 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>4.6914750710129738e-003</threshold>
- <left_val>0.0636170208454132</left_val>
- <right_val>-0.1746082007884979</right_val></_></_>
- <_>
- <!-- tree 15 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>5 2 12 16 -1.</_>
- <_>5 10 12 8 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.4305444061756134</threshold>
- <left_val>-0.0210623797029257</left_val>
- <right_val>0.5719779729843140</right_val></_></_>
- <_>
- <!-- tree 16 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>5 11 8 6 -1.</_>
- <_>5 11 4 3 2.</_>
- <_>9 14 4 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>1.4298999449238181e-003</threshold>
- <left_val>-0.1678003966808319</left_val>
- <right_val>0.0768510624766350</right_val></_></_>
- <_>
- <!-- tree 17 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>8 2 6 8 -1.</_>
- <_>11 2 3 4 2.</_>
- <_>8 6 3 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0278552304953337</threshold>
- <left_val>-0.0356479696929455</left_val>
- <right_val>0.2895691096782684</right_val></_></_>
- <_>
- <!-- tree 18 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 6 7 12 -1.</_>
- <_>0 10 7 4 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0143916700035334</threshold>
- <left_val>0.0833004266023636</left_val>
- <right_val>-0.1295132040977478</right_val></_></_>
- <_>
- <!-- tree 19 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>16 8 6 8 -1.</_>
- <_>16 10 6 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0776373818516731</threshold>
- <left_val>-1.</left_val>
- <right_val>8.1426621181890368e-004</right_val></_></_>
- <_>
- <!-- tree 20 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 8 6 8 -1.</_>
- <_>0 10 6 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0160511992871761</threshold>
- <left_val>-0.0540085881948471</left_val>
- <right_val>0.2196779996156693</right_val></_></_>
- <_>
- <!-- tree 21 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>4 0 17 3 -1.</_>
- <_>4 1 17 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0709887295961380</threshold>
- <left_val>0.6160213947296143</left_val>
- <right_val>-0.0164764001965523</right_val></_></_>
- <_>
- <!-- tree 22 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>7 4 4 14 -1.</_>
- <_>8 4 2 14 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0583109892904758</threshold>
- <left_val>-0.9595535993576050</left_val>
- <right_val>0.0125171002000570</right_val></_></_>
- <_>
- <!-- tree 23 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>9 5 5 12 -1.</_>
- <_>9 8 5 6 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-7.9547446221113205e-003</threshold>
- <left_val>-0.0936840027570724</left_val>
- <right_val>0.0338969603180885</right_val></_></_>
- <_>
- <!-- tree 24 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>10 4 10 4 -1.</_>
- <_>9 5 10 2 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-0.0496857985854149</threshold>
- <left_val>0.3146679997444153</left_val>
- <right_val>-0.0297160502523184</right_val></_></_>
- <_>
- <!-- tree 25 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>13 1 3 13 -1.</_>
- <_>14 2 1 13 3.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>0.0977515280246735</threshold>
- <left_val>7.5905729318037629e-004</left_val>
- <right_val>-0.6700987219810486</right_val></_></_>
- <_>
- <!-- tree 26 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>9 1 13 3 -1.</_>
- <_>8 2 13 1 3.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>0.0759088024497032</threshold>
- <left_val>0.0160733293741941</left_val>
- <right_val>-0.6625136137008667</right_val></_></_>
- <_>
- <!-- tree 27 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>4 16 14 2 -1.</_>
- <_>4 17 14 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>1.3333460083231330e-003</threshold>
- <left_val>0.0522413998842239</left_val>
- <right_val>-0.1880871057510376</right_val></_></_>
- <_>
- <!-- tree 28 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 16 15 2 -1.</_>
- <_>0 17 15 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>6.9728610105812550e-004</threshold>
- <left_val>-0.0890448018908501</left_val>
- <right_val>0.1664233952760696</right_val></_></_>
- <_>
- <!-- tree 29 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>11 4 2 6 -1.</_>
- <_>11 4 1 6 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>0.0208895094692707</threshold>
- <left_val>0.0213687196373940</left_val>
- <right_val>-0.1608344018459320</right_val></_></_>
- <_>
- <!-- tree 30 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 6 4 9 -1.</_>
- <_>0 9 4 3 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-1.7649700166657567e-003</threshold>
- <left_val>0.1239852979779244</left_val>
- <right_val>-0.0859223976731300</right_val></_></_>
- <_>
- <!-- tree 31 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>14 0 7 6 -1.</_>
- <_>12 2 7 2 3.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>2.7779850643128157e-003</threshold>
- <left_val>-0.0443661510944366</left_val>
- <right_val>0.0293225497007370</right_val></_></_>
- <_>
- <!-- tree 32 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>8 4 6 10 -1.</_>
- <_>8 4 3 5 2.</_>
- <_>11 9 3 5 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>7.9974532127380371e-004</threshold>
- <left_val>-0.1235152035951614</left_val>
- <right_val>0.0888182967901230</right_val></_></_>
- <_>
- <!-- tree 33 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>7 7 8 10 -1.</_>
- <_>11 7 4 5 2.</_>
- <_>7 12 4 5 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>7.0215959567576647e-004</threshold>
- <left_val>-0.0801541805267334</left_val>
- <right_val>0.1454429030418396</right_val></_></_>
- <_>
- <!-- tree 34 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>5 6 12 8 -1.</_>
- <_>5 6 6 4 2.</_>
- <_>11 10 6 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0406044200062752</threshold>
- <left_val>-0.3604758083820343</left_val>
- <right_val>0.0343148596584797</right_val></_></_>
- <_>
- <!-- tree 35 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>8 6 8 8 -1.</_>
- <_>12 6 4 4 2.</_>
- <_>8 10 4 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0416868515312672</threshold>
- <left_val>-0.2092776000499725</left_val>
- <right_val>8.5808392614126205e-003</right_val></_></_>
- <_>
- <!-- tree 36 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>6 6 8 8 -1.</_>
- <_>6 6 4 4 2.</_>
- <_>10 10 4 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0463901981711388</threshold>
- <left_val>0.5376852750778198</left_val>
- <right_val>-0.0226325001567602</right_val></_></_>
- <_>
- <!-- tree 37 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>12 4 6 6 -1.</_>
- <_>10 6 6 2 3.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-0.1582203060388565</threshold>
- <left_val>-1.</left_val>
- <right_val>1.4312319690361619e-003</right_val></_></_>
- <_>
- <!-- tree 38 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>5 7 10 8 -1.</_>
- <_>5 7 5 4 2.</_>
- <_>10 11 5 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0756833702325821</threshold>
- <left_val>-0.8050302863121033</left_val>
- <right_val>0.0128438398241997</right_val></_></_>
- <_>
- <!-- tree 39 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>4 5 18 3 -1.</_>
- <_>4 6 18 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0578083284199238</threshold>
- <left_val>0.3867568075656891</left_val>
- <right_val>-0.0126303201541305</right_val></_></_>
- <_>
- <!-- tree 40 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>3 16 15 2 -1.</_>
- <_>3 17 15 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-4.5112581574358046e-005</threshold>
- <left_val>0.0749589875340462</left_val>
- <right_val>-0.1343374997377396</right_val></_></_>
- <_>
- <!-- tree 41 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>3 10 16 2 -1.</_>
- <_>3 11 16 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0392054803669453</threshold>
- <left_val>0.0219805799424648</left_val>
- <right_val>-0.4574862122535706</right_val></_></_>
- <_>
- <!-- tree 42 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>3 12 6 6 -1.</_>
- <_>5 12 2 6 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0449452400207520</threshold>
- <left_val>-0.0237634591758251</left_val>
- <right_val>0.4871528148651123</right_val></_></_>
- <_>
- <!-- tree 43 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>18 2 3 13 -1.</_>
- <_>19 2 1 13 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0578491911292076</threshold>
- <left_val>0.3556363880634308</left_val>
- <right_val>-6.2380530871450901e-003</right_val></_></_>
- <_>
- <!-- tree 44 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>4 10 12 4 -1.</_>
- <_>8 10 4 4 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.1039723977446556</threshold>
- <left_val>-0.6226279139518738</left_val>
- <right_val>0.0150228803977370</right_val></_></_>
- <_>
- <!-- tree 45 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>7 7 14 7 -1.</_>
- <_>7 7 7 7 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.2523828148841858</threshold>
- <left_val>-0.5905948281288147</left_val>
- <right_val>-1.9238379900343716e-004</right_val></_></_>
- <_>
- <!-- tree 46 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>1 7 14 7 -1.</_>
- <_>8 7 7 7 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.1967588067054749</threshold>
- <left_val>0.0126251596957445</left_val>
- <right_val>-0.7275320887565613</right_val></_></_>
- <_>
- <!-- tree 47 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>11 0 8 13 -1.</_>
- <_>11 0 4 13 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0374124199151993</threshold>
- <left_val>-0.0234783403575420</left_val>
- <right_val>0.1214763969182968</right_val></_></_>
- <_>
- <!-- tree 48 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 6 4 12 -1.</_>
- <_>0 6 2 6 2.</_>
- <_>2 12 2 6 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-8.0470675602555275e-003</threshold>
- <left_val>-0.1816778928041458</left_val>
- <right_val>0.0497434996068478</right_val></_></_>
- <_>
- <!-- tree 49 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>14 2 2 12 -1.</_>
- <_>14 2 1 12 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>0.0412974916398525</threshold>
- <left_val>0.0102590499445796</left_val>
- <right_val>-0.1467950046062470</right_val></_></_>
- <_>
- <!-- tree 50 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>2 2 8 12 -1.</_>
- <_>2 2 4 6 2.</_>
- <_>6 8 4 6 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0507357306778431</threshold>
- <left_val>0.2267964035272598</left_val>
- <right_val>-0.0498070493340492</right_val></_></_>
- <_>
- <!-- tree 51 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>17 0 4 16 -1.</_>
- <_>17 8 4 8 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-3.6145109334029257e-004</threshold>
- <left_val>0.0417982786893845</left_val>
- <right_val>-0.0704108327627182</right_val></_></_>
- <_>
- <!-- tree 52 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>1 0 4 16 -1.</_>
- <_>1 8 4 8 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.1235945001244545</threshold>
- <left_val>0.5828350186347961</left_val>
- <right_val>-0.0168224293738604</right_val></_></_>
- <_>
- <!-- tree 53 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>6 1 16 16 -1.</_>
- <_>6 9 16 8 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0570716187357903</threshold>
- <left_val>-0.0405320711433887</left_val>
- <right_val>0.1707827001810074</right_val></_></_>
- <_>
- <!-- tree 54 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>8 0 6 7 -1.</_>
- <_>10 2 2 7 3.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>5.8561540208756924e-003</threshold>
- <left_val>-0.1382790058851242</left_val>
- <right_val>0.0825652331113815</right_val></_></_>
- <_>
- <!-- tree 55 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>15 1 6 6 -1.</_>
- <_>13 3 6 2 3.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-0.1147285029292107</threshold>
- <left_val>-0.4675404131412506</left_val>
- <right_val>3.4348990302532911e-003</right_val></_></_>
- <_>
- <!-- tree 56 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>7 1 6 6 -1.</_>
- <_>9 3 2 6 3.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>0.0205186996608973</threshold>
- <left_val>0.0815079435706139</left_val>
- <right_val>-0.1689410954713821</right_val></_></_>
- <_>
- <!-- tree 57 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>14 2 2 12 -1.</_>
- <_>14 2 1 12 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>0.0546297691762447</threshold>
- <left_val>-7.4763749726116657e-003</left_val>
- <right_val>0.2364037930965424</right_val></_></_>
- <_>
- <!-- tree 58 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>5 11 12 6 -1.</_>
- <_>5 14 12 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0693129673600197</threshold>
- <left_val>0.3007157146930695</left_val>
- <right_val>-0.0347853004932404</right_val></_></_>
- <_>
- <!-- tree 59 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>5 13 12 4 -1.</_>
- <_>5 14 12 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-7.4176848866045475e-003</threshold>
- <left_val>-0.2876656055450440</left_val>
- <right_val>0.0475318208336830</right_val></_></_>
- <_>
- <!-- tree 60 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>2 15 18 2 -1.</_>
- <_>2 16 18 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0102232601493597</threshold>
- <left_val>-0.0308347996324301</left_val>
- <right_val>0.3924953937530518</right_val></_></_>
- <_>
- <!-- tree 61 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>18 4 4 14 -1.</_>
- <_>20 4 2 7 2.</_>
- <_>18 11 2 7 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0273466594517231</threshold>
- <left_val>-0.1569548994302750</left_val>
- <right_val>0.0139675298705697</right_val></_></_>
- <_>
- <!-- tree 62 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 4 4 14 -1.</_>
- <_>0 4 2 7 2.</_>
- <_>2 11 2 7 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0338751003146172</threshold>
- <left_val>0.0260633099824190</left_val>
- <right_val>-0.3900640904903412</right_val></_></_>
- <_>
- <!-- tree 63 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>11 0 3 12 -1.</_>
- <_>12 0 1 12 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0451747216284275</threshold>
- <left_val>8.9199207723140717e-003</left_val>
- <right_val>-0.5676915049552918</right_val></_></_>
- <_>
- <!-- tree 64 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>9 3 4 6 -1.</_>
- <_>9 6 4 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0114882299676538</threshold>
- <left_val>-0.0454914197325706</left_val>
- <right_val>0.2510992884635925</right_val></_></_>
- <_>
- <!-- tree 65 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>7 4 15 10 -1.</_>
- <_>7 9 15 5 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0104961497709155</threshold>
- <left_val>0.0648954436182976</left_val>
- <right_val>-0.1062353998422623</right_val></_></_>
- <_>
- <!-- tree 66 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>4 2 9 12 -1.</_>
- <_>4 6 9 4 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>6.0881208628416061e-003</threshold>
- <left_val>0.0809291824698448</left_val>
- <right_val>-0.1477614939212799</right_val></_></_>
- <_>
- <!-- tree 67 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>3 1 17 3 -1.</_>
- <_>3 2 17 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-2.6524660643190145e-003</threshold>
- <left_val>0.1206251978874207</left_val>
- <right_val>-0.0726748630404472</right_val></_></_>
- <_>
- <!-- tree 68 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 1 16 3 -1.</_>
- <_>0 2 16 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>2.3559860419481993e-003</threshold>
- <left_val>-0.0818112716078758</left_val>
- <right_val>0.1412654072046280</right_val></_></_>
- <_>
- <!-- tree 69 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>7 4 15 10 -1.</_>
- <_>7 9 15 5 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.2677721977233887</threshold>
- <left_val>-0.7808383107185364</left_val>
- <right_val>4.4526048004627228e-003</right_val></_></_>
- <_>
- <!-- tree 70 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 4 15 10 -1.</_>
- <_>0 9 15 5 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.1596579998731613</threshold>
- <left_val>0.0283816494047642</left_val>
- <right_val>-0.3896783888339996</right_val></_></_>
- <_>
- <!-- tree 71 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>15 0 6 18 -1.</_>
- <_>15 9 6 9 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0518993698060513</threshold>
- <left_val>-0.0343053191900253</left_val>
- <right_val>0.1592101007699966</right_val></_></_>
- <_>
- <!-- tree 72 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>3 14 12 4 -1.</_>
- <_>3 14 6 2 2.</_>
- <_>9 16 6 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-1.3652780326083302e-003</threshold>
- <left_val>-0.1375547945499420</left_val>
- <right_val>0.0727199986577034</right_val></_></_>
- <_>
- <!-- tree 73 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>13 0 9 5 -1.</_>
- <_>16 3 3 5 3.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>0.2249729931354523</threshold>
- <left_val>-4.8017292283475399e-003</left_val>
- <right_val>0.9999485015869141</right_val></_></_>
- <_>
- <!-- tree 74 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>9 7 9 2 -1.</_>
- <_>9 7 9 1 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>3.1434150878340006e-003</threshold>
- <left_val>0.0551515705883503</left_val>
- <right_val>-0.1664316058158875</right_val></_></_>
- <_>
- <!-- tree 75 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>12 6 3 7 -1.</_>
- <_>13 7 1 7 3.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-6.2940339557826519e-003</threshold>
- <left_val>0.0628960281610489</left_val>
- <right_val>-0.0604363791644573</right_val></_></_>
- <_>
- <!-- tree 76 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>3 4 8 8 -1.</_>
- <_>7 4 4 8 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0513019114732742</threshold>
- <left_val>-0.0316718108952045</left_val>
- <right_val>0.3853493928909302</right_val></_></_>
- <_>
- <!-- tree 77 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>7 8 12 3 -1.</_>
- <_>11 8 4 3 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0669808089733124</threshold>
- <left_val>-0.1092590019106865</left_val>
- <right_val>8.9958757162094116e-003</right_val></_></_>
- <_>
- <!-- tree 78 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>8 6 5 6 -1.</_>
- <_>8 6 5 3 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>0.0514647588133812</threshold>
- <left_val>0.0262100193649530</left_val>
- <right_val>-0.4215933978557587</right_val></_></_>
- <_>
- <!-- tree 79 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>10 7 10 6 -1.</_>
- <_>10 10 10 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0909821391105652</threshold>
- <left_val>0.3276037871837616</left_val>
- <right_val>-7.8134387731552124e-003</right_val></_></_>
- <_>
- <!-- tree 80 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 9 16 3 -1.</_>
- <_>0 10 16 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>5.2848970517516136e-003</threshold>
- <left_val>-0.0793995708227158</left_val>
- <right_val>0.1499817967414856</right_val></_></_>
- <_>
- <!-- tree 81 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>7 9 12 3 -1.</_>
- <_>7 10 12 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-1.5017699915915728e-003</threshold>
- <left_val>0.0977031067013741</left_val>
- <right_val>-0.0735320374369621</right_val></_></_>
- <_>
- <!-- tree 82 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>2 10 8 6 -1.</_>
- <_>2 13 8 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-2.5415199343115091e-003</threshold>
- <left_val>0.0678011327981949</left_val>
- <right_val>-0.1488324999809265</right_val></_></_>
- <_>
- <!-- tree 83 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>16 6 4 12 -1.</_>
- <_>16 9 4 6 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0442528203129768</threshold>
- <left_val>0.0164758302271366</left_val>
- <right_val>-0.2288018018007278</right_val></_></_>
- <_>
- <!-- tree 84 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>3 11 8 6 -1.</_>
- <_>3 11 4 3 2.</_>
- <_>7 14 4 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0334571599960327</threshold>
- <left_val>0.4196678996086121</left_val>
- <right_val>-0.0325535312294960</right_val></_></_>
- <_>
- <!-- tree 85 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>4 5 16 10 -1.</_>
- <_>12 5 8 5 2.</_>
- <_>4 10 8 5 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.1352989971637726</threshold>
- <left_val>9.0894084423780441e-003</left_val>
- <right_val>-0.7383912205696106</right_val></_></_>
- <_>
- <!-- tree 86 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>7 10 3 8 -1.</_>
- <_>7 14 3 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0374409705400467</threshold>
- <left_val>-0.4261302053928375</left_val>
- <right_val>0.0239723902195692</right_val></_></_>
- <_>
- <!-- tree 87 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>9 14 6 4 -1.</_>
- <_>9 16 6 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-1.4479730452876538e-005</threshold>
- <left_val>0.0567837804555893</left_val>
- <right_val>-0.1588882952928543</right_val></_></_>
- <_>
- <!-- tree 88 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>2 9 15 9 -1.</_>
- <_>2 12 15 3 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.1183928027749062</threshold>
- <left_val>0.5050063133239746</left_val>
- <right_val>-0.0218596495687962</right_val></_></_>
- <_>
- <!-- tree 89 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>11 2 8 6 -1.</_>
- <_>15 2 4 3 2.</_>
- <_>11 5 4 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-8.5000684484839439e-003</threshold>
- <left_val>0.0523399300873280</left_val>
- <right_val>-0.0459250211715698</right_val></_></_>
- <_>
- <!-- tree 90 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>4 11 8 6 -1.</_>
- <_>4 13 8 2 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0141895096749067</threshold>
- <left_val>-0.2359706014394760</left_val>
- <right_val>0.0403583496809006</right_val></_></_>
- <_>
- <!-- tree 91 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>16 0 2 14 -1.</_>
- <_>16 0 1 14 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>0.0735994204878807</threshold>
- <left_val>3.2680039294064045e-003</left_val>
- <right_val>-0.5885360240936279</right_val></_></_>
- <_>
- <!-- tree 92 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>6 0 14 2 -1.</_>
- <_>6 0 14 1 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>0.0549712702631950</threshold>
- <left_val>-0.0201965197920799</left_val>
- <right_val>0.5548272728919983</right_val></_></_>
- <_>
- <!-- tree 93 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>13 9 7 6 -1.</_>
- <_>13 11 7 2 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0228161606937647</threshold>
- <left_val>-0.1758957952260971</left_val>
- <right_val>0.0178517401218414</right_val></_></_>
- <_>
- <!-- tree 94 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>10 6 7 3 -1.</_>
- <_>9 7 7 1 3.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>2.3204670287668705e-003</threshold>
- <left_val>-0.0817499235272408</left_val>
- <right_val>0.1283307969570160</right_val></_></_>
- <_>
- <!-- tree 95 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>18 2 3 13 -1.</_>
- <_>19 2 1 13 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.1079790964722633</threshold>
- <left_val>-1.</left_val>
- <right_val>1.7423679819330573e-003</right_val></_></_>
- <_>
- <!-- tree 96 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>1 2 3 13 -1.</_>
- <_>2 2 1 13 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0411119312047958</threshold>
- <left_val>0.5843269824981690</left_val>
- <right_val>-0.0188788697123528</right_val></_></_>
- <_>
- <!-- tree 97 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>5 1 12 4 -1.</_>
- <_>11 1 6 2 2.</_>
- <_>5 3 6 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-3.5695650149136782e-003</threshold>
- <left_val>-0.1755847036838532</left_val>
- <right_val>0.0647314265370369</right_val></_></_>
- <_>
- <!-- tree 98 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>7 8 6 6 -1.</_>
- <_>7 10 6 2 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0663586705923080</threshold>
- <left_val>-1.</left_val>
- <right_val>9.2067662626504898e-003</right_val></_></_>
- <_>
- <!-- tree 99 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>8 13 14 3 -1.</_>
- <_>8 14 14 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0189445801079273</threshold>
- <left_val>0.2578308880329132</left_val>
- <right_val>-0.0189449395984411</right_val></_></_>
- <_>
- <!-- tree 100 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>10 5 6 6 -1.</_>
- <_>12 7 2 6 3.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-0.1287126988172531</threshold>
- <left_val>-0.5847725868225098</left_val>
- <right_val>0.0144664896652102</right_val></_></_>
- <_>
- <!-- tree 101 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>15 6 4 8 -1.</_>
- <_>16 7 2 8 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>2.4218629114329815e-003</threshold>
- <left_val>-0.0735908970236778</left_val>
- <right_val>0.0703321024775505</right_val></_></_>
- <_>
- <!-- tree 102 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 13 14 4 -1.</_>
- <_>0 13 7 2 2.</_>
- <_>7 15 7 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0297184605151415</threshold>
- <left_val>-0.0230119694024324</left_val>
- <right_val>0.4054276943206787</right_val></_></_>
- <_>
- <!-- tree 103 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>1 7 21 6 -1.</_>
- <_>8 9 7 2 9.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.1755502969026566</threshold>
- <left_val>0.0208087302744389</left_val>
- <right_val>-0.3728564977645874</right_val></_></_>
- <_>
- <!-- tree 104 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>7 4 6 8 -1.</_>
- <_>7 4 3 4 2.</_>
- <_>10 8 3 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0371224507689476</threshold>
- <left_val>-0.0279596298933029</left_val>
- <right_val>0.3590877950191498</right_val></_></_>
- <_>
- <!-- tree 105 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>7 4 8 8 -1.</_>
- <_>11 4 4 4 2.</_>
- <_>7 8 4 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-3.8044541142880917e-003</threshold>
- <left_val>-0.1333799064159393</left_val>
- <right_val>0.0920613482594490</right_val></_></_>
- <_>
- <!-- tree 106 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>10 6 7 4 -1.</_>
- <_>9 7 7 2 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-0.0109307002276182</threshold>
- <left_val>0.2319630980491638</left_val>
- <right_val>-0.0445358790457249</right_val></_></_>
- <_>
- <!-- tree 107 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>11 2 6 7 -1.</_>
- <_>11 2 3 7 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>0.1610362976789475</threshold>
- <left_val>-8.7691349908709526e-003</left_val>
- <right_val>0.2204516977071762</right_val></_></_>
- <_>
- <!-- tree 108 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>11 2 7 6 -1.</_>
- <_>11 2 7 3 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>0.0259712301194668</threshold>
- <left_val>0.0644210129976273</left_val>
- <right_val>-0.1891908049583435</right_val></_></_>
- <_>
- <!-- tree 109 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>11 4 8 6 -1.</_>
- <_>11 4 4 6 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>0.1263820976018906</threshold>
- <left_val>-0.0103621799498796</left_val>
- <right_val>0.1705718934535980</right_val></_></_>
- <_>
- <!-- tree 110 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>11 4 6 8 -1.</_>
- <_>11 4 6 4 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-9.1393403708934784e-003</threshold>
- <left_val>-0.1382824927568436</left_val>
- <right_val>0.0867900624871254</right_val></_></_>
- <_>
- <!-- tree 111 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>12 3 8 5 -1.</_>
- <_>12 3 4 5 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>0.0177220907062292</threshold>
- <left_val>0.0397198908030987</left_val>
- <right_val>-0.1229425966739655</right_val></_></_>
- <_>
- <!-- tree 112 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>10 3 5 8 -1.</_>
- <_>10 3 5 4 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-0.0824257507920265</threshold>
- <left_val>0.3002310097217560</left_val>
- <right_val>-0.0331659205257893</right_val></_></_>
- <_>
- <!-- tree 113 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>13 0 9 5 -1.</_>
- <_>16 3 3 5 3.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>0.0438925288617611</threshold>
- <left_val>-0.0130563396960497</left_val>
- <right_val>0.0987286865711212</right_val></_></_>
- <_>
- <!-- tree 114 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>2 6 10 12 -1.</_>
- <_>2 9 10 6 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>3.5575369838625193e-003</threshold>
- <left_val>0.1118628010153770</left_val>
- <right_val>-0.0927978232502937</right_val></_></_>
- <_>
- <!-- tree 115 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>15 6 5 12 -1.</_>
- <_>15 9 5 6 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0152988201007247</threshold>
- <left_val>-0.1300787925720215</left_val>
- <right_val>0.0231590103358030</right_val></_></_>
- <_>
- <!-- tree 116 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>3 7 13 3 -1.</_>
- <_>3 8 13 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-2.6504450943320990e-003</threshold>
- <left_val>0.1352628022432327</left_val>
- <right_val>-0.0733554586768150</right_val></_></_>
- <_>
- <!-- tree 117 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>4 7 17 3 -1.</_>
- <_>4 8 17 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0416368618607521</threshold>
- <left_val>-0.0190689805895090</left_val>
- <right_val>0.3585799932479858</right_val></_></_>
- <_>
- <!-- tree 118 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>2 9 7 6 -1.</_>
- <_>2 11 7 2 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-7.5290258973836899e-003</threshold>
- <left_val>-0.1867236047983170</left_val>
- <right_val>0.0582484491169453</right_val></_></_>
- <_>
- <!-- tree 119 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>13 9 9 4 -1.</_>
- <_>13 11 9 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0400314889848232</threshold>
- <left_val>0.2296977937221527</left_val>
- <right_val>-0.0146082304418087</right_val></_></_>
- <_>
- <!-- tree 120 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>9 0 5 9 -1.</_>
- <_>6 3 5 3 3.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-0.1362470984458923</threshold>
- <left_val>-0.8708646297454834</left_val>
- <right_val>0.0112111996859312</right_val></_></_>
- <_>
- <!-- tree 121 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>9 3 8 3 -1.</_>
- <_>9 3 4 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>4.5124008320271969e-003</threshold>
- <left_val>-0.0356449596583843</left_val>
- <right_val>0.1010309979319572</right_val></_></_>
- <_>
- <!-- tree 122 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>3 0 4 13 -1.</_>
- <_>4 0 2 13 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0541180707514286</threshold>
- <left_val>-0.0146894101053476</left_val>
- <right_val>0.6765226721763611</right_val></_></_>
- <_>
- <!-- tree 123 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>13 0 8 6 -1.</_>
- <_>15 0 4 6 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0345539599657059</threshold>
- <left_val>0.2185456007719040</left_val>
- <right_val>-9.7846649587154388e-003</right_val></_></_>
- <_>
- <!-- tree 124 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>3 0 6 5 -1.</_>
- <_>6 0 3 5 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0255208406597376</threshold>
- <left_val>-0.4689800143241882</left_val>
- <right_val>0.0240603704005480</right_val></_></_>
- <_>
- <!-- tree 125 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>9 0 12 5 -1.</_>
- <_>9 0 6 5 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0354737006127834</threshold>
- <left_val>0.1342754960060120</left_val>
- <right_val>-0.0214386992156506</right_val></_></_>
- <_>
- <!-- tree 126 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>1 2 6 8 -1.</_>
- <_>3 2 2 8 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>2.8683411073870957e-004</threshold>
- <left_val>-0.0973002836108208</left_val>
- <right_val>0.1076093986630440</right_val></_></_>
- <_>
- <!-- tree 127 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>18 2 4 6 -1.</_>
- <_>18 2 2 6 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0787175893783569</threshold>
- <left_val>-1.</left_val>
- <right_val>2.7187850791960955e-003</right_val></_></_>
- <_>
- <!-- tree 128 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 2 4 6 -1.</_>
- <_>2 2 2 6 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-1.5701749362051487e-004</threshold>
- <left_val>0.1119965985417366</left_val>
- <right_val>-0.0994413793087006</right_val></_></_>
- <_>
- <!-- tree 129 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>16 9 6 6 -1.</_>
- <_>16 11 6 2 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0160265695303679</threshold>
- <left_val>0.0341982617974281</left_val>
- <right_val>-0.1910049021244049</right_val></_></_>
- <_>
- <!-- tree 130 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>10 0 12 6 -1.</_>
- <_>13 3 6 6 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-0.0191647298634052</threshold>
- <left_val>0.0890248268842697</left_val>
- <right_val>-0.1191970035433769</right_val></_></_>
- <_>
- <!-- tree 131 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>14 2 3 12 -1.</_>
- <_>10 6 3 4 3.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-0.0394451506435871</threshold>
- <left_val>-0.1071799024939537</left_val>
- <right_val>0.0376152098178864</right_val></_></_>
- <_>
- <!-- tree 132 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>8 3 6 7 -1.</_>
- <_>11 3 3 7 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>2.2417430300265551e-003</threshold>
- <left_val>-0.0905810073018074</left_val>
- <right_val>0.1754747033119202</right_val></_></_>
- <_>
- <!-- tree 133 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>16 1 3 15 -1.</_>
- <_>17 1 1 15 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-3.8842540234327316e-003</threshold>
- <left_val>0.0926973298192024</left_val>
- <right_val>-0.0424313694238663</right_val></_></_>
- <_>
- <!-- tree 134 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 1 6 8 -1.</_>
- <_>2 1 2 8 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0219146292656660</threshold>
- <left_val>-0.2801750898361206</left_val>
- <right_val>0.0375376716256142</right_val></_></_>
- <_>
- <!-- tree 135 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>13 0 3 14 -1.</_>
- <_>14 0 1 14 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0375121198594570</threshold>
- <left_val>0.3621852099895477</left_val>
- <right_val>-0.0175074506551027</right_val></_></_>
- <_>
- <!-- tree 136 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>6 0 3 14 -1.</_>
- <_>7 0 1 14 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-8.4374047582969069e-004</threshold>
- <left_val>0.1234840005636215</left_val>
- <right_val>-0.0802458673715591</right_val></_></_>
- <_>
- <!-- tree 137 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>4 13 18 2 -1.</_>
- <_>4 13 9 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-2.6424999814480543e-003</threshold>
- <left_val>0.0525657385587692</left_val>
- <right_val>-0.0833354368805885</right_val></_></_>
- <_>
- <!-- tree 138 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>2 9 15 3 -1.</_>
- <_>7 9 5 3 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0928368121385574</threshold>
- <left_val>-0.4206038117408752</left_val>
- <right_val>0.0233604293316603</right_val></_></_>
- <_>
- <!-- tree 139 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>9 5 10 6 -1.</_>
- <_>14 5 5 3 2.</_>
- <_>9 8 5 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0824630707502365</threshold>
- <left_val>-2.9815400484949350e-003</left_val>
- <right_val>0.7899919748306274</right_val></_></_>
- <_>
- <!-- tree 140 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>3 5 10 6 -1.</_>
- <_>3 5 5 3 2.</_>
- <_>8 8 5 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0698649510741234</threshold>
- <left_val>0.7380297183990479</left_val>
- <right_val>-0.0140212997794151</right_val></_></_>
- <_>
- <!-- tree 141 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>14 3 2 12 -1.</_>
- <_>14 3 1 12 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>0.0454393401741982</threshold>
- <left_val>-0.0113211600109935</left_val>
- <right_val>0.1997369974851608</right_val></_></_>
- <_>
- <!-- tree 142 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>8 3 12 2 -1.</_>
- <_>8 3 12 1 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-0.0502977892756462</threshold>
- <left_val>0.6076467037200928</left_val>
- <right_val>-0.0176328904926777</right_val></_></_>
- <_>
- <!-- tree 143 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>12 7 6 6 -1.</_>
- <_>14 7 2 6 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0604561492800713</threshold>
- <left_val>-5.9354598633944988e-003</left_val>
- <right_val>0.3162288963794708</right_val></_></_>
- <_>
- <!-- tree 144 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>4 7 6 6 -1.</_>
- <_>6 7 2 6 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-4.6769347973167896e-003</threshold>
- <left_val>-0.1809061020612717</left_val>
- <right_val>0.0596601888537407</right_val></_></_>
- <_>
- <!-- tree 145 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>7 0 8 3 -1.</_>
- <_>7 0 4 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>3.6530068609863520e-004</threshold>
- <left_val>-0.0912200435996056</left_val>
- <right_val>0.1109272986650467</right_val></_></_>
- <_>
- <!-- tree 146 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>9 0 4 6 -1.</_>
- <_>11 0 2 6 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0194912608712912</threshold>
- <left_val>-0.3707557022571564</left_val>
- <right_val>0.0284163095057011</right_val></_></_>
- <_>
- <!-- tree 147 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>10 0 12 12 -1.</_>
- <_>13 0 6 12 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0200564507395029</threshold>
- <left_val>-0.0581596791744232</left_val>
- <right_val>0.0781052336096764</right_val></_></_>
- <_>
- <!-- tree 148 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 0 12 12 -1.</_>
- <_>3 0 6 12 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0393711812794209</threshold>
- <left_val>0.2901248931884766</left_val>
- <right_val>-0.0418756604194641</right_val></_></_>
- <_>
- <!-- tree 149 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>16 5 6 4 -1.</_>
- <_>16 5 3 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0215236507356167</threshold>
- <left_val>0.0165730807930231</left_val>
- <right_val>-0.2361485064029694</right_val></_></_>
- <_>
- <!-- tree 150 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 5 6 4 -1.</_>
- <_>3 5 3 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-3.1294699292629957e-003</threshold>
- <left_val>-0.1646640002727509</left_val>
- <right_val>0.0622338093817234</right_val></_></_>
- <_>
- <!-- tree 151 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>9 0 12 5 -1.</_>
- <_>9 0 6 5 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>2.8589619323611259e-003</threshold>
- <left_val>-0.0380984097719193</left_val>
- <right_val>0.0557516291737556</right_val></_></_></trees>
- <stage_threshold>-30.6916007995605470</stage_threshold>
- <parent>25</parent>
- <next>-1</next></_>
- <_>
- <!-- stage 27 -->
- <trees>
- <_>
- <!-- tree 0 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>1 8 8 10 -1.</_>
- <_>1 8 4 5 2.</_>
- <_>5 13 4 5 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0205761305987835</threshold>
- <left_val>0.1735112965106964</left_val>
- <right_val>-0.1505803018808365</right_val></_></_>
- <_>
- <!-- tree 1 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>8 16 14 2 -1.</_>
- <_>8 16 7 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0161259490996599</threshold>
- <left_val>-0.0416123718023300</left_val>
- <right_val>0.2398445010185242</right_val></_></_>
- <_>
- <!-- tree 2 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 11 16 3 -1.</_>
- <_>8 11 8 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0123525802046061</threshold>
- <left_val>0.0977808535099030</left_val>
- <right_val>-0.1239183023571968</right_val></_></_>
- <_>
- <!-- tree 3 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>10 16 12 2 -1.</_>
- <_>10 16 6 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-5.7473899796605110e-003</threshold>
- <left_val>0.0776152089238167</left_val>
- <right_val>-0.0962367281317711</right_val></_></_>
- <_>
- <!-- tree 4 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 16 12 2 -1.</_>
- <_>6 16 6 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>2.9579061083495617e-003</threshold>
- <left_val>-0.0676837190985680</left_val>
- <right_val>0.2659420967102051</right_val></_></_>
- <_>
- <!-- tree 5 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>3 11 18 6 -1.</_>
- <_>12 11 9 3 2.</_>
- <_>3 14 9 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-8.3472225815057755e-003</threshold>
- <left_val>-0.1118817999958992</left_val>
- <right_val>0.1373637020587921</right_val></_></_>
- <_>
- <!-- tree 6 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>7 13 6 4 -1.</_>
- <_>7 15 6 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-5.8408780023455620e-004</threshold>
- <left_val>0.0459431111812592</left_val>
- <right_val>-0.1648653000593185</right_val></_></_>
- <_>
- <!-- tree 7 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>10 11 6 6 -1.</_>
- <_>10 13 6 2 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-3.5136839142069221e-004</threshold>
- <left_val>0.0977910086512566</left_val>
- <right_val>-0.0643578618764877</right_val></_></_>
- <_>
- <!-- tree 8 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>6 14 9 4 -1.</_>
- <_>9 14 3 4 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>8.4126877482049167e-005</threshold>
- <left_val>-0.1384762972593308</left_val>
- <right_val>0.0887277424335480</right_val></_></_>
- <_>
- <!-- tree 9 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>5 4 16 10 -1.</_>
- <_>5 9 16 5 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.2659249007701874</threshold>
- <left_val>-0.6752539873123169</left_val>
- <right_val>0.0161886699497700</right_val></_></_>
- <_>
- <!-- tree 10 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>11 7 3 8 -1.</_>
- <_>11 7 3 4 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>4.3727741576731205e-003</threshold>
- <left_val>0.0728847980499268</left_val>
- <right_val>-0.1256036013364792</right_val></_></_>
- <_>
- <!-- tree 11 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>13 10 6 6 -1.</_>
- <_>13 12 6 2 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-2.2660531103610992e-003</threshold>
- <left_val>0.0872692465782166</left_val>
- <right_val>-0.0683554336428642</right_val></_></_>
- <_>
- <!-- tree 12 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 6 22 12 -1.</_>
- <_>0 6 11 6 2.</_>
- <_>11 12 11 6 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-6.5290732309222221e-003</threshold>
- <left_val>-0.1219756007194519</left_val>
- <right_val>0.0809279307723045</right_val></_></_>
- <_>
- <!-- tree 13 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>9 5 6 12 -1.</_>
- <_>12 5 3 6 2.</_>
- <_>9 11 3 6 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0964362472295761</threshold>
- <left_val>-8.2637304440140724e-003</left_val>
- <right_val>0.4912739992141724</right_val></_></_>
- <_>
- <!-- tree 14 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>7 5 6 12 -1.</_>
- <_>7 5 3 6 2.</_>
- <_>10 11 3 6 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0435948185622692</threshold>
- <left_val>0.4557530879974365</left_val>
- <right_val>-0.0256003905087709</right_val></_></_>
- <_>
- <!-- tree 15 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>14 1 6 9 -1.</_>
- <_>14 4 6 3 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0210983194410801</threshold>
- <left_val>-0.1189275011420250</left_val>
- <right_val>0.0235395897179842</right_val></_></_>
- <_>
- <!-- tree 16 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>2 1 6 9 -1.</_>
- <_>2 4 6 3 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-2.5200019590556622e-003</threshold>
- <left_val>0.1272446960210800</left_val>
- <right_val>-0.0907517224550247</right_val></_></_>
- <_>
- <!-- tree 17 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>13 4 4 6 -1.</_>
- <_>13 7 4 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-8.9241685345768929e-003</threshold>
- <left_val>-0.1151432022452354</left_val>
- <right_val>0.0434970296919346</right_val></_></_>
- <_>
- <!-- tree 18 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>5 4 4 6 -1.</_>
- <_>5 7 4 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>3.4590170253068209e-003</threshold>
- <left_val>0.0635371729731560</left_val>
- <right_val>-0.1826142966747284</right_val></_></_>
- <_>
- <!-- tree 19 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>10 13 12 3 -1.</_>
- <_>10 14 12 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-3.6076800897717476e-003</threshold>
- <left_val>0.1200591027736664</left_val>
- <right_val>-0.0524491108953953</right_val></_></_>
- <_>
- <!-- tree 20 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>3 3 15 3 -1.</_>
- <_>3 4 15 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0537788905203342</threshold>
- <left_val>-0.0186757892370224</left_val>
- <right_val>0.5231301784515381</right_val></_></_>
- <_>
- <!-- tree 21 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>13 5 2 9 -1.</_>
- <_>13 5 1 9 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>0.0452451892197132</threshold>
- <left_val>-0.0175049193203449</left_val>
- <right_val>0.2187184989452362</right_val></_></_>
- <_>
- <!-- tree 22 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>9 5 9 2 -1.</_>
- <_>9 5 9 1 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>1.3272929936647415e-003</threshold>
- <left_val>0.0786599591374397</left_val>
- <right_val>-0.1355167031288147</right_val></_></_>
- <_>
- <!-- tree 23 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>6 2 14 10 -1.</_>
- <_>6 2 7 10 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0123936403542757</threshold>
- <left_val>0.0289523005485535</left_val>
- <right_val>-0.0721495375037193</right_val></_></_>
- <_>
- <!-- tree 24 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>8 2 12 2 -1.</_>
- <_>8 2 12 1 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-0.0377027802169323</threshold>
- <left_val>0.4185005128383637</left_val>
- <right_val>-0.0303553491830826</right_val></_></_>
- <_>
- <!-- tree 25 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>17 0 2 13 -1.</_>
- <_>17 0 1 13 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-0.0489104092121124</threshold>
- <left_val>0.3736500144004822</left_val>
- <right_val>-5.6771109811961651e-003</right_val></_></_>
- <_>
- <!-- tree 26 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>5 0 13 2 -1.</_>
- <_>5 0 13 1 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-5.9961699880659580e-003</threshold>
- <left_val>-0.2075642049312592</left_val>
- <right_val>0.0704388469457626</right_val></_></_>
- <_>
- <!-- tree 27 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>12 4 3 10 -1.</_>
- <_>12 4 3 5 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>0.0566319301724434</threshold>
- <left_val>-0.0172929391264915</left_val>
- <right_val>0.2549839913845062</right_val></_></_>
- <_>
- <!-- tree 28 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 6 12 3 -1.</_>
- <_>0 7 12 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0316502302885056</threshold>
- <left_val>-0.0206582508981228</left_val>
- <right_val>0.4839827120304108</right_val></_></_>
- <_>
- <!-- tree 29 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>6 6 15 3 -1.</_>
- <_>6 7 15 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0211529899388552</threshold>
- <left_val>0.2002878934144974</left_val>
- <right_val>-0.0248726103454828</right_val></_></_>
- <_>
- <!-- tree 30 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>8 8 5 9 -1.</_>
- <_>8 11 5 3 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0876765325665474</threshold>
- <left_val>-0.0249997004866600</left_val>
- <right_val>0.4112659990787506</right_val></_></_>
- <_>
- <!-- tree 31 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>10 11 7 6 -1.</_>
- <_>10 13 7 2 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0532998815178871</threshold>
- <left_val>-8.6766229942440987e-003</left_val>
- <right_val>0.3744659125804901</right_val></_></_>
- <_>
- <!-- tree 32 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>5 11 7 6 -1.</_>
- <_>5 13 7 2 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-2.6251509552821517e-004</threshold>
- <left_val>0.0992318466305733</left_val>
- <right_val>-0.1198920011520386</right_val></_></_>
- <_>
- <!-- tree 33 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>5 12 13 4 -1.</_>
- <_>5 13 13 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-8.5897604003548622e-003</threshold>
- <left_val>-0.1859301030635834</left_val>
- <right_val>0.0343707799911499</right_val></_></_>
- <_>
- <!-- tree 34 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>9 4 4 6 -1.</_>
- <_>9 7 4 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0169404707849026</threshold>
- <left_val>-0.0347682610154152</left_val>
- <right_val>0.2728826105594635</right_val></_></_>
- <_>
- <!-- tree 35 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>13 1 2 9 -1.</_>
- <_>13 1 1 9 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>0.0505961105227470</threshold>
- <left_val>3.6170349922031164e-003</left_val>
- <right_val>-0.3946076035499573</right_val></_></_>
- <_>
- <!-- tree 36 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>5 2 8 6 -1.</_>
- <_>5 2 4 3 2.</_>
- <_>9 5 4 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-8.3048436790704727e-003</threshold>
- <left_val>0.0985777974128723</left_val>
- <right_val>-0.1166628003120422</right_val></_></_>
- <_>
- <!-- tree 37 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>11 0 4 8 -1.</_>
- <_>12 1 2 8 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>0.0105862701311708</threshold>
- <left_val>0.0391171500086784</left_val>
- <right_val>-0.0858436673879623</right_val></_></_>
- <_>
- <!-- tree 38 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>11 0 8 4 -1.</_>
- <_>10 1 8 2 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-0.0325586013495922</threshold>
- <left_val>-0.3735215067863464</left_val>
- <right_val>0.0254101008176804</right_val></_></_>
- <_>
- <!-- tree 39 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>7 9 15 3 -1.</_>
- <_>7 10 15 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0323521308600903</threshold>
- <left_val>0.2612997889518738</left_val>
- <right_val>-0.0286310408264399</right_val></_></_>
- <_>
- <!-- tree 40 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>5 10 12 3 -1.</_>
- <_>5 11 12 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0255470499396324</threshold>
- <left_val>0.0338848903775215</left_val>
- <right_val>-0.3045232892036438</right_val></_></_>
- <_>
- <!-- tree 41 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>15 2 7 6 -1.</_>
- <_>15 4 7 2 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0422524400055408</threshold>
- <left_val>8.9510334655642509e-003</left_val>
- <right_val>-0.2409126013517380</right_val></_></_>
- <_>
- <!-- tree 42 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 2 7 6 -1.</_>
- <_>0 4 7 2 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>3.8109479937702417e-003</threshold>
- <left_val>-0.0726389363408089</left_val>
- <right_val>0.1463439017534256</right_val></_></_>
- <_>
- <!-- tree 43 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>12 3 2 7 -1.</_>
- <_>12 3 1 7 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>0.0208217091858387</threshold>
- <left_val>-0.0362719409167767</left_val>
- <right_val>0.1832471936941147</right_val></_></_>
- <_>
- <!-- tree 44 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>10 3 7 2 -1.</_>
- <_>10 3 7 1 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>0.0264977905899286</threshold>
- <left_val>0.0281601101160049</left_val>
- <right_val>-0.3951719999313355</right_val></_></_>
- <_>
- <!-- tree 45 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>2 3 20 14 -1.</_>
- <_>12 3 10 7 2.</_>
- <_>2 10 10 7 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.2028353065252304</threshold>
- <left_val>-9.3782292678952217e-003</left_val>
- <right_val>0.4486894905567169</right_val></_></_>
- <_>
- <!-- tree 46 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>5 2 12 8 -1.</_>
- <_>11 2 6 8 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.1799661070108414</threshold>
- <left_val>-0.7959595918655396</left_val>
- <right_val>0.0120278401300311</right_val></_></_>
- <_>
- <!-- tree 47 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>18 4 4 8 -1.</_>
- <_>18 8 4 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0709680914878845</threshold>
- <left_val>-0.7695127725601196</left_val>
- <right_val>1.0918079642578959e-003</right_val></_></_>
- <_>
- <!-- tree 48 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>6 4 6 8 -1.</_>
- <_>6 4 3 4 2.</_>
- <_>9 8 3 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>2.7555041015148163e-003</threshold>
- <left_val>0.0701502636075020</left_val>
- <right_val>-0.1291518062353134</right_val></_></_>
- <_>
- <!-- tree 49 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>12 2 4 6 -1.</_>
- <_>12 2 2 6 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-0.0770044028759003</threshold>
- <left_val>-0.4915507137775421</left_val>
- <right_val>2.8067480307072401e-003</right_val></_></_>
- <_>
- <!-- tree 50 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>10 2 6 4 -1.</_>
- <_>10 2 6 2 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-0.0202579107135534</threshold>
- <left_val>0.2356823980808258</left_val>
- <right_val>-0.0434327982366085</right_val></_></_>
- <_>
- <!-- tree 51 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>9 3 8 15 -1.</_>
- <_>11 3 4 15 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0864218175411224</threshold>
- <left_val>-0.3454168140888214</left_val>
- <right_val>0.0112488502636552</right_val></_></_>
- <_>
- <!-- tree 52 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>1 11 8 7 -1.</_>
- <_>3 11 4 7 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0672459527850151</threshold>
- <left_val>-0.6875290274620056</left_val>
- <right_val>0.0118686696514487</right_val></_></_>
- <_>
- <!-- tree 53 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>13 7 6 10 -1.</_>
- <_>15 7 2 10 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.1299038976430893</threshold>
- <left_val>-0.7906926870346069</left_val>
- <right_val>2.5537670589983463e-003</right_val></_></_>
- <_>
- <!-- tree 54 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>2 3 10 14 -1.</_>
- <_>7 3 5 14 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.3039467036724091</threshold>
- <left_val>-0.8998935222625732</left_val>
- <right_val>8.1501724198460579e-003</right_val></_></_>
- <_>
- <!-- tree 55 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>6 5 15 12 -1.</_>
- <_>11 5 5 12 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.4198854863643646</threshold>
- <left_val>-0.7730332016944885</left_val>
- <right_val>1.3665149454027414e-003</right_val></_></_>
- <_>
- <!-- tree 56 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>1 5 15 12 -1.</_>
- <_>6 5 5 12 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.1685128957033157</threshold>
- <left_val>0.2431939989328384</left_val>
- <right_val>-0.0412807390093803</right_val></_></_>
- <_>
- <!-- tree 57 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>9 14 8 4 -1.</_>
- <_>9 16 8 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>2.8788880445063114e-003</threshold>
- <left_val>0.0205771699547768</left_val>
- <right_val>-0.1859090030193329</right_val></_></_>
- <_>
- <!-- tree 58 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>9 6 4 10 -1.</_>
- <_>11 6 2 10 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0402238406240940</threshold>
- <left_val>0.4309926927089691</left_val>
- <right_val>-0.0231047105044127</right_val></_></_>
- <_>
- <!-- tree 59 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>8 6 10 4 -1.</_>
- <_>8 8 10 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>3.9687040261924267e-003</threshold>
- <left_val>0.0436015203595161</left_val>
- <right_val>-0.0922335684299469</right_val></_></_>
- <_>
- <!-- tree 60 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>2 14 7 4 -1.</_>
- <_>2 16 7 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0276507195085287</threshold>
- <left_val>-0.6170787215232849</left_val>
- <right_val>0.0146805699914694</right_val></_></_>
- <_>
- <!-- tree 61 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>7 9 15 3 -1.</_>
- <_>7 10 15 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-2.3034301120787859e-003</threshold>
- <left_val>0.0903495922684669</left_val>
- <right_val>-0.0616645514965057</right_val></_></_>
- <_>
- <!-- tree 62 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 10 16 4 -1.</_>
- <_>0 10 8 2 2.</_>
- <_>8 12 8 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0290407892316580</threshold>
- <left_val>0.2773793935775757</left_val>
- <right_val>-0.0392188690602779</right_val></_></_>
- <_>
- <!-- tree 63 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>10 11 6 7 -1.</_>
- <_>12 11 2 7 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0132882604375482</threshold>
- <left_val>0.0311382599174976</left_val>
- <right_val>-0.1355874985456467</right_val></_></_>
- <_>
- <!-- tree 64 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>8 13 6 5 -1.</_>
- <_>11 13 3 5 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>3.3968928619287908e-005</threshold>
- <left_val>-0.1356292963027954</left_val>
- <right_val>0.0764675810933113</right_val></_></_>
- <_>
- <!-- tree 65 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>10 11 6 7 -1.</_>
- <_>12 11 2 7 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-6.8583860993385315e-003</threshold>
- <left_val>-0.1036581024527550</left_val>
- <right_val>0.0259391590952873</right_val></_></_>
- <_>
- <!-- tree 66 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>6 11 6 7 -1.</_>
- <_>8 11 2 7 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0143609195947647</threshold>
- <left_val>-0.2113649994134903</left_val>
- <right_val>0.0529731400310993</right_val></_></_>
- <_>
- <!-- tree 67 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>18 4 4 8 -1.</_>
- <_>18 8 4 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0174686796963215</threshold>
- <left_val>-0.1051810979843140</left_val>
- <right_val>0.0177150797098875</right_val></_></_>
- <_>
- <!-- tree 68 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>4 6 8 11 -1.</_>
- <_>8 6 4 11 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0985445678234100</threshold>
- <left_val>0.2564946115016937</left_val>
- <right_val>-0.0442296415567398</right_val></_></_>
- <_>
- <!-- tree 69 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>7 5 8 12 -1.</_>
- <_>9 5 4 12 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-2.8123459778726101e-003</threshold>
- <left_val>-0.0738003626465797</left_val>
- <right_val>0.1540094017982483</right_val></_></_>
- <_>
- <!-- tree 70 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>5 3 6 6 -1.</_>
- <_>7 3 2 6 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>2.1941340528428555e-003</threshold>
- <left_val>-0.1421629935503006</left_val>
- <right_val>0.0891392230987549</right_val></_></_>
- <_>
- <!-- tree 71 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>11 2 10 6 -1.</_>
- <_>11 2 10 3 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>0.0468207597732544</threshold>
- <left_val>0.0293640904128551</left_val>
- <right_val>-0.0627548918128014</right_val></_></_>
- <_>
- <!-- tree 72 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>11 1 8 9 -1.</_>
- <_>11 1 4 9 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>0.3289175927639008</threshold>
- <left_val>0.0130156902596354</left_val>
- <right_val>-0.7834712862968445</right_val></_></_>
- <_>
- <!-- tree 73 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>12 4 3 10 -1.</_>
- <_>12 4 3 5 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-0.0204705204814672</threshold>
- <left_val>-0.0768143534660339</left_val>
- <right_val>0.0398004688322544</right_val></_></_>
- <_>
- <!-- tree 74 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>11 1 11 4 -1.</_>
- <_>11 1 11 2 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>0.0886770263314247</threshold>
- <left_val>-0.0403123684227467</left_val>
- <right_val>0.2845386862754822</right_val></_></_>
- <_>
- <!-- tree 75 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>18 4 4 8 -1.</_>
- <_>18 8 4 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-1.1557979742065072e-003</threshold>
- <left_val>0.0421993210911751</left_val>
- <right_val>-0.0414462089538574</right_val></_></_>
- <_>
- <!-- tree 76 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 4 4 8 -1.</_>
- <_>0 8 4 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0605245381593704</threshold>
- <left_val>-0.0169187001883984</left_val>
- <right_val>0.6723713874816895</right_val></_></_>
- <_>
- <!-- tree 77 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>12 2 2 12 -1.</_>
- <_>12 2 1 12 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>0.0408304594457150</threshold>
- <left_val>0.0133648402988911</left_val>
- <right_val>-0.3111329972743988</right_val></_></_>
- <_>
- <!-- tree 78 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>4 12 12 3 -1.</_>
- <_>4 13 12 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-3.1132870353758335e-003</threshold>
- <left_val>-0.1726278066635132</left_val>
- <right_val>0.0593822188675404</right_val></_></_>
- <_>
- <!-- tree 79 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>2 12 18 3 -1.</_>
- <_>2 13 18 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-4.3638627976179123e-003</threshold>
- <left_val>0.1726533025503159</left_val>
- <right_val>-0.0624239705502987</right_val></_></_>
- <_>
- <!-- tree 80 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 0 16 3 -1.</_>
- <_>0 1 16 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0328340902924538</threshold>
- <left_val>0.4027537107467651</left_val>
- <right_val>-0.0257990397512913</right_val></_></_>
- <_>
- <!-- tree 81 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>12 2 2 12 -1.</_>
- <_>12 2 1 12 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>0.0643770024180412</threshold>
- <left_val>-4.7380630858242512e-003</left_val>
- <right_val>0.7522106766700745</right_val></_></_>
- <_>
- <!-- tree 82 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>10 2 12 2 -1.</_>
- <_>10 2 12 1 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>0.0276427306234837</threshold>
- <left_val>0.0376444794237614</left_val>
- <right_val>-0.2922027111053467</right_val></_></_>
- <_>
- <!-- tree 83 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>13 10 6 7 -1.</_>
- <_>15 10 2 7 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0221711993217468</threshold>
- <left_val>-0.0246540699154139</left_val>
- <right_val>0.2053381055593491</right_val></_></_>
- <_>
- <!-- tree 84 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>5 13 12 2 -1.</_>
- <_>11 13 6 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>1.5859310515224934e-003</threshold>
- <left_val>0.0894637927412987</left_val>
- <right_val>-0.1261173039674759</right_val></_></_>
- <_>
- <!-- tree 85 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>16 8 6 8 -1.</_>
- <_>19 8 3 4 2.</_>
- <_>16 12 3 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0188720505684614</threshold>
- <left_val>0.1307265013456345</left_val>
- <right_val>-0.0369537100195885</right_val></_></_>
- <_>
- <!-- tree 86 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>4 1 8 6 -1.</_>
- <_>4 3 8 2 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0133061697706580</threshold>
- <left_val>-0.2296320945024490</left_val>
- <right_val>0.0426871888339520</right_val></_></_>
- <_>
- <!-- tree 87 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>18 0 4 9 -1.</_>
- <_>18 3 4 3 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0704071223735809</threshold>
- <left_val>-0.7111750841140747</left_val>
- <right_val>6.6957580856978893e-003</right_val></_></_>
- <_>
- <!-- tree 88 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>8 2 6 8 -1.</_>
- <_>8 6 6 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0417489297688007</threshold>
- <left_val>-0.0329278707504272</left_val>
- <right_val>0.3003528118133545</right_val></_></_>
- <_>
- <!-- tree 89 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>8 1 6 4 -1.</_>
- <_>8 3 6 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>5.3282231092453003e-003</threshold>
- <left_val>0.0518117509782314</left_val>
- <right_val>-0.1906909048557282</right_val></_></_>
- <_>
- <!-- tree 90 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>1 2 12 3 -1.</_>
- <_>1 3 12 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>2.4094989057630301e-003</threshold>
- <left_val>-0.0806879699230194</left_val>
- <right_val>0.1251012980937958</right_val></_></_>
- <_>
- <!-- tree 91 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>7 2 12 3 -1.</_>
- <_>7 3 12 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-6.2405979260802269e-003</threshold>
- <left_val>0.1074063032865524</left_val>
- <right_val>-0.0399790108203888</right_val></_></_>
- <_>
- <!-- tree 92 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>1 0 16 18 -1.</_>
- <_>1 9 16 9 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.6731246709823608</threshold>
- <left_val>-1.</left_val>
- <right_val>0.0100708100944757</right_val></_></_>
- <_>
- <!-- tree 93 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>16 8 6 8 -1.</_>
- <_>19 8 3 4 2.</_>
- <_>16 12 3 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0929835587739944</threshold>
- <left_val>-1.</left_val>
- <right_val>-2.4261360522359610e-003</right_val></_></_>
- <_>
- <!-- tree 94 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 8 6 8 -1.</_>
- <_>0 8 3 4 2.</_>
- <_>3 12 3 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0336297601461411</threshold>
- <left_val>0.0241228695958853</left_val>
- <right_val>-0.4138790071010590</right_val></_></_>
- <_>
- <!-- tree 95 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>18 4 4 6 -1.</_>
- <_>18 7 4 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0238806195557117</threshold>
- <left_val>9.6614202484488487e-003</left_val>
- <right_val>-0.2197377979755402</right_val></_></_>
- <_>
- <!-- tree 96 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 12 14 3 -1.</_>
- <_>0 13 14 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>1.2738780351355672e-003</threshold>
- <left_val>-0.0835551172494888</left_val>
- <right_val>0.1226968988776207</right_val></_></_>
- <_>
- <!-- tree 97 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>3 12 16 3 -1.</_>
- <_>3 13 16 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0184141397476196</threshold>
- <left_val>0.0307981409132481</left_val>
- <right_val>-0.3560917079448700</right_val></_></_>
- <_>
- <!-- tree 98 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 4 4 6 -1.</_>
- <_>0 7 4 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0564695782959461</threshold>
- <left_val>0.8863177895545960</left_val>
- <right_val>-0.0126983001828194</right_val></_></_>
- <_>
- <!-- tree 99 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>9 14 8 4 -1.</_>
- <_>9 16 8 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-4.6219761134125292e-004</threshold>
- <left_val>0.0346819013357162</left_val>
- <right_val>-0.0828508287668228</right_val></_></_>
- <_>
- <!-- tree 100 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 13 14 3 -1.</_>
- <_>0 14 14 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0190608594566584</threshold>
- <left_val>0.3536941111087799</left_val>
- <right_val>-0.0276117604225874</right_val></_></_>
- <_>
- <!-- tree 101 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>4 14 14 2 -1.</_>
- <_>4 15 14 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>1.5762279508635402e-003</threshold>
- <left_val>0.0409399084746838</left_val>
- <right_val>-0.2251740992069244</right_val></_></_>
- <_>
- <!-- tree 102 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>3 12 15 6 -1.</_>
- <_>3 15 15 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0201018806546927</threshold>
- <left_val>-0.0239955503493547</left_val>
- <right_val>0.4109125137329102</right_val></_></_>
- <_>
- <!-- tree 103 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>7 12 14 6 -1.</_>
- <_>7 15 14 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>2.7211669366806746e-003</threshold>
- <left_val>0.0281224492937326</left_val>
- <right_val>-0.1420011967420578</right_val></_></_>
- <_>
- <!-- tree 104 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 0 14 4 -1.</_>
- <_>0 2 14 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.1094442978501320</threshold>
- <left_val>0.9508574008941650</left_val>
- <right_val>-9.4355372712016106e-003</right_val></_></_>
- <_>
- <!-- tree 105 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>13 10 6 7 -1.</_>
- <_>15 10 2 7 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-1.2755279894918203e-003</threshold>
- <left_val>0.0569029003381729</left_val>
- <right_val>-0.0834297835826874</right_val></_></_>
- <_>
- <!-- tree 106 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>3 10 6 7 -1.</_>
- <_>5 10 2 7 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0805784016847610</threshold>
- <left_val>-0.9513928890228272</left_val>
- <right_val>8.2268668338656425e-003</right_val></_></_>
- <_>
- <!-- tree 107 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>2 4 18 4 -1.</_>
- <_>8 4 6 4 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.1204798966646195</threshold>
- <left_val>-0.3027386963367462</left_val>
- <right_val>0.0284893400967121</right_val></_></_>
- <_>
- <!-- tree 108 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>5 3 12 9 -1.</_>
- <_>9 6 4 3 9.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.1829497069120407</threshold>
- <left_val>0.2386613041162491</left_val>
- <right_val>-0.0627739429473877</right_val></_></_>
- <_>
- <!-- tree 109 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>10 8 10 7 -1.</_>
- <_>10 8 5 7 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.1710640937089920</threshold>
- <left_val>-0.5939468145370483</left_val>
- <right_val>3.1515269074589014e-003</right_val></_></_>
- <_>
- <!-- tree 110 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>5 2 4 16 -1.</_>
- <_>5 6 4 8 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0734148770570755</threshold>
- <left_val>-0.8693308234214783</left_val>
- <right_val>0.0100843897089362</right_val></_></_>
- <_>
- <!-- tree 111 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>16 8 6 8 -1.</_>
- <_>19 8 3 4 2.</_>
- <_>16 12 3 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0242382995784283</threshold>
- <left_val>-0.0217561107128859</left_val>
- <right_val>0.1621855944395065</right_val></_></_>
- <_>
- <!-- tree 112 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 12 17 4 -1.</_>
- <_>0 14 17 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-7.1713668294250965e-003</threshold>
- <left_val>-0.0973455905914307</left_val>
- <right_val>0.0921484977006912</right_val></_></_>
- <_>
- <!-- tree 113 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>7 12 14 6 -1.</_>
- <_>7 15 14 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0333443991839886</threshold>
- <left_val>0.0746453925967216</left_val>
- <right_val>-0.0221606791019440</right_val></_></_>
- <_>
- <!-- tree 114 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 13 12 4 -1.</_>
- <_>0 13 6 2 2.</_>
- <_>6 15 6 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>7.2907900903373957e-004</threshold>
- <left_val>-0.0949718132615089</left_val>
- <right_val>0.1182674020528793</right_val></_></_>
- <_>
- <!-- tree 115 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>10 13 12 3 -1.</_>
- <_>10 14 12 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-1.0217289673164487e-003</threshold>
- <left_val>0.0564262308180332</left_val>
- <right_val>-0.0375738292932510</right_val></_></_>
- <_>
- <!-- tree 116 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>7 11 8 6 -1.</_>
- <_>7 11 4 3 2.</_>
- <_>11 14 4 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-8.4900937508791685e-004</threshold>
- <left_val>-0.1388314962387085</left_val>
- <right_val>0.0700473263859749</right_val></_></_>
- <_>
- <!-- tree 117 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>9 6 12 9 -1.</_>
- <_>12 6 6 9 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0998505130410194</threshold>
- <left_val>-0.0140115898102522</left_val>
- <right_val>0.2611567974090576</right_val></_></_>
- <_>
- <!-- tree 118 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>1 6 12 8 -1.</_>
- <_>4 6 6 8 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.1309006959199905</threshold>
- <left_val>0.7137935161590576</left_val>
- <right_val>-0.0116437999531627</right_val></_></_>
- <_>
- <!-- tree 119 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>8 12 6 6 -1.</_>
- <_>8 14 6 2 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>9.1210529208183289e-003</threshold>
- <left_val>0.0454028099775314</left_val>
- <right_val>-0.2183001041412354</right_val></_></_>
- <_>
- <!-- tree 120 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>1 4 20 14 -1.</_>
- <_>1 4 10 7 2.</_>
- <_>11 11 10 7 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.2010647952556610</threshold>
- <left_val>-0.0207532700151205</left_val>
- <right_val>0.5123022198677063</right_val></_></_>
- <_>
- <!-- tree 121 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>18 0 4 10 -1.</_>
- <_>19 1 2 10 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>0.0473893098533154</threshold>
- <left_val>9.4779124483466148e-003</left_val>
- <right_val>-0.4794239103794098</right_val></_></_>
- <_>
- <!-- tree 122 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>2 2 6 12 -1.</_>
- <_>2 5 6 6 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0571185387670994</threshold>
- <left_val>0.3916605114936829</left_val>
- <right_val>-0.0267039109021425</right_val></_></_>
- <_>
- <!-- tree 123 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>16 5 4 9 -1.</_>
- <_>16 8 4 3 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-8.3700623363256454e-003</threshold>
- <left_val>-0.1339945942163467</left_val>
- <right_val>0.0484609007835388</right_val></_></_>
- <_>
- <!-- tree 124 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>6 9 8 4 -1.</_>
- <_>10 9 4 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>4.0913890115916729e-003</threshold>
- <left_val>-0.0594897791743279</left_val>
- <right_val>0.1743853986263275</right_val></_></_>
- <_>
- <!-- tree 125 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>7 8 14 3 -1.</_>
- <_>7 8 7 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0718994885683060</threshold>
- <left_val>0.0117231803014874</left_val>
- <right_val>-0.3627477884292603</right_val></_></_>
- <_>
- <!-- tree 126 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 8 18 3 -1.</_>
- <_>9 8 9 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-3.6888250615447760e-003</threshold>
- <left_val>0.0757636278867722</left_val>
- <right_val>-0.1503359973430634</right_val></_></_>
- <_>
- <!-- tree 127 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>14 6 8 4 -1.</_>
- <_>14 6 8 2 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-7.4795219115912914e-003</threshold>
- <left_val>0.1502785980701447</left_val>
- <right_val>-0.0458704903721809</right_val></_></_>
- <_>
- <!-- tree 128 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 3 18 2 -1.</_>
- <_>9 3 9 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0125825898721814</threshold>
- <left_val>-0.1991554945707321</left_val>
- <right_val>0.0639174506068230</right_val></_></_>
- <_>
- <!-- tree 129 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>6 6 10 8 -1.</_>
- <_>6 8 10 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>3.5687079653143883e-003</threshold>
- <left_val>-0.1211723983287811</left_val>
- <right_val>0.1095608025789261</right_val></_></_>
- <_>
- <!-- tree 130 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>1 5 10 12 -1.</_>
- <_>1 8 10 6 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>1.7363800434395671e-003</threshold>
- <left_val>0.1225852966308594</left_val>
- <right_val>-0.0935562625527382</right_val></_></_>
- <_>
- <!-- tree 131 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>11 6 3 12 -1.</_>
- <_>12 6 1 12 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-1.4523629797622561e-003</threshold>
- <left_val>0.0967225283384323</left_val>
- <right_val>-0.0807396993041039</right_val></_></_>
- <_>
- <!-- tree 132 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>8 6 3 12 -1.</_>
- <_>9 6 1 12 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>3.1017749570310116e-003</threshold>
- <left_val>-0.0690764710307121</left_val>
- <right_val>0.1539645940065384</right_val></_></_>
- <_>
- <!-- tree 133 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>11 1 3 13 -1.</_>
- <_>12 1 1 13 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-8.5509587079286575e-003</threshold>
- <left_val>-0.1518629044294357</left_val>
- <right_val>0.0403469204902649</right_val></_></_>
- <_>
- <!-- tree 134 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>8 2 3 13 -1.</_>
- <_>9 2 1 13 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-1.8966189818456769e-003</threshold>
- <left_val>0.1217254996299744</left_val>
- <right_val>-0.0985434427857399</right_val></_></_></trees>
- <stage_threshold>-30.6093006134033200</stage_threshold>
- <parent>26</parent>
- <next>-1</next></_>
- <_>
- <!-- stage 28 -->
- <trees>
- <_>
- <!-- tree 0 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>6 6 2 12 -1.</_>
- <_>6 12 2 6 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0237547401338816</threshold>
- <left_val>0.1709530055522919</left_val>
- <right_val>-0.1153428032994270</right_val></_></_>
- <_>
- <!-- tree 1 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>17 4 2 9 -1.</_>
- <_>17 4 1 9 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-7.3806629516184330e-003</threshold>
- <left_val>0.0880671963095665</left_val>
- <right_val>-0.0403177700936794</right_val></_></_>
- <_>
- <!-- tree 2 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 0 12 4 -1.</_>
- <_>0 1 12 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>1.1198900174349546e-003</threshold>
- <left_val>-0.0798953026533127</left_val>
- <right_val>0.1344889998435974</right_val></_></_>
- <_>
- <!-- tree 3 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>8 4 12 4 -1.</_>
- <_>14 4 6 2 2.</_>
- <_>8 6 6 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0337187312543392</threshold>
- <left_val>-0.0152200302109122</left_val>
- <right_val>0.2991417050361633</right_val></_></_>
- <_>
- <!-- tree 4 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>6 13 6 4 -1.</_>
- <_>6 15 6 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-2.8022660990245640e-004</threshold>
- <left_val>0.0635997280478477</left_val>
- <right_val>-0.1561919003725052</right_val></_></_>
- <_>
- <!-- tree 5 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>7 13 12 4 -1.</_>
- <_>7 15 12 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-3.9523928426206112e-003</threshold>
- <left_val>-9.7961323335766792e-003</left_val>
- <right_val>0.1057164967060089</right_val></_></_>
- <_>
- <!-- tree 6 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>1 8 6 4 -1.</_>
- <_>4 8 3 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>2.1397129166871309e-003</threshold>
- <left_val>0.0899535864591599</left_val>
- <right_val>-0.1448377966880798</right_val></_></_>
- <_>
- <!-- tree 7 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>15 8 6 10 -1.</_>
- <_>15 8 3 10 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0675212964415550</threshold>
- <left_val>0.2093243002891541</left_val>
- <right_val>-0.0539238117635250</right_val></_></_>
- <_>
- <!-- tree 8 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>1 8 6 10 -1.</_>
- <_>4 8 3 10 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0103789502754807</threshold>
- <left_val>-0.0641771629452705</left_val>
- <right_val>0.2781462967395783</right_val></_></_>
- <_>
- <!-- tree 9 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>16 12 6 4 -1.</_>
- <_>16 12 3 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>6.2903137877583504e-003</threshold>
- <left_val>-0.0492537207901478</left_val>
- <right_val>0.0821684226393700</right_val></_></_>
- <_>
- <!-- tree 10 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>1 6 6 8 -1.</_>
- <_>1 6 3 4 2.</_>
- <_>4 10 3 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>9.3974275514483452e-003</threshold>
- <left_val>0.0845377370715141</left_val>
- <right_val>-0.2288530021905899</right_val></_></_>
- <_>
- <!-- tree 11 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>11 1 4 11 -1.</_>
- <_>12 2 2 11 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>0.0101209301501513</threshold>
- <left_val>0.0333371199667454</left_val>
- <right_val>-0.0816642567515373</right_val></_></_>
- <_>
- <!-- tree 12 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>11 1 11 4 -1.</_>
- <_>10 2 11 2 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>3.1531939748674631e-003</threshold>
- <left_val>-0.1022099032998085</left_val>
- <right_val>0.1183736026287079</right_val></_></_>
- <_>
- <!-- tree 13 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>12 0 4 7 -1.</_>
- <_>13 1 2 7 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>0.0751372873783112</threshold>
- <left_val>2.7504051104187965e-003</left_val>
- <right_val>-1.0000959634780884</right_val></_></_>
- <_>
- <!-- tree 14 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>10 0 7 4 -1.</_>
- <_>9 1 7 2 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-2.3692219983786345e-003</threshold>
- <left_val>0.0990924835205078</left_val>
- <right_val>-0.1142518967390060</right_val></_></_>
- <_>
- <!-- tree 15 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>13 5 2 12 -1.</_>
- <_>13 5 1 12 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0245103798806667</threshold>
- <left_val>0.2870832085609436</left_val>
- <right_val>-0.0161488000303507</right_val></_></_>
- <_>
- <!-- tree 16 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>7 5 2 12 -1.</_>
- <_>8 5 1 12 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-1.9670750480145216e-003</threshold>
- <left_val>-0.1153137013316155</left_val>
- <right_val>0.0868165567517281</right_val></_></_>
- <_>
- <!-- tree 17 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>8 5 9 4 -1.</_>
- <_>11 5 3 4 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0308453794568777</threshold>
- <left_val>-0.0240906104445457</left_val>
- <right_val>0.1960754990577698</right_val></_></_>
- <_>
- <!-- tree 18 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>7 0 10 3 -1.</_>
- <_>6 1 10 1 3.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>0.0238163098692894</threshold>
- <left_val>0.0328240394592285</left_val>
- <right_val>-0.3571043908596039</right_val></_></_>
- <_>
- <!-- tree 19 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>17 4 2 9 -1.</_>
- <_>17 4 1 9 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-0.0401991307735443</threshold>
- <left_val>-0.5285078883171082</left_val>
- <right_val>6.0749719850718975e-003</right_val></_></_>
- <_>
- <!-- tree 20 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>5 4 9 2 -1.</_>
- <_>5 4 9 1 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-6.8876100704073906e-003</threshold>
- <left_val>0.2205885052680969</left_val>
- <right_val>-0.0591514892876148</right_val></_></_>
- <_>
- <!-- tree 21 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>12 10 4 8 -1.</_>
- <_>12 10 2 8 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-2.5466730585321784e-004</threshold>
- <left_val>0.0718978792428970</left_val>
- <right_val>-0.0849620327353477</right_val></_></_>
- <_>
- <!-- tree 22 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>2 0 12 4 -1.</_>
- <_>2 0 6 2 2.</_>
- <_>8 2 6 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>9.8468195647001266e-003</threshold>
- <left_val>0.0413667596876621</left_val>
- <right_val>-0.2398452013731003</right_val></_></_>
- <_>
- <!-- tree 23 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>7 7 15 3 -1.</_>
- <_>7 8 15 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0279344003647566</threshold>
- <left_val>-0.0236471593379974</left_val>
- <right_val>0.2473800927400589</right_val></_></_>
- <_>
- <!-- tree 24 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>2 0 12 4 -1.</_>
- <_>2 0 6 2 2.</_>
- <_>8 2 6 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0229603908956051</threshold>
- <left_val>-0.4518792927265167</left_val>
- <right_val>0.0223057791590691</right_val></_></_>
- <_>
- <!-- tree 25 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>10 14 6 4 -1.</_>
- <_>10 14 3 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>3.2323438790626824e-004</threshold>
- <left_val>-0.0875360071659088</left_val>
- <right_val>0.0784909576177597</right_val></_></_>
- <_>
- <!-- tree 26 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 8 17 3 -1.</_>
- <_>0 9 17 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0319548994302750</threshold>
- <left_val>-0.0262023899704218</left_val>
- <right_val>0.3920490145683289</right_val></_></_>
- <_>
- <!-- tree 27 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>6 13 10 5 -1.</_>
- <_>6 13 5 5 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>1.9027979578822851e-003</threshold>
- <left_val>0.0627627819776535</left_val>
- <right_val>-0.1610735058784485</right_val></_></_>
- <_>
- <!-- tree 28 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>5 11 8 5 -1.</_>
- <_>9 11 4 5 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-3.2691629603505135e-003</threshold>
- <left_val>0.1016800031065941</left_val>
- <right_val>-0.1043248027563095</right_val></_></_>
- <_>
- <!-- tree 29 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>14 8 4 6 -1.</_>
- <_>14 8 2 6 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0100402003154159</threshold>
- <left_val>-0.0280465800315142</left_val>
- <right_val>0.1211789995431900</right_val></_></_>
- <_>
- <!-- tree 30 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 10 5 8 -1.</_>
- <_>0 14 5 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0341586805880070</threshold>
- <left_val>-0.2897444963455200</left_val>
- <right_val>0.0352826602756977</right_val></_></_>
- <_>
- <!-- tree 31 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>7 7 15 3 -1.</_>
- <_>7 8 15 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>1.7615250544622540e-003</threshold>
- <left_val>-0.0555830709636211</left_val>
- <right_val>0.0741584524512291</right_val></_></_>
- <_>
- <!-- tree 32 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>2 11 7 4 -1.</_>
- <_>2 13 7 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0211346503347158</threshold>
- <left_val>0.2513059079647064</left_val>
- <right_val>-0.0403546392917633</right_val></_></_>
- <_>
- <!-- tree 33 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>8 3 11 12 -1.</_>
- <_>8 6 11 6 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0297593697905540</threshold>
- <left_val>0.0380295403301716</left_val>
- <right_val>-0.1422636955976486</right_val></_></_>
- <_>
- <!-- tree 34 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>2 4 12 4 -1.</_>
- <_>2 4 6 2 2.</_>
- <_>8 6 6 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0148660801351070</threshold>
- <left_val>-0.0397216901183128</left_val>
- <right_val>0.2752254009246826</right_val></_></_>
- <_>
- <!-- tree 35 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>19 2 3 12 -1.</_>
- <_>20 3 1 12 3.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-0.0358294285833836</threshold>
- <left_val>-0.3345197141170502</left_val>
- <right_val>9.6839247271418571e-003</right_val></_></_>
- <_>
- <!-- tree 36 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>1 6 12 4 -1.</_>
- <_>1 6 6 2 2.</_>
- <_>7 8 6 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-3.2887340057641268e-003</threshold>
- <left_val>-0.1425821930170059</left_val>
- <right_val>0.0685762092471123</right_val></_></_>
- <_>
- <!-- tree 37 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>9 9 13 3 -1.</_>
- <_>9 10 13 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0427148789167404</threshold>
- <left_val>-0.0142404399812222</left_val>
- <right_val>0.3876529932022095</right_val></_></_>
- <_>
- <!-- tree 38 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 5 12 6 -1.</_>
- <_>0 5 6 3 2.</_>
- <_>6 8 6 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>1.2328879674896598e-003</threshold>
- <left_val>0.0786238536238670</left_val>
- <right_val>-0.1186942011117935</right_val></_></_>
- <_>
- <!-- tree 39 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>11 0 3 13 -1.</_>
- <_>12 0 1 13 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0104476204141974</threshold>
- <left_val>-0.1488299071788788</left_val>
- <right_val>0.0315711684525013</right_val></_></_>
- <_>
- <!-- tree 40 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>8 0 3 13 -1.</_>
- <_>9 0 1 13 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0126563599333167</threshold>
- <left_val>-0.0465724617242813</left_val>
- <right_val>0.2621260881423950</right_val></_></_>
- <_>
- <!-- tree 41 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>14 6 8 8 -1.</_>
- <_>14 10 8 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0498497188091278</threshold>
- <left_val>0.0170153398066759</left_val>
- <right_val>-0.1426873058080673</right_val></_></_>
- <_>
- <!-- tree 42 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 8 8 6 -1.</_>
- <_>0 10 8 2 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0186072401702404</threshold>
- <left_val>0.2333865016698837</left_val>
- <right_val>-0.0470949411392212</right_val></_></_>
- <_>
- <!-- tree 43 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>9 9 13 3 -1.</_>
- <_>9 10 13 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0543973706662655</threshold>
- <left_val>-0.4051130115985870</left_val>
- <right_val>8.1606470048427582e-003</right_val></_></_>
- <_>
- <!-- tree 44 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 9 13 3 -1.</_>
- <_>0 10 13 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>2.9153900686651468e-003</threshold>
- <left_val>-0.0893139466643333</left_val>
- <right_val>0.1333537995815277</right_val></_></_>
- <_>
- <!-- tree 45 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>4 14 14 4 -1.</_>
- <_>11 14 7 2 2.</_>
- <_>4 16 7 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-5.9154080227017403e-003</threshold>
- <left_val>-0.2041452974081039</left_val>
- <right_val>0.0484757013618946</right_val></_></_>
- <_>
- <!-- tree 46 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 3 6 6 -1.</_>
- <_>2 3 2 6 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-1.9841329194605350e-003</threshold>
- <left_val>0.1342810988426209</left_val>
- <right_val>-0.0758927911520004</right_val></_></_>
- <_>
- <!-- tree 47 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>2 6 20 4 -1.</_>
- <_>7 6 10 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-4.4047520495951176e-003</threshold>
- <left_val>0.0418521389365196</left_val>
- <right_val>-0.1011909022927284</right_val></_></_>
- <_>
- <!-- tree 48 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>2 7 6 6 -1.</_>
- <_>4 7 2 6 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0179828796535730</threshold>
- <left_val>0.0439786799252033</left_val>
- <right_val>-0.2505401968955994</right_val></_></_>
- <_>
- <!-- tree 49 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>15 8 6 10 -1.</_>
- <_>17 8 2 10 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0780595019459724</threshold>
- <left_val>-0.3302507102489471</left_val>
- <right_val>6.3089421018958092e-003</right_val></_></_>
- <_>
- <!-- tree 50 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>1 8 6 10 -1.</_>
- <_>3 8 2 10 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>7.2548650205135345e-003</threshold>
- <left_val>-0.1087217032909393</left_val>
- <right_val>0.0994110181927681</right_val></_></_>
- <_>
- <!-- tree 51 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>9 9 13 3 -1.</_>
- <_>9 10 13 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-2.7871869970113039e-003</threshold>
- <left_val>0.1365929991006851</left_val>
- <right_val>-0.0847996398806572</right_val></_></_>
- <_>
- <!-- tree 52 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>6 8 4 6 -1.</_>
- <_>6 8 4 3 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-9.3798413872718811e-003</threshold>
- <left_val>-0.1187245026230812</left_val>
- <right_val>0.0791080594062805</right_val></_></_>
- <_>
- <!-- tree 53 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>16 5 6 13 -1.</_>
- <_>16 5 3 13 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0549264103174210</threshold>
- <left_val>0.1438207030296326</left_val>
- <right_val>-0.0300722699612379</right_val></_></_>
- <_>
- <!-- tree 54 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 5 6 13 -1.</_>
- <_>3 5 3 13 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-4.4219079427421093e-003</threshold>
- <left_val>0.1066642999649048</left_val>
- <right_val>-0.1083810031414032</right_val></_></_>
- <_>
- <!-- tree 55 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>4 10 18 2 -1.</_>
- <_>4 10 9 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>1.0763059835880995e-003</threshold>
- <left_val>0.0273809898644686</left_val>
- <right_val>-0.0554460510611534</right_val></_></_>
- <_>
- <!-- tree 56 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 7 21 7 -1.</_>
- <_>7 7 7 7 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0725140124559402</threshold>
- <left_val>-0.1089344993233681</left_val>
- <right_val>0.1009754016995430</right_val></_></_>
- <_>
- <!-- tree 57 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>5 6 12 12 -1.</_>
- <_>9 6 4 12 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.1647219061851502</threshold>
- <left_val>0.3036536872386932</left_val>
- <right_val>-0.0436662100255489</right_val></_></_>
- <_>
- <!-- tree 58 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>10 4 10 3 -1.</_>
- <_>9 5 10 1 3.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>0.0798378065228462</threshold>
- <left_val>-0.0108286803588271</left_val>
- <right_val>0.8997743725776672</right_val></_></_>
- <_>
- <!-- tree 59 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>9 9 9 7 -1.</_>
- <_>12 9 3 7 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-5.2413612138479948e-004</threshold>
- <left_val>0.0852306336164474</left_val>
- <right_val>-0.1205397993326187</right_val></_></_>
- <_>
- <!-- tree 60 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>11 5 9 4 -1.</_>
- <_>14 8 3 4 3.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-0.0216322708874941</threshold>
- <left_val>-0.2109203934669495</left_val>
- <right_val>0.0655825436115265</right_val></_></_>
- <_>
- <!-- tree 61 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>12 3 3 10 -1.</_>
- <_>12 3 3 5 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>0.1269153058528900</threshold>
- <left_val>-4.5935749076306820e-003</left_val>
- <right_val>0.4508964121341705</right_val></_></_>
- <_>
- <!-- tree 62 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>8 3 12 2 -1.</_>
- <_>8 3 6 2 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>0.0954723507165909</threshold>
- <left_val>-0.0207988992333412</left_val>
- <right_val>0.5247465968132019</right_val></_></_>
- <_>
- <!-- tree 63 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>14 6 4 8 -1.</_>
- <_>14 10 4 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0829360783100128</threshold>
- <left_val>0.8497673869132996</left_val>
- <right_val>-5.0510508008301258e-003</right_val></_></_>
- <_>
- <!-- tree 64 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>4 6 4 8 -1.</_>
- <_>4 10 4 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>7.7482969500124454e-003</threshold>
- <left_val>-0.0553182885050774</left_val>
- <right_val>0.1714583039283752</right_val></_></_>
- <_>
- <!-- tree 65 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>6 0 11 12 -1.</_>
- <_>6 3 11 6 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0217684395611286</threshold>
- <left_val>-0.1594793051481247</left_val>
- <right_val>0.0608737990260124</right_val></_></_>
- <_>
- <!-- tree 66 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>8 0 6 6 -1.</_>
- <_>8 3 6 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-1.1072609777329490e-004</threshold>
- <left_val>0.0788772925734520</left_val>
- <right_val>-0.1317763030529022</right_val></_></_>
- <_>
- <!-- tree 67 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>10 0 10 4 -1.</_>
- <_>10 0 5 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>3.1122909858822823e-003</threshold>
- <left_val>-0.0430468395352364</left_val>
- <right_val>0.0623925812542439</right_val></_></_>
- <_>
- <!-- tree 68 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>2 0 10 4 -1.</_>
- <_>7 0 5 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-2.8692940250039101e-003</threshold>
- <left_val>0.1374697983264923</left_val>
- <right_val>-0.0804942175745964</right_val></_></_>
- <_>
- <!-- tree 69 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>10 3 8 8 -1.</_>
- <_>14 3 4 4 2.</_>
- <_>10 7 4 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.1057576015591621</threshold>
- <left_val>1.0569440200924873e-003</left_val>
- <right_val>-0.9999381899833679</right_val></_></_>
- <_>
- <!-- tree 70 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>4 3 8 8 -1.</_>
- <_>4 3 4 4 2.</_>
- <_>8 7 4 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0461926795542240</threshold>
- <left_val>0.0172280203551054</left_val>
- <right_val>-0.5260491967201233</right_val></_></_>
- <_>
- <!-- tree 71 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>2 9 18 5 -1.</_>
- <_>8 9 6 5 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.2547619044780731</threshold>
- <left_val>-0.6292729973793030</left_val>
- <right_val>0.0136986197903752</right_val></_></_>
- <_>
- <!-- tree 72 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 15 16 3 -1.</_>
- <_>0 16 16 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-2.7374029159545898e-003</threshold>
- <left_val>0.1274753957986832</left_val>
- <right_val>-0.0695915222167969</right_val></_></_>
- <_>
- <!-- tree 73 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>6 16 12 2 -1.</_>
- <_>6 17 12 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>2.1854760125279427e-003</threshold>
- <left_val>0.0418547615408897</left_val>
- <right_val>-0.2648145854473114</right_val></_></_>
- <_>
- <!-- tree 74 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>3 0 4 8 -1.</_>
- <_>3 4 4 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0240507107228041</threshold>
- <left_val>-0.2619110941886902</left_val>
- <right_val>0.0344899408519268</right_val></_></_>
- <_>
- <!-- tree 75 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>15 6 6 6 -1.</_>
- <_>13 8 6 2 3.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>0.1021142974495888</threshold>
- <left_val>-0.0153028601780534</left_val>
- <right_val>0.3999275863170624</right_val></_></_>
- <_>
- <!-- tree 76 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>7 6 6 6 -1.</_>
- <_>9 8 2 6 3.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>0.1028165966272354</threshold>
- <left_val>-0.0290206708014011</left_val>
- <right_val>0.3688715994358063</right_val></_></_>
- <_>
- <!-- tree 77 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>13 12 6 6 -1.</_>
- <_>13 14 6 2 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0392064899206162</threshold>
- <left_val>8.9045017957687378e-003</left_val>
- <right_val>-0.4324299991130829</right_val></_></_>
- <_>
- <!-- tree 78 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>3 12 6 6 -1.</_>
- <_>3 14 6 2 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0378308594226837</threshold>
- <left_val>-0.6273121237754822</left_val>
- <right_val>0.0148828299716115</right_val></_></_>
- <_>
- <!-- tree 79 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>8 13 14 4 -1.</_>
- <_>8 14 14 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0125078903511167</threshold>
- <left_val>-0.0178650598973036</left_val>
- <right_val>0.1415614038705826</right_val></_></_>
- <_>
- <!-- tree 80 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 13 14 4 -1.</_>
- <_>0 14 14 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0154775902628899</threshold>
- <left_val>0.3167665004730225</left_val>
- <right_val>-0.0335108302533627</right_val></_></_>
- <_>
- <!-- tree 81 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>3 13 17 2 -1.</_>
- <_>3 14 17 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-4.5885699801146984e-003</threshold>
- <left_val>-0.1522215008735657</left_val>
- <right_val>0.0732118636369705</right_val></_></_>
- <_>
- <!-- tree 82 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>4 6 12 4 -1.</_>
- <_>8 6 4 4 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0205059703439474</threshold>
- <left_val>0.1172538027167320</left_val>
- <right_val>-0.0974579229950905</right_val></_></_>
- <_>
- <!-- tree 83 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>8 7 9 4 -1.</_>
- <_>11 7 3 4 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.1309832036495209</threshold>
- <left_val>0.5433806777000427</left_val>
- <right_val>-5.8803129941225052e-003</right_val></_></_>
- <_>
- <!-- tree 84 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>10 0 6 8 -1.</_>
- <_>8 2 6 4 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>0.0478882789611816</threshold>
- <left_val>-0.0271208100020885</left_val>
- <right_val>0.3572363853454590</right_val></_></_>
- <_>
- <!-- tree 85 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>9 2 12 12 -1.</_>
- <_>9 6 12 4 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.2544153034687042</threshold>
- <left_val>2.5680949911475182e-003</left_val>
- <right_val>-0.9998825788497925</right_val></_></_>
- <_>
- <!-- tree 86 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>11 0 6 3 -1.</_>
- <_>10 1 6 1 3.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>2.0652529783546925e-003</threshold>
- <left_val>-0.0942550003528595</left_val>
- <right_val>0.1006835997104645</right_val></_></_>
- <_>
- <!-- tree 87 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>13 1 3 7 -1.</_>
- <_>14 2 1 7 3.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>0.0301417801529169</threshold>
- <left_val>-0.0159845203161240</left_val>
- <right_val>0.2420950978994370</right_val></_></_>
- <_>
- <!-- tree 88 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>2 3 12 9 -1.</_>
- <_>6 6 4 3 9.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.1230550035834312</threshold>
- <left_val>0.0439024604856968</left_val>
- <right_val>-0.2904686033725739</right_val></_></_>
- <_>
- <!-- tree 89 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>19 2 3 12 -1.</_>
- <_>20 3 1 12 3.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>0.0114368898794055</threshold>
- <left_val>0.0318267010152340</left_val>
- <right_val>-0.1056960970163345</right_val></_></_>
- <_>
- <!-- tree 90 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>3 5 12 5 -1.</_>
- <_>7 5 4 5 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0142296599224210</threshold>
- <left_val>-0.0645187273621559</left_val>
- <right_val>0.1617898941040039</right_val></_></_>
- <_>
- <!-- tree 91 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>13 1 3 7 -1.</_>
- <_>14 2 1 7 3.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-0.0198080390691757</threshold>
- <left_val>0.2090989947319031</left_val>
- <right_val>-0.0272454600781202</right_val></_></_>
- <_>
- <!-- tree 92 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>9 1 7 3 -1.</_>
- <_>8 2 7 1 3.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-0.0326347090303898</threshold>
- <left_val>-0.4626514911651611</left_val>
- <right_val>0.0238779895007610</right_val></_></_>
- <_>
- <!-- tree 93 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>9 7 8 6 -1.</_>
- <_>13 7 4 3 2.</_>
- <_>9 10 4 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0815682113170624</threshold>
- <left_val>-0.0109838200733066</left_val>
- <right_val>0.7451753020286560</right_val></_></_>
- <_>
- <!-- tree 94 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>4 14 14 4 -1.</_>
- <_>4 15 14 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>1.7331159906461835e-003</threshold>
- <left_val>0.0628325790166855</left_val>
- <right_val>-0.1580016016960144</right_val></_></_>
- <_>
- <!-- tree 95 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>10 14 6 4 -1.</_>
- <_>10 14 3 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>4.1524558328092098e-003</threshold>
- <left_val>0.0285209491848946</left_val>
- <right_val>-0.0839238166809082</right_val></_></_>
- <_>
- <!-- tree 96 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>6 14 6 4 -1.</_>
- <_>9 14 3 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>2.0917340589221567e-004</threshold>
- <left_val>-0.1653665006160736</left_val>
- <right_val>0.0831703767180443</right_val></_></_>
- <_>
- <!-- tree 97 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>14 0 4 16 -1.</_>
- <_>16 0 2 8 2.</_>
- <_>14 8 2 8 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-6.9550168700516224e-004</threshold>
- <left_val>0.0572988986968994</left_val>
- <right_val>-0.0986681282520294</right_val></_></_>
- <_>
- <!-- tree 98 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 15 20 3 -1.</_>
- <_>5 15 10 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.1011473014950752</threshold>
- <left_val>-0.0270318593829870</left_val>
- <right_val>0.5093728899955750</right_val></_></_>
- <_>
- <!-- tree 99 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>16 5 3 13 -1.</_>
- <_>17 5 1 13 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0203715302050114</threshold>
- <left_val>-0.0159913394600153</left_val>
- <right_val>0.2111019045114517</right_val></_></_>
- <_>
- <!-- tree 100 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>2 6 13 8 -1.</_>
- <_>2 10 13 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.1949035972356796</threshold>
- <left_val>0.0111691495403647</left_val>
- <right_val>-0.8062657713890076</right_val></_></_>
- <_>
- <!-- tree 101 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>16 5 3 13 -1.</_>
- <_>17 5 1 13 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-1.5187750104814768e-003</threshold>
- <left_val>0.0886704325675964</left_val>
- <right_val>-0.0657796934247017</right_val></_></_>
- <_>
- <!-- tree 102 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>7 12 7 4 -1.</_>
- <_>7 14 7 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-2.2300280761555769e-005</threshold>
- <left_val>0.0702371001243591</left_val>
- <right_val>-0.1365679949522018</right_val></_></_>
- <_>
- <!-- tree 103 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>15 1 4 9 -1.</_>
- <_>15 4 4 3 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>7.0241810753941536e-003</threshold>
- <left_val>0.0452642701566219</left_val>
- <right_val>-0.1224663034081459</right_val></_></_>
- <_>
- <!-- tree 104 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 4 16 2 -1.</_>
- <_>0 5 16 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-5.8513730764389038e-003</threshold>
- <left_val>0.1454869955778122</left_val>
- <right_val>-0.0775128677487373</right_val></_></_>
- <_>
- <!-- tree 105 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>8 4 12 2 -1.</_>
- <_>8 5 12 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0122288698330522</threshold>
- <left_val>-0.1576232016086578</left_val>
- <right_val>0.0330916009843349</right_val></_></_>
- <_>
- <!-- tree 106 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>6 3 9 15 -1.</_>
- <_>9 8 3 5 9.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.2747533917427063</threshold>
- <left_val>0.4141589999198914</left_val>
- <right_val>-0.0233061797916889</right_val></_></_>
- <_>
- <!-- tree 107 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>12 3 3 8 -1.</_>
- <_>12 7 3 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-8.3073312416672707e-003</threshold>
- <left_val>-0.0661589726805687</left_val>
- <right_val>0.0454233698546886</right_val></_></_>
- <_>
- <!-- tree 108 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>5 6 12 4 -1.</_>
- <_>5 6 6 2 2.</_>
- <_>11 8 6 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0149670997634530</threshold>
- <left_val>0.0395800210535526</left_val>
- <right_val>-0.2447497993707657</right_val></_></_>
- <_>
- <!-- tree 109 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>16 3 3 14 -1.</_>
- <_>17 3 1 14 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>3.5121920518577099e-003</threshold>
- <left_val>-0.0326085910201073</left_val>
- <right_val>0.0720805525779724</right_val></_></_>
- <_>
- <!-- tree 110 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>3 3 3 14 -1.</_>
- <_>4 3 1 14 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>6.0676191933453083e-003</threshold>
- <left_val>-0.0662842467427254</left_val>
- <right_val>0.1645577996969223</right_val></_></_>
- <_>
- <!-- tree 111 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 4 22 4 -1.</_>
- <_>11 4 11 2 2.</_>
- <_>0 6 11 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-6.0948841273784637e-003</threshold>
- <left_val>-0.1678411960601807</left_val>
- <right_val>0.0680977478623390</right_val></_></_>
- <_>
- <!-- tree 112 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>1 4 4 9 -1.</_>
- <_>1 7 4 3 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-4.4710501097142696e-003</threshold>
- <left_val>0.1434886008501053</left_val>
- <right_val>-0.0752860531210899</right_val></_></_>
- <_>
- <!-- tree 113 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>7 13 12 4 -1.</_>
- <_>7 15 12 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0276299994438887</threshold>
- <left_val>-6.0715568251907825e-003</left_val>
- <right_val>0.4623529911041260</right_val></_></_>
- <_>
- <!-- tree 114 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>3 13 12 4 -1.</_>
- <_>3 15 12 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-4.1778348386287689e-003</threshold>
- <left_val>-0.0944801867008209</left_val>
- <right_val>0.1026868969202042</right_val></_></_>
- <_>
- <!-- tree 115 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>11 14 6 4 -1.</_>
- <_>11 16 6 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-1.4997010293882340e-004</threshold>
- <left_val>0.0459039695560932</left_val>
- <right_val>-0.1268998980522156</right_val></_></_>
- <_>
- <!-- tree 116 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>1 0 13 3 -1.</_>
- <_>1 1 13 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>9.3421656638383865e-003</threshold>
- <left_val>-0.0478513501584530</left_val>
- <right_val>0.2377692013978958</right_val></_></_>
- <_>
- <!-- tree 117 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>11 0 6 4 -1.</_>
- <_>11 2 6 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-9.0454798191785812e-003</threshold>
- <left_val>-0.1488175988197327</left_val>
- <right_val>0.0257176607847214</right_val></_></_>
- <_>
- <!-- tree 118 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>4 14 14 4 -1.</_>
- <_>4 14 7 2 2.</_>
- <_>11 16 7 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-1.0563050163909793e-003</threshold>
- <left_val>-0.1246521994471550</left_val>
- <right_val>0.0821189433336258</right_val></_></_>
- <_>
- <!-- tree 119 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>6 0 12 2 -1.</_>
- <_>6 1 12 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0156021695584059</threshold>
- <left_val>0.3047155141830444</left_val>
- <right_val>-0.0245032906532288</right_val></_></_>
- <_>
- <!-- tree 120 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>5 0 6 4 -1.</_>
- <_>5 2 6 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-8.9588612318038940e-003</threshold>
- <left_val>-0.2362405955791473</left_val>
- <right_val>0.0462901405990124</right_val></_></_>
- <_>
- <!-- tree 121 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>11 0 3 6 -1.</_>
- <_>12 1 1 6 3.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-7.6452922075986862e-003</threshold>
- <left_val>0.1139314025640488</left_val>
- <right_val>-0.0265730600804091</right_val></_></_>
- <_>
- <!-- tree 122 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>11 0 6 3 -1.</_>
- <_>10 1 6 1 3.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-0.0192949008196592</threshold>
- <left_val>0.2882001996040344</left_val>
- <right_val>-0.0359068810939789</right_val></_></_>
- <_>
- <!-- tree 123 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>7 12 8 6 -1.</_>
- <_>9 12 4 6 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>8.6250286549329758e-003</threshold>
- <left_val>0.0610060207545757</left_val>
- <right_val>-0.1683263033628464</right_val></_></_>
- <_>
- <!-- tree 124 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>1 1 5 10 -1.</_>
- <_>1 6 5 5 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0258834902197123</threshold>
- <left_val>-0.0401428490877151</left_val>
- <right_val>0.2326312065124512</right_val></_></_>
- <_>
- <!-- tree 125 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>13 0 2 12 -1.</_>
- <_>13 6 2 6 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0749461129307747</threshold>
- <left_val>0.7116879820823669</left_val>
- <right_val>-6.0237408615648746e-003</right_val></_></_>
- <_>
- <!-- tree 126 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>7 0 2 12 -1.</_>
- <_>7 6 2 6 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-2.6808120310306549e-004</threshold>
- <left_val>0.0777179002761841</left_val>
- <right_val>-0.1535875052213669</right_val></_></_>
- <_>
- <!-- tree 127 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>12 1 8 14 -1.</_>
- <_>16 1 4 7 2.</_>
- <_>12 8 4 7 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0610414408147335</threshold>
- <left_val>-0.0340701602399349</left_val>
- <right_val>0.2583329081535339</right_val></_></_>
- <_>
- <!-- tree 128 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>1 0 8 10 -1.</_>
- <_>1 0 4 5 2.</_>
- <_>5 5 4 5 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-4.7920648939907551e-003</threshold>
- <left_val>-0.1507782936096191</left_val>
- <right_val>0.0845772400498390</right_val></_></_>
- <_>
- <!-- tree 129 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>6 6 16 4 -1.</_>
- <_>10 6 8 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.1261063069105148</threshold>
- <left_val>-0.4840453863143921</left_val>
- <right_val>8.6965439841151237e-003</right_val></_></_>
- <_>
- <!-- tree 130 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>1 14 13 2 -1.</_>
- <_>1 15 13 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0228792708367109</threshold>
- <left_val>0.6773418784141541</left_val>
- <right_val>-0.0148561000823975</right_val></_></_>
- <_>
- <!-- tree 131 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>2 7 20 3 -1.</_>
- <_>7 7 10 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-6.2760512810200453e-004</threshold>
- <left_val>0.0509103499352932</left_val>
- <right_val>-0.1407644003629684</right_val></_></_>
- <_>
- <!-- tree 132 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>11 2 9 4 -1.</_>
- <_>14 5 3 4 3.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-0.0105431796982884</threshold>
- <left_val>-0.0907072499394417</left_val>
- <right_val>0.1128190010786057</right_val></_></_>
- <_>
- <!-- tree 133 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>6 5 13 2 -1.</_>
- <_>6 6 13 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-2.4953829124569893e-003</threshold>
- <left_val>0.0895237624645233</left_val>
- <right_val>-0.0755412876605988</right_val></_></_>
- <_>
- <!-- tree 134 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>3 0 6 15 -1.</_>
- <_>6 0 3 15 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0609861500561237</threshold>
- <left_val>-0.0320069789886475</left_val>
- <right_val>0.3300091028213501</right_val></_></_></trees>
- <stage_threshold>-30.6014995574951170</stage_threshold>
- <parent>27</parent>
- <next>-1</next></_>
- <_>
- <!-- stage 29 -->
- <trees>
- <_>
- <!-- tree 0 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>3 12 8 6 -1.</_>
- <_>5 12 4 6 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0412418097257614</threshold>
- <left_val>0.2484184056520462</left_val>
- <right_val>-0.0698791295289993</right_val></_></_>
- <_>
- <!-- tree 1 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>13 1 4 7 -1.</_>
- <_>14 2 2 7 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-0.0746634975075722</threshold>
- <left_val>-0.7543368935585022</left_val>
- <right_val>4.0493709966540337e-003</right_val></_></_>
- <_>
- <!-- tree 2 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>9 1 7 4 -1.</_>
- <_>8 2 7 2 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-0.0238036792725325</threshold>
- <left_val>0.2431309968233109</left_val>
- <right_val>-0.0452839285135269</right_val></_></_>
- <_>
- <!-- tree 3 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>11 11 6 4 -1.</_>
- <_>11 13 6 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0320286191999912</threshold>
- <left_val>-0.0122305396944284</left_val>
- <right_val>0.3981122076511383</right_val></_></_>
- <_>
- <!-- tree 4 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 12 8 6 -1.</_>
- <_>0 12 4 3 2.</_>
- <_>4 15 4 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>3.8454410969279706e-004</threshold>
- <left_val>0.0692448392510414</left_val>
- <right_val>-0.1728879958391190</right_val></_></_>
- <_>
- <!-- tree 5 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>11 11 6 4 -1.</_>
- <_>11 13 6 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-2.0599530544131994e-003</threshold>
- <left_val>0.0450832508504391</left_val>
- <right_val>-0.0638244822621346</right_val></_></_>
- <_>
- <!-- tree 6 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>2 6 6 12 -1.</_>
- <_>2 6 3 6 2.</_>
- <_>5 12 3 6 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0591745004057884</threshold>
- <left_val>0.0137560898438096</left_val>
- <right_val>0.5806397795677185</right_val></_></_>
- <_>
- <!-- tree 7 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>11 11 6 4 -1.</_>
- <_>11 13 6 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-8.1204501911997795e-003</threshold>
- <left_val>-0.0790601968765259</left_val>
- <right_val>0.0320978797972202</right_val></_></_>
- <_>
- <!-- tree 8 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>5 11 9 4 -1.</_>
- <_>8 11 3 4 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-5.4362448863685131e-003</threshold>
- <left_val>0.0802850127220154</left_val>
- <right_val>-0.1388078927993774</right_val></_></_>
- <_>
- <!-- tree 9 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>8 13 9 5 -1.</_>
- <_>11 13 3 5 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0407687798142433</threshold>
- <left_val>0.0352651290595531</left_val>
- <right_val>-0.1682104021310806</right_val></_></_>
- <_>
- <!-- tree 10 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>3 15 8 3 -1.</_>
- <_>7 15 4 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0107057699933648</threshold>
- <left_val>-0.1322779953479767</left_val>
- <right_val>0.0971477031707764</right_val></_></_>
- <_>
- <!-- tree 11 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>4 12 14 6 -1.</_>
- <_>11 12 7 3 2.</_>
- <_>4 15 7 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-2.1374409552663565e-003</threshold>
- <left_val>-0.1113512963056564</left_val>
- <right_val>0.1050119996070862</right_val></_></_>
- <_>
- <!-- tree 12 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>2 15 8 3 -1.</_>
- <_>6 15 4 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-6.0069030150771141e-003</threshold>
- <left_val>0.0797014236450195</left_val>
- <right_val>-0.1450355052947998</right_val></_></_>
- <_>
- <!-- tree 13 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>11 11 6 4 -1.</_>
- <_>11 13 6 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>6.8584359250962734e-003</threshold>
- <left_val>-0.0286291707307100</left_val>
- <right_val>0.1549434959888458</right_val></_></_>
- <_>
- <!-- tree 14 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>6 5 6 7 -1.</_>
- <_>8 5 2 7 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>8.4308702498674393e-003</threshold>
- <left_val>-0.0687258765101433</left_val>
- <right_val>0.1357143968343735</right_val></_></_>
- <_>
- <!-- tree 15 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>8 4 9 12 -1.</_>
- <_>11 8 3 4 9.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0319182090461254</threshold>
- <left_val>-0.0900216475129128</left_val>
- <right_val>0.0701727569103241</right_val></_></_>
- <_>
- <!-- tree 16 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>5 4 9 12 -1.</_>
- <_>8 8 3 4 9.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.1434696018695831</threshold>
- <left_val>0.0379361994564533</left_val>
- <right_val>-0.3384973108768463</right_val></_></_>
- <_>
- <!-- tree 17 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>14 12 6 4 -1.</_>
- <_>14 14 6 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0535015314817429</threshold>
- <left_val>-1.</left_val>
- <right_val>-1.3069049455225468e-003</right_val></_></_>
- <_>
- <!-- tree 18 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>2 12 6 4 -1.</_>
- <_>2 14 6 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-4.3198501225560904e-004</threshold>
- <left_val>0.0631404593586922</left_val>
- <right_val>-0.1489108055830002</right_val></_></_>
- <_>
- <!-- tree 19 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>9 6 6 8 -1.</_>
- <_>11 6 2 8 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0368255116045475</threshold>
- <left_val>0.1641896069049835</left_val>
- <right_val>-0.0365471988916397</right_val></_></_>
- <_>
- <!-- tree 20 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>7 4 8 6 -1.</_>
- <_>7 6 8 2 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0932306125760078</threshold>
- <left_val>-0.8185548186302185</left_val>
- <right_val>0.0104887299239635</right_val></_></_>
- <_>
- <!-- tree 21 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>13 7 6 4 -1.</_>
- <_>13 7 6 2 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-7.5886500999331474e-003</threshold>
- <left_val>0.0961899235844612</left_val>
- <right_val>-0.0323927290737629</right_val></_></_>
- <_>
- <!-- tree 22 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>10 2 12 3 -1.</_>
- <_>9 3 12 1 3.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>1.9316580146551132e-003</threshold>
- <left_val>-0.0971334576606750</left_val>
- <right_val>0.0968365371227264</right_val></_></_>
- <_>
- <!-- tree 23 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>12 4 6 6 -1.</_>
- <_>14 6 2 6 3.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-0.1761084944009781</threshold>
- <left_val>-1.</left_val>
- <right_val>3.9064860902726650e-004</right_val></_></_>
- <_>
- <!-- tree 24 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>10 4 6 6 -1.</_>
- <_>8 6 6 2 3.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-4.5753358863294125e-003</threshold>
- <left_val>-0.1424594074487686</left_val>
- <right_val>0.0726295337080956</right_val></_></_>
- <_>
- <!-- tree 25 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>11 5 3 9 -1.</_>
- <_>12 6 1 9 3.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-0.0715556964278221</threshold>
- <left_val>0.7012476921081543</left_val>
- <right_val>-8.1192785874009132e-003</right_val></_></_>
- <_>
- <!-- tree 26 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>4 0 16 2 -1.</_>
- <_>4 0 16 1 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-5.1939189434051514e-003</threshold>
- <left_val>-0.1759340018033981</left_val>
- <right_val>0.0669202581048012</right_val></_></_>
- <_>
- <!-- tree 27 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>12 12 8 3 -1.</_>
- <_>12 12 4 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>9.7410175949335098e-003</threshold>
- <left_val>-0.0406328588724136</left_val>
- <right_val>0.1536626964807510</right_val></_></_>
- <_>
- <!-- tree 28 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>10 0 12 6 -1.</_>
- <_>13 3 6 6 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-0.0191977303475142</threshold>
- <left_val>0.0884047225117683</left_val>
- <right_val>-0.1111958995461464</right_val></_></_>
- <_>
- <!-- tree 29 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>9 2 4 6 -1.</_>
- <_>9 5 4 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>7.7713979408144951e-003</threshold>
- <left_val>-0.0515310801565647</left_val>
- <right_val>0.2334187030792236</right_val></_></_>
- <_>
- <!-- tree 30 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 2 18 9 -1.</_>
- <_>6 5 6 3 9.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0467417798936367</threshold>
- <left_val>0.0586589500308037</left_val>
- <right_val>-0.2182534039020538</right_val></_></_>
- <_>
- <!-- tree 31 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>16 2 3 9 -1.</_>
- <_>17 3 1 9 3.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-0.0670518204569817</threshold>
- <left_val>-0.7696895003318787</left_val>
- <right_val>2.2733330260962248e-003</right_val></_></_>
- <_>
- <!-- tree 32 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>6 2 9 3 -1.</_>
- <_>5 3 9 1 3.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>0.0104036098346114</threshold>
- <left_val>-0.0572082698345184</left_val>
- <right_val>0.1987476944923401</right_val></_></_>
- <_>
- <!-- tree 33 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>10 1 12 4 -1.</_>
- <_>14 1 4 4 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0681366175413132</threshold>
- <left_val>0.0109247500076890</left_val>
- <right_val>-0.2351476997137070</right_val></_></_>
- <_>
- <!-- tree 34 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 1 12 4 -1.</_>
- <_>4 1 4 4 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>5.5462731979787350e-003</threshold>
- <left_val>0.0764302089810371</left_val>
- <right_val>-0.1504815071821213</right_val></_></_>
- <_>
- <!-- tree 35 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>6 14 12 4 -1.</_>
- <_>12 14 6 2 2.</_>
- <_>6 16 6 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0358278900384903</threshold>
- <left_val>5.2330200560390949e-003</left_val>
- <right_val>-0.9050955772399902</right_val></_></_>
- <_>
- <!-- tree 36 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>4 2 13 3 -1.</_>
- <_>4 3 13 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0100990803912282</threshold>
- <left_val>-0.0494383499026299</left_val>
- <right_val>0.1923664957284927</right_val></_></_>
- <_>
- <!-- tree 37 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>7 2 13 3 -1.</_>
- <_>7 3 13 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-7.3000352131202817e-004</threshold>
- <left_val>0.0800386890769005</left_val>
- <right_val>-0.0598758608102798</right_val></_></_>
- <_>
- <!-- tree 38 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>1 12 20 2 -1.</_>
- <_>11 12 10 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0626273080706596</threshold>
- <left_val>-0.6877195239067078</left_val>
- <right_val>0.0144093399867415</right_val></_></_>
- <_>
- <!-- tree 39 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>5 2 12 3 -1.</_>
- <_>9 2 4 3 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>4.1463607922196388e-003</threshold>
- <left_val>0.0620688796043396</left_val>
- <right_val>-0.1413860023021698</right_val></_></_>
- <_>
- <!-- tree 40 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>4 8 14 9 -1.</_>
- <_>11 8 7 9 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.1413605958223343</threshold>
- <left_val>0.5943986773490906</left_val>
- <right_val>-0.0169105306267738</right_val></_></_>
- <_>
- <!-- tree 41 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>10 2 4 8 -1.</_>
- <_>10 2 2 8 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0701470673084259</threshold>
- <left_val>3.5781029146164656e-003</left_val>
- <right_val>-0.8454138040542603</right_val></_></_>
- <_>
- <!-- tree 42 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>8 2 4 8 -1.</_>
- <_>10 2 2 8 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>1.8181180348619819e-003</threshold>
- <left_val>-0.0590311288833618</left_val>
- <right_val>0.1770997941493988</right_val></_></_>
- <_>
- <!-- tree 43 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>16 1 2 16 -1.</_>
- <_>16 9 2 8 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0631495416164398</threshold>
- <left_val>-7.9691512510180473e-003</left_val>
- <right_val>0.2457547038793564</right_val></_></_>
- <_>
- <!-- tree 44 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>2 8 9 4 -1.</_>
- <_>5 8 3 4 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>1.7065559513866901e-003</threshold>
- <left_val>-0.1377667933702469</left_val>
- <right_val>0.0722865983843803</right_val></_></_>
- <_>
- <!-- tree 45 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>16 1 2 16 -1.</_>
- <_>16 9 2 8 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0418441593647003</threshold>
- <left_val>-0.1020454987883568</left_val>
- <right_val>0.0194128807634115</right_val></_></_>
- <_>
- <!-- tree 46 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>4 1 2 16 -1.</_>
- <_>4 9 2 8 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0618760287761688</threshold>
- <left_val>0.0175725705921650</left_val>
- <right_val>-0.5961120128631592</right_val></_></_>
- <_>
- <!-- tree 47 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>10 7 8 6 -1.</_>
- <_>14 7 4 3 2.</_>
- <_>10 10 4 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0862066075205803</threshold>
- <left_val>-8.3246696740388870e-003</left_val>
- <right_val>0.5927473902702332</right_val></_></_>
- <_>
- <!-- tree 48 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>4 7 8 6 -1.</_>
- <_>4 7 4 3 2.</_>
- <_>8 10 4 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0155612500384450</threshold>
- <left_val>0.0559087917208672</left_val>
- <right_val>-0.2017468065023422</right_val></_></_>
- <_>
- <!-- tree 49 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>12 8 2 7 -1.</_>
- <_>12 8 1 7 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>1.9683360587805510e-003</threshold>
- <left_val>0.0841097831726074</left_val>
- <right_val>-0.0951142832636833</right_val></_></_>
- <_>
- <!-- tree 50 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>5 8 6 8 -1.</_>
- <_>5 8 3 4 2.</_>
- <_>8 12 3 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-3.2295130658894777e-003</threshold>
- <left_val>0.1985978931188583</left_val>
- <right_val>-0.0603710412979126</right_val></_></_>
- <_>
- <!-- tree 51 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>12 8 2 7 -1.</_>
- <_>12 8 1 7 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>0.0438614599406719</threshold>
- <left_val>-7.5495638884603977e-003</left_val>
- <right_val>0.2778531014919281</right_val></_></_>
- <_>
- <!-- tree 52 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>10 8 7 2 -1.</_>
- <_>10 8 7 1 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-7.1588042192161083e-004</threshold>
- <left_val>0.1067167967557907</left_val>
- <right_val>-0.1160534024238586</right_val></_></_>
- <_>
- <!-- tree 53 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>5 9 13 8 -1.</_>
- <_>5 11 13 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0115850800648332</threshold>
- <left_val>0.1392320990562439</left_val>
- <right_val>-0.0726817175745964</right_val></_></_>
- <_>
- <!-- tree 54 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>7 9 4 9 -1.</_>
- <_>9 9 2 9 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0241320300847292</threshold>
- <left_val>-0.3434329926967621</left_val>
- <right_val>0.0285876393318176</right_val></_></_>
- <_>
- <!-- tree 55 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>9 6 6 10 -1.</_>
- <_>11 6 2 10 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-5.9670167975127697e-003</threshold>
- <left_val>0.0628549680113792</left_val>
- <right_val>-0.0632379129528999</right_val></_></_>
- <_>
- <!-- tree 56 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>7 6 6 10 -1.</_>
- <_>9 6 2 10 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0572982616722584</threshold>
- <left_val>0.3351210057735443</left_val>
- <right_val>-0.0344256795942783</right_val></_></_>
- <_>
- <!-- tree 57 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>6 0 14 6 -1.</_>
- <_>13 0 7 3 2.</_>
- <_>6 3 7 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.1444053053855896</threshold>
- <left_val>-1.</left_val>
- <right_val>-2.0486500579863787e-004</right_val></_></_>
- <_>
- <!-- tree 58 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>2 0 14 6 -1.</_>
- <_>2 0 7 3 2.</_>
- <_>9 3 7 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0161520093679428</threshold>
- <left_val>-0.1801726073026657</left_val>
- <right_val>0.0606980808079243</right_val></_></_>
- <_>
- <!-- tree 59 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>3 6 16 3 -1.</_>
- <_>3 7 16 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>3.1132341246120632e-004</threshold>
- <left_val>-0.0873939692974091</left_val>
- <right_val>0.1081447973847389</right_val></_></_>
- <_>
- <!-- tree 60 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>1 6 15 3 -1.</_>
- <_>1 7 15 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-3.4905138891190290e-003</threshold>
- <left_val>0.1308909952640533</left_val>
- <right_val>-0.0825025066733360</right_val></_></_>
- <_>
- <!-- tree 61 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>8 5 8 4 -1.</_>
- <_>8 7 8 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0510782003402710</threshold>
- <left_val>-0.6674498915672302</left_val>
- <right_val>9.7670806571841240e-003</right_val></_></_>
- <_>
- <!-- tree 62 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>2 4 12 10 -1.</_>
- <_>8 4 6 10 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.2302789986133575</threshold>
- <left_val>8.9318687096238136e-003</left_val>
- <right_val>-0.8889254927635193</right_val></_></_>
- <_>
- <!-- tree 63 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>7 0 14 16 -1.</_>
- <_>7 0 7 16 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0332602895796299</threshold>
- <left_val>-0.0388468205928802</left_val>
- <right_val>0.1187155023217201</right_val></_></_>
- <_>
- <!-- tree 64 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>1 1 18 3 -1.</_>
- <_>10 1 9 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>3.6332090385258198e-003</threshold>
- <left_val>-0.0818652883172035</left_val>
- <right_val>0.1200636997818947</right_val></_></_>
- <_>
- <!-- tree 65 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>8 8 12 2 -1.</_>
- <_>8 8 6 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-1.3659459364134818e-004</threshold>
- <left_val>0.0290940403938293</left_val>
- <right_val>-0.0864127129316330</right_val></_></_>
- <_>
- <!-- tree 66 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>8 1 6 4 -1.</_>
- <_>11 1 3 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>4.2663831263780594e-003</threshold>
- <left_val>0.0596425905823708</left_val>
- <right_val>-0.1677787005901337</right_val></_></_>
- <_>
- <!-- tree 67 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>11 0 4 10 -1.</_>
- <_>12 1 2 10 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-0.0377263687551022</threshold>
- <left_val>0.2520141899585724</left_val>
- <right_val>-0.0114804599434137</right_val></_></_>
- <_>
- <!-- tree 68 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>11 0 10 4 -1.</_>
- <_>10 1 10 2 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-0.0377239510416985</threshold>
- <left_val>0.3615080118179321</left_val>
- <right_val>-0.0251649804413319</right_val></_></_>
- <_>
- <!-- tree 69 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>13 7 9 4 -1.</_>
- <_>16 7 3 4 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0352175310254097</threshold>
- <left_val>-0.2076825946569443</left_val>
- <right_val>0.0156594999134541</right_val></_></_>
- <_>
- <!-- tree 70 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>11 1 6 2 -1.</_>
- <_>11 1 6 1 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-0.0262501500546932</threshold>
- <left_val>0.6436303853988648</left_val>
- <right_val>-0.0139710800722241</right_val></_></_>
- <_>
- <!-- tree 71 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>8 8 12 2 -1.</_>
- <_>8 8 6 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0711328312754631</threshold>
- <left_val>5.0701410509645939e-003</left_val>
- <right_val>-0.8105366826057434</right_val></_></_>
- <_>
- <!-- tree 72 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>7 12 6 5 -1.</_>
- <_>10 12 3 5 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>2.8358760755509138e-003</threshold>
- <left_val>0.0800347328186035</left_val>
- <right_val>-0.1176605001091957</right_val></_></_>
- <_>
- <!-- tree 73 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>10 7 9 11 -1.</_>
- <_>13 7 3 11 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>3.4837881103157997e-003</threshold>
- <left_val>0.0697094574570656</left_val>
- <right_val>-0.1213672012090683</right_val></_></_>
- <_>
- <!-- tree 74 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>6 15 8 3 -1.</_>
- <_>10 15 4 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>2.9538539820350707e-005</threshold>
- <left_val>-0.1709052026271820</left_val>
- <right_val>0.0700920671224594</right_val></_></_>
- <_>
- <!-- tree 75 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>19 3 2 12 -1.</_>
- <_>19 3 1 12 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0263452306389809</threshold>
- <left_val>-0.0110464496538043</left_val>
- <right_val>0.3546783924102783</right_val></_></_>
- <_>
- <!-- tree 76 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>1 3 2 12 -1.</_>
- <_>2 3 1 12 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>3.3180779428221285e-004</threshold>
- <left_val>-0.0897638499736786</left_val>
- <right_val>0.1040273979306221</right_val></_></_>
- <_>
- <!-- tree 77 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>11 1 9 10 -1.</_>
- <_>14 1 3 10 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>9.9607985466718674e-003</threshold>
- <left_val>-0.1057467013597488</left_val>
- <right_val>0.0874811634421349</right_val></_></_>
- <_>
- <!-- tree 78 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>1 3 16 6 -1.</_>
- <_>5 3 8 6 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0690684765577316</threshold>
- <left_val>-0.0231357607990503</left_val>
- <right_val>0.3776597976684570</right_val></_></_>
- <_>
- <!-- tree 79 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>7 1 12 12 -1.</_>
- <_>11 1 4 12 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0338048711419106</threshold>
- <left_val>-0.0800529271364212</left_val>
- <right_val>0.0661719888448715</right_val></_></_>
- <_>
- <!-- tree 80 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>2 8 12 2 -1.</_>
- <_>8 8 6 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-2.1103899925947189e-003</threshold>
- <left_val>0.0729132369160652</left_val>
- <right_val>-0.1698666960000992</right_val></_></_>
- <_>
- <!-- tree 81 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>14 7 3 10 -1.</_>
- <_>14 12 3 5 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0716755837202072</threshold>
- <left_val>-0.0226680207997561</left_val>
- <right_val>0.4375745952129364</right_val></_></_>
- <_>
- <!-- tree 82 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>1 15 18 3 -1.</_>
- <_>10 15 9 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0176371298730373</threshold>
- <left_val>0.1471055001020432</left_val>
- <right_val>-0.0776481479406357</right_val></_></_>
- <_>
- <!-- tree 83 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>9 0 13 3 -1.</_>
- <_>9 1 13 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>2.1559430751949549e-003</threshold>
- <left_val>-0.0445614792406559</left_val>
- <right_val>0.0806162506341934</right_val></_></_>
- <_>
- <!-- tree 84 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>5 0 12 3 -1.</_>
- <_>5 1 12 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-2.9923371039330959e-003</threshold>
- <left_val>0.1601323038339615</left_val>
- <right_val>-0.0726281702518463</right_val></_></_>
- <_>
- <!-- tree 85 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>12 1 2 15 -1.</_>
- <_>12 1 1 15 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0283516198396683</threshold>
- <left_val>-0.2483552992343903</left_val>
- <right_val>7.8493626788258553e-003</right_val></_></_>
- <_>
- <!-- tree 86 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>8 1 2 15 -1.</_>
- <_>9 1 1 15 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-5.3842412307858467e-003</threshold>
- <left_val>-0.1329039037227631</left_val>
- <right_val>0.0786153525114059</right_val></_></_>
- <_>
- <!-- tree 87 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>12 2 3 13 -1.</_>
- <_>13 2 1 13 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0165137201547623</threshold>
- <left_val>-0.0308675803244114</left_val>
- <right_val>0.2291049957275391</right_val></_></_>
- <_>
- <!-- tree 88 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>1 6 4 8 -1.</_>
- <_>3 6 2 8 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0234800595790148</threshold>
- <left_val>-0.3465690016746521</left_val>
- <right_val>0.0284779109060764</right_val></_></_>
- <_>
- <!-- tree 89 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>17 1 4 12 -1.</_>
- <_>19 1 2 6 2.</_>
- <_>17 7 2 6 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0648044571280479</threshold>
- <left_val>3.2681180164217949e-003</left_val>
- <right_val>-0.8184831738471985</right_val></_></_>
- <_>
- <!-- tree 90 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>1 1 4 12 -1.</_>
- <_>1 1 2 6 2.</_>
- <_>3 7 2 6 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>2.9363438952714205e-003</threshold>
- <left_val>0.0683719962835312</left_val>
- <right_val>-0.1603825986385346</right_val></_></_>
- <_>
- <!-- tree 91 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>17 0 4 7 -1.</_>
- <_>17 0 2 7 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0193526390939951</threshold>
- <left_val>0.0123308096081018</left_val>
- <right_val>-0.1775151044130325</right_val></_></_>
- <_>
- <!-- tree 92 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>1 0 4 7 -1.</_>
- <_>3 0 2 7 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-1.4157049590721726e-003</threshold>
- <left_val>0.1624874025583267</left_val>
- <right_val>-0.0848219692707062</right_val></_></_>
- <_>
- <!-- tree 93 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>12 2 3 13 -1.</_>
- <_>13 2 1 13 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0321656800806522</threshold>
- <left_val>0.2549557983875275</left_val>
- <right_val>-0.0153878200799227</right_val></_></_>
- <_>
- <!-- tree 94 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>7 4 5 9 -1.</_>
- <_>7 7 5 3 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0998839288949966</threshold>
- <left_val>0.0116309802979231</left_val>
- <right_val>-0.8693922162055969</right_val></_></_>
- <_>
- <!-- tree 95 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>12 2 3 13 -1.</_>
- <_>13 2 1 13 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-8.5509859491139650e-004</threshold>
- <left_val>0.0375091396272182</left_val>
- <right_val>-0.0413151308894157</right_val></_></_>
- <_>
- <!-- tree 96 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>7 2 3 13 -1.</_>
- <_>8 2 1 13 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0199486799538136</threshold>
- <left_val>-0.0332114398479462</left_val>
- <right_val>0.2654669880867004</right_val></_></_>
- <_>
- <!-- tree 97 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>3 5 17 4 -1.</_>
- <_>3 6 17 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0168213602155447</threshold>
- <left_val>-0.1950453072786331</left_val>
- <right_val>0.0455782711505890</right_val></_></_>
- <_>
- <!-- tree 98 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>2 3 18 3 -1.</_>
- <_>2 4 18 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0816850811243057</threshold>
- <left_val>0.8082371950149536</left_val>
- <right_val>-0.0100283799692988</right_val></_></_>
- <_>
- <!-- tree 99 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>11 11 6 4 -1.</_>
- <_>11 13 6 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-3.9467110764235258e-004</threshold>
- <left_val>0.0378688685595989</left_val>
- <right_val>-0.0743217021226883</right_val></_></_>
- <_>
- <!-- tree 100 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>5 11 6 4 -1.</_>
- <_>5 13 6 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0419395789504051</threshold>
- <left_val>-0.7531027197837830</left_val>
- <right_val>0.0124947801232338</right_val></_></_>
- <_>
- <!-- tree 101 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>15 5 6 4 -1.</_>
- <_>15 5 6 2 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>0.1231978014111519</threshold>
- <left_val>1.5212129801511765e-003</left_val>
- <right_val>-0.8745682835578919</right_val></_></_>
- <_>
- <!-- tree 102 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>7 5 4 6 -1.</_>
- <_>7 5 2 6 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>4.3162349611520767e-003</threshold>
- <left_val>0.0959173664450645</left_val>
- <right_val>-0.0982868820428848</right_val></_></_>
- <_>
- <!-- tree 103 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>13 1 8 8 -1.</_>
- <_>15 1 4 8 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>1.7064419807866216e-003</threshold>
- <left_val>-0.0672838464379311</left_val>
- <right_val>0.0583726689219475</right_val></_></_>
- <_>
- <!-- tree 104 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>3 1 12 12 -1.</_>
- <_>7 1 4 12 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0688534975051880</threshold>
- <left_val>0.0398532710969448</left_val>
- <right_val>-0.2701404094696045</right_val></_></_>
- <_>
- <!-- tree 105 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>14 2 4 12 -1.</_>
- <_>14 2 2 12 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>1.5133110573515296e-003</threshold>
- <left_val>0.0368038304150105</left_val>
- <right_val>-0.0786387771368027</right_val></_></_>
- <_>
- <!-- tree 106 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>4 2 4 12 -1.</_>
- <_>6 2 2 12 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0166717004030943</threshold>
- <left_val>-0.0522084794938564</left_val>
- <right_val>0.2547613978385925</right_val></_></_>
- <_>
- <!-- tree 107 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>15 0 2 14 -1.</_>
- <_>15 0 1 14 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-2.4927379563450813e-003</threshold>
- <left_val>-0.0683529227972031</left_val>
- <right_val>0.0391825288534164</right_val></_></_>
- <_>
- <!-- tree 108 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>5 0 2 14 -1.</_>
- <_>6 0 1 14 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>1.7946650041267276e-003</threshold>
- <left_val>0.0756416171789169</left_val>
- <right_val>-0.1844301968812943</right_val></_></_>
- <_>
- <!-- tree 109 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>15 1 7 15 -1.</_>
- <_>15 6 7 5 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0657645165920258</threshold>
- <left_val>-0.0279573798179626</left_val>
- <right_val>0.1377072930335999</right_val></_></_>
- <_>
- <!-- tree 110 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>6 1 7 6 -1.</_>
- <_>4 3 7 2 3.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-0.0324156284332275</threshold>
- <left_val>0.2495771944522858</left_val>
- <right_val>-0.0384017415344715</right_val></_></_>
- <_>
- <!-- tree 111 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>1 4 20 14 -1.</_>
- <_>11 4 10 7 2.</_>
- <_>1 11 10 7 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.1598522067070007</threshold>
- <left_val>0.0231395307928324</left_val>
- <right_val>-0.4587697982788086</right_val></_></_>
- <_>
- <!-- tree 112 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>1 2 6 8 -1.</_>
- <_>3 2 2 8 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0330030508339405</threshold>
- <left_val>-0.0285496506839991</left_val>
- <right_val>0.3648226857185364</right_val></_></_>
- <_>
- <!-- tree 113 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>15 0 2 13 -1.</_>
- <_>15 0 1 13 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>8.3292415365576744e-003</threshold>
- <left_val>0.0234221108257771</left_val>
- <right_val>-0.1299273967742920</right_val></_></_>
- <_>
- <!-- tree 114 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>2 1 9 10 -1.</_>
- <_>5 1 3 10 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.1470738053321838</threshold>
- <left_val>-1.</left_val>
- <right_val>0.0103427702561021</right_val></_></_>
- <_>
- <!-- tree 115 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>9 9 6 6 -1.</_>
- <_>11 9 2 6 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.1062593013048172</threshold>
- <left_val>2.8901589103043079e-003</left_val>
- <right_val>-0.6210510134696960</right_val></_></_>
- <_>
- <!-- tree 116 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>5 5 8 4 -1.</_>
- <_>5 5 8 2 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>0.0479050017893314</threshold>
- <left_val>-0.0254373103380203</left_val>
- <right_val>0.3859503865242004</right_val></_></_>
- <_>
- <!-- tree 117 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>5 8 14 4 -1.</_>
- <_>5 9 14 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0435629487037659</threshold>
- <left_val>0.0129636703059077</left_val>
- <right_val>-0.3157450854778290</right_val></_></_>
- <_>
- <!-- tree 118 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 7 20 2 -1.</_>
- <_>10 7 10 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0664015114307404</threshold>
- <left_val>0.3718433976173401</left_val>
- <right_val>-0.0242482293397188</right_val></_></_>
- <_>
- <!-- tree 119 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>8 0 10 10 -1.</_>
- <_>8 0 5 10 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>1.0357169667258859e-003</threshold>
- <left_val>-0.0338571593165398</left_val>
- <right_val>0.0728181377053261</right_val></_></_>
- <_>
- <!-- tree 120 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>4 0 10 10 -1.</_>
- <_>9 0 5 10 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.1001026034355164</threshold>
- <left_val>-0.2616243064403534</left_val>
- <right_val>0.0405613481998444</right_val></_></_>
- <_>
- <!-- tree 121 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>5 1 15 10 -1.</_>
- <_>10 1 5 10 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.1402942985296249</threshold>
- <left_val>0.1618638038635254</left_val>
- <right_val>-0.0374638698995113</right_val></_></_>
- <_>
- <!-- tree 122 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 9 18 4 -1.</_>
- <_>0 10 18 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0366291813552380</threshold>
- <left_val>-0.3798868954181671</left_val>
- <right_val>0.0224937591701746</right_val></_></_>
- <_>
- <!-- tree 123 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>8 8 10 6 -1.</_>
- <_>8 10 10 2 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.1852793991565704</threshold>
- <left_val>-3.4648380242288113e-003</left_val>
- <right_val>0.9997292160987854</right_val></_></_>
- <_>
- <!-- tree 124 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>4 8 10 6 -1.</_>
- <_>4 10 10 2 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0134529303759336</threshold>
- <left_val>0.0661910176277161</left_val>
- <right_val>-0.1520805060863495</right_val></_></_>
- <_>
- <!-- tree 125 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>11 6 10 12 -1.</_>
- <_>11 10 10 4 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0846280604600906</threshold>
- <left_val>-0.0321342609822750</left_val>
- <right_val>0.2287780046463013</right_val></_></_>
- <_>
- <!-- tree 126 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>8 5 4 8 -1.</_>
- <_>8 5 4 4 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-0.0875683724880219</threshold>
- <left_val>0.4322968125343323</left_val>
- <right_val>-0.0247350297868252</right_val></_></_>
- <_>
- <!-- tree 127 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>17 8 5 6 -1.</_>
- <_>17 11 5 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0265023391693830</threshold>
- <left_val>0.0235266294330359</left_val>
- <right_val>-0.2984949946403503</right_val></_></_>
- <_>
- <!-- tree 128 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>8 11 4 7 -1.</_>
- <_>10 11 2 7 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0182730592787266</threshold>
- <left_val>0.5087803006172180</left_val>
- <right_val>-0.0197359491139650</right_val></_></_>
- <_>
- <!-- tree 129 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>9 5 12 3 -1.</_>
- <_>9 6 12 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-1.1995369568467140e-003</threshold>
- <left_val>0.0748677626252174</left_val>
- <right_val>-0.0738613903522491</right_val></_></_>
- <_>
- <!-- tree 130 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>2 9 13 3 -1.</_>
- <_>2 10 13 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0313812308013439</threshold>
- <left_val>-0.0262804795056582</left_val>
- <right_val>0.3658395111560822</right_val></_></_>
- <_>
- <!-- tree 131 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>3 13 16 3 -1.</_>
- <_>3 13 8 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0231786705553532</threshold>
- <left_val>0.0371552594006062</left_val>
- <right_val>-0.2546856999397278</right_val></_></_>
- <_>
- <!-- tree 132 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>5 12 8 4 -1.</_>
- <_>9 12 4 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0136446999385953</threshold>
- <left_val>0.2071769982576370</left_val>
- <right_val>-0.0427927710115910</right_val></_></_>
- <_>
- <!-- tree 133 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>14 8 6 9 -1.</_>
- <_>14 11 6 3 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>7.8315278515219688e-003</threshold>
- <left_val>0.0360285192728043</left_val>
- <right_val>-0.0803370401263237</right_val></_></_>
- <_>
- <!-- tree 134 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>4 10 12 3 -1.</_>
- <_>4 11 12 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0100357802584767</threshold>
- <left_val>-0.2225376963615418</left_val>
- <right_val>0.0429500304162502</right_val></_></_>
- <_>
- <!-- tree 135 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>6 7 11 9 -1.</_>
- <_>6 10 11 3 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0511321313679218</threshold>
- <left_val>0.3058665096759796</left_val>
- <right_val>-0.0270545892417431</right_val></_></_>
- <_>
- <!-- tree 136 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>4 1 9 4 -1.</_>
- <_>7 4 3 4 3.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-0.0695447027683258</threshold>
- <left_val>0.3468846082687378</left_val>
- <right_val>-0.0317362211644650</right_val></_></_>
- <_>
- <!-- tree 137 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>12 1 9 9 -1.</_>
- <_>15 1 3 9 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0240793600678444</threshold>
- <left_val>0.1329156011343002</left_val>
- <right_val>-0.0302777793258429</right_val></_></_>
- <_>
- <!-- tree 138 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>1 1 9 9 -1.</_>
- <_>4 1 3 9 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-6.6630518995225430e-003</threshold>
- <left_val>-0.1847348064184189</left_val>
- <right_val>0.0787502527236938</right_val></_></_>
- <_>
- <!-- tree 139 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>14 1 6 6 -1.</_>
- <_>16 1 2 6 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0431476905941963</threshold>
- <left_val>-9.1566536575555801e-003</left_val>
- <right_val>0.2948581874370575</right_val></_></_>
- <_>
- <!-- tree 140 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>4 6 4 6 -1.</_>
- <_>6 6 2 6 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0138083398342133</threshold>
- <left_val>-0.2847915887832642</left_val>
- <right_val>0.0326221883296967</right_val></_></_>
- <_>
- <!-- tree 141 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>7 5 12 7 -1.</_>
- <_>10 5 6 7 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.1635189950466156</threshold>
- <left_val>-3.7377059925347567e-003</left_val>
- <right_val>0.5604218244552612</right_val></_></_>
- <_>
- <!-- tree 142 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>3 5 12 7 -1.</_>
- <_>6 5 6 7 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0240861494094133</threshold>
- <left_val>0.1584143042564392</left_val>
- <right_val>-0.0662945136427879</right_val></_></_></trees>
- <stage_threshold>-30.5550003051757810</stage_threshold>
- <parent>28</parent>
- <next>-1</next></_></stages></haarcascade_upperbody>
- </opencv_storage>
|