123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182 |
- import tensorflow as tf
- from tensorflow.examples.tutorials.mnist import input_data
- import matplotlib.pyplot as plt
- import os
- import numpy as np
- # mnist = input_data.read_data_sets("MNIST_data", one_hot=True)
- # print "basic information of mnist dataset"
- # print "mnist training data size: ", mnist.train.num_examples
- # print "mnist validating data size: ", mnist.validation.num_examples
- # print "mnist testing data size: ", mnist.test.num_examples
- # print "mnist example training data: ", mnist.train.images[0]
- # print "mnist example training data label", mnist.train.labels[0]
- # define input and output data size
- INPUT_NODE = 784
- OUTPUT_NODE = 10
- # params for neural network
- LAYER1_NODE = 500
- BATCH_SIZE = 1000
- LEARNING_RATE_BASE = 0.8
- LEARNING_RATE_DECAY = 0.999
- REGULARIZATION_RATE = 0.0001
- TRAINING_STEPS = 200000
- MOVING_AVERAGE_DECAY = 0.99
- def inference(input_tensor, avg_class, reuse=False):
- if avg_class is None:
- with tf.variable_scope("layer1", reuse=reuse):
- weights = tf.get_variable("weights", [INPUT_NODE, LAYER1_NODE],
- initializer=tf.truncated_normal_initializer(stddev=0.1))
- biases = tf.get_variable("biases", [LAYER1_NODE], initializer=tf.constant_initializer(0.1))
- layer1 = tf.nn.relu(tf.matmul(input_tensor, weights) + biases)
- with tf.variable_scope("layer2", reuse=reuse):
- weights = tf.get_variable("weights", [LAYER1_NODE, OUTPUT_NODE],
- initializer=tf.truncated_normal_initializer(stddev=0.1))
- biases = tf.get_variable("biases", [OUTPUT_NODE], initializer=tf.constant_initializer(0.1))
- layer2 = tf.matmul(layer1, weights) + biases
- return layer2
- else:
- with tf.variable_scope("layer1", reuse=reuse):
- weights = tf.get_variable("weights", [INPUT_NODE, LAYER1_NODE],
- initializer=tf.truncated_normal_initializer(stddev=0.1))
- biases = tf.get_variable("biases", [LAYER1_NODE], initializer=tf.constant_initializer(0.1))
- layer1 = tf.nn.relu(tf.matmul(input_tensor, avg_class.average(weights)) + avg_class.average(biases))
- with tf.variable_scope("layer2", reuse=reuse):
- weights = tf.get_variable("weights", [LAYER1_NODE, OUTPUT_NODE],
- initializer=tf.truncated_normal_initializer(stddev=0.1))
- biases = tf.get_variable("biases", [OUTPUT_NODE], initializer=tf.constant_initializer(0.1))
- layer2 = tf.matmul(layer1, avg_class.average(weights)) + avg_class.average(biases)
- return layer2
- # training process
- def train(mnist):
- x = tf.placeholder(tf.float32, [None, INPUT_NODE], name="x-input")
- # y_ = tf.placeholder(tf.float32, [None, OUTPUT_NODE], name="y-input")
- y_ = inference(x, None)
- y = inference(x, None, True)
- # used to store training cycles
- global_step = tf.Variable(0, trainable=False)
- # define EMA function to increase robustness when predict
- variable_averages = tf.train.ExponentialMovingAverage(MOVING_AVERAGE_DECAY, global_step)
- variable_averages_op = variable_averages.apply(tf.trainable_variables())
- # # forward propagation with moving average function
- # average_y = inference(x, variable_averages, weight1, biases1, weight2, biases2)
- average_y = inference(x, variable_averages, True)
- # cross_entropy = tf.nn.sparse_softmax_cross_entropy_with_logits(logits=y, labels=tf.arg_max(y_, 1))
- cross_entropy = tf.nn.sparse_softmax_cross_entropy_with_logits(logits=y, labels=tf.arg_max(y_, 1))
- # calc cross_entropy mean for current batch
- cross_entropy_mean = tf.reduce_mean(cross_entropy)
- # calc L2 regularization loss function
- regularizer = tf.contrib.layers.l2_regularizer(REGULARIZATION_RATE)
- with tf.variable_scope("", reuse=True):
- regularization = regularizer(tf.get_variable("layer1/weights", [INPUT_NODE, LAYER1_NODE])) + regularizer(
- tf.get_variable("layer2/weights", [LAYER1_NODE, OUTPUT_NODE]))
- loss = cross_entropy_mean + regularization
- # learning rate = learning rate * LEARNING_RATE_DECAY ^ (global_step / decay_step)
- learning_rate = tf.train.exponential_decay(
- LEARNING_RATE_BASE, global_step, mnist.train.num_examples / BATCH_SIZE, LEARNING_RATE_DECAY)
- train_step = tf.train.GradientDescentOptimizer(learning_rate).minimize(loss, global_step=global_step)
- # combine backward propagation and EMA value modification
- with tf.control_dependencies([train_step, variable_averages_op]):
- train_op = tf.no_op(name="train")
- # correct_prediction = tf.equal(tf.arg_max(average_y, 1), tf.arg_max(y_, 1))
- correct_prediction = tf.equal(tf.arg_max(y, 1), tf.arg_max(y_, 1))
- accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))
- with tf.Session() as sess:
- sess.run(tf.global_variables_initializer())
- # prepare validation dataset to stop optimization
- validation_feed = {x: mnist.validation.images,
- y_: mnist.validation.labels}
- # define test dataset for final evaluation
- test_feed = {x: mnist.test.images,
- y_: mnist.test.labels}
- validation_result = range(TRAINING_STEPS / 1000)
- test_result = range(TRAINING_STEPS / 1000)
- for i in range(TRAINING_STEPS):
- if i % 1000 == 0:
- validate_acc = sess.run(accuracy, feed_dict=validation_feed)
- validation_result[i / 1000] = validate_acc
- # print "after %d training step(s), validation accuracy using average model is %g " % (i, validate_acc)
- xs, ys = mnist.train.next_batch(BATCH_SIZE)
- sess.run(train_op, feed_dict={x: xs, y_: ys})
- test_acc = sess.run(accuracy, feed_dict=test_feed)
- test_result[i / 1000] = test_acc
- # print "after %d training step(s), test accuracy using average model is %g " % (i, test_acc)
- print validation_result
- print test_result
- saver = tf.train.Saver()
- saver.export_meta_graph("model.ckpt.meda.json", as_text=True)
- dispImg(validation_result, test_result, "with EMA")
- # img_vector = mnist.train.images[5]
- # img_length = int(np.sqrt(INPUT_NODE))
- # img = np.ndarray([img_length, img_length])
- # # print "image size: ", img_length, "*", img_length
- # for c in range(INPUT_NODE):
- # # print "image indices: ", c / img_length, "*", c % img_length
- # img[c / img_length][c % img_length] = img_vector[c]
- # plt.figure(num=2, figsize=(15, 8))
- # plt.imshow(img)
- plt.show()
- def dispImg(validation_result, test_result, filename):
- # draw a graph of accuracy using matplotlib
- iteration_count = range(0, TRAINING_STEPS, 1000)
- plt.figure(num=1, figsize=(15, 8))
- plt.title("Plot accuracy", size=20)
- plt.xlabel("iteration count", size=14)
- plt.ylabel("accuracy/%", size=14)
- validation_note = [TRAINING_STEPS - 1000, validation_result[TRAINING_STEPS / 1000 - 1]]
- test_note = [TRAINING_STEPS - 1000, test_result[TRAINING_STEPS / 1000 - 1]]
- plt.annotate('validate-' + str(validation_note), xy=(test_note[0], test_note[1]),
- xytext=(test_note[0] - 1000, test_note[1] - 0.1), arrowprops=dict(facecolor='black', shrink=0.05))
- plt.annotate('test-' + str(test_note), xy=(test_note[0], test_note[1]),
- xytext=(test_note[0] + 1000, test_note[1] - 0.07), arrowprops=dict(facecolor='black', shrink=0.05))
- plt.grid(True)
- plt.plot(iteration_count, validation_result, color='b', linestyle='-', marker='o', label='validation data')
- plt.plot(iteration_count, test_result, linestyle='-.', marker='X', label='test data')
- plt.legend(loc="upper left")
- try:
- os.mkdir('images/')
- except:
- print("directory already exist")
- plt.savefig('images/%s.png' % filename, format='png')
- def main(argv=None):
- mnist = input_data.read_data_sets("../MNIST_data", one_hot=True)
- print "basic information of mnist dataset"
- print "mnist training data size: ", mnist.train.num_examples
- print "mnist validating data size: ", mnist.validation.num_examples
- print "mnist testing data size: ", mnist.test.num_examples
- train(mnist)
- if __name__ == '__main__':
- tf.app.run()
|