123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103 |
- # -*- coding: utf8 -*-
- import tensorflow as tf
- # define basic params
- INPUT_NODE = 784
- OUTPUT_NODE = 10
- IMAGE_SIZE = 28
- NUM_CHANNELS = 1
- NUM_LABELS = 10
- CONV1_DEPTH = 6
- CONV1_SIZE = 5
- CONV2_DEPTH = 16
- CONV2_SIZE = 5
- FC_SIZE = 84
- def variable_summaries(var, name):
- with tf.name_scope('summaries'):
- tf.summary.histogram(name, var)
- # calc mean
- mean = tf.reduce_mean(var)
- tf.summary.scalar('mean/' + name, mean)
- # calc standard deviation
- stddev = tf.sqrt(tf.reduce_mean(tf.square(var - mean)))
- tf.summary.scalar('stddev/' + name, stddev)
- def inference(input_tensor, train, regularizer):
- # print(input_tensor.get_shape())
- # define layer1 forward propagation
- with tf.variable_scope('layer1-conv1'):
- conv1_weights = tf.get_variable(
- "weight", [CONV1_SIZE, CONV1_SIZE, NUM_CHANNELS, CONV1_DEPTH],
- initializer=tf.truncated_normal_initializer(stddev=0.1)
- )
- conv1_biases = tf.get_variable("bias", [CONV1_DEPTH], initializer=tf.constant_initializer(0.0))
- # strides 中间两项表示长宽方向步长1
- conv1 = tf.nn.conv2d(input_tensor, conv1_weights, strides=[1, 1, 1, 1], padding='SAME')
- relu1 = tf.nn.relu(tf.nn.bias_add(conv1, conv1_biases))
- variable_summaries(conv1_weights, 'layer1-conv1' + '/weights')
- variable_summaries(conv1_biases, 'layer1-conv1' + '/biases')
- # define layer2 forward propagation, max pooling, size 2*2, step 2*2, all 0 filling
- with tf.variable_scope('layer2-pool1'):
- pool1 = tf.nn.max_pool(relu1, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding='SAME')
- # print(pool1.get_shape())
- with tf.variable_scope('layer3-conv2'):
- conv2_weights = tf.get_variable(
- "weight", [CONV2_SIZE, CONV2_SIZE, CONV1_DEPTH, CONV2_DEPTH],
- initializer=tf.truncated_normal_initializer(stddev=0.1)
- )
- conv2_biases = tf.get_variable("bias", [CONV2_DEPTH], initializer=tf.constant_initializer(0.0))
- # size 5*5, depth 64, step 1, all 0 filling
- conv2 = tf.nn.conv2d(pool1, conv2_weights, strides=[1, 1, 1, 1], padding='SAME')
- relu2 = tf.nn.relu(tf.nn.bias_add(conv2, conv2_biases))
- variable_summaries(conv2_weights, 'layer3-conv2' + '/weights')
- variable_summaries(conv2_biases, 'layer3-conv2' + '/biases')
- with tf.variable_scope('layer4-poll2'):
- pool2 = tf.nn.max_pool(relu2, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding='SAME')
- # print(pool2.get_shape())
- # pool_shape[0] means the num of data from a batch, get_shape->[num, width, height, depth]
- pool_shape = pool2.get_shape().as_list()
- nodes = pool_shape[1] * pool_shape[2] * pool_shape[3]
- reshaped = tf.reshape(pool2, [tf.shape(pool2)[0], nodes])
- # print(reshaped.get_shape())
- with tf.variable_scope('layer5-fc1'):
- fc1_weights = tf.get_variable(
- 'weights',
- [nodes, FC_SIZE],
- initializer=tf.truncated_normal_initializer(stddev=0.1)
- )
- # fc layer regularize
- if regularizer is not None:
- tf.add_to_collection('losses', regularizer(fc1_weights))
- fc1_biases = tf.get_variable('bias', [FC_SIZE], initializer=tf.constant_initializer(0.1))
- fc1 = tf.nn.relu(tf.matmul(reshaped, fc1_weights) + fc1_biases)
- if train:
- fc1 = tf.nn.dropout(fc1, 0.5)
- variable_summaries(fc1_weights, 'layer5-fc1' + '/weights')
- variable_summaries(fc1_biases, 'layer5-fc1' + '/biases')
- with tf.variable_scope('layer6-fc2'):
- fc2_weight = tf.get_variable(
- 'weight',
- [FC_SIZE, NUM_LABELS],
- initializer=tf.truncated_normal_initializer(stddev=0.1)
- )
- if regularizer is not None:
- tf.add_to_collection('losses', regularizer(fc2_weight))
- fc2_biases = tf.get_variable('bias', [NUM_LABELS], initializer=tf.constant_initializer(0.1))
- logit = tf.matmul(fc1, fc2_weight) + fc2_biases
- variable_summaries(fc2_weight, 'layer6-fc2' + '/weights')
- variable_summaries(fc2_biases, 'layer6-fc2' + '/biases')
- return logit
|