12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182 |
- # -*- coding: utf8 -*-
- import tensorflow as tf
- # define basic params
- INPUT_NODE = 784
- OUTPUT_NODE = 10
- IMAGE_SIZE = 28
- NUM_CHANNELS = 1
- NUM_LABELS = 10
- CONV1_DEPTH = 6
- CONV1_SIZE = 5
- CONV2_DEPTH = 16
- CONV2_SIZE = 5
- FC_SIZE = 84
- def inference(input_tensor, train, regularizer):
- # define layer1 forward propagation
- with tf.variable_scope('layer1-conv1'):
- conv1_weights = tf.get_variable(
- "weight", [CONV1_SIZE, CONV1_SIZE, NUM_CHANNELS, CONV1_DEPTH],
- initializer=tf.truncated_normal_initializer(stddev=0.1)
- )
- conv1_biases = tf.get_variable("bias", [CONV1_DEPTH], initializer=tf.constant_initializer(0.0))
- # strides 中间两项表示长宽方向步长1
- conv1 = tf.nn.conv2d(input_tensor, conv1_weights, strides=[1, 1, 1, 1], padding='SAME')
- relu1 = tf.nn.relu(tf.nn.bias_add(conv1, conv1_biases))
- # define layer2 forward propagation, max pooling, size 2*2, step 2*2, all 0 filling
- with tf.variable_scope('layer2-pool1'):
- pool1 = tf.nn.max_pool(relu1, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding='SAME')
- with tf.variable_scope('layer3-conv2'):
- conv2_weights = tf.get_variable(
- "weight", [CONV2_SIZE, CONV2_SIZE, CONV1_DEPTH, CONV2_DEPTH],
- initializer=tf.truncated_normal_initializer(stddev=0.1)
- )
- conv2_biases = tf.get_variable("bias", [CONV2_DEPTH], initializer=tf.constant_initializer(0.0))
- # size 5*5, depth 64, step 1, all 0 filling
- conv2 = tf.nn.conv2d(pool1, conv2_weights, strides=[1, 1, 1, 1, ], padding='SAME')
- relu2 = tf.nn.relu(tf.nn.bias_add(conv2, conv2_biases))
- with tf.variable_scope('layer4-poll2'):
- pool2 = tf.nn.max_pool(relu2, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding='SAME')
- # pool_shape[0] means the num of data from a batch, get_shape->[num, width, height, depth]
- pool_shape = pool2.get_shape().as_list()
- nodes = pool_shape[1] * pool_shape[2] * pool_shape[3]
- reshaped = tf.reshape(pool2, [pool_shape[0], nodes])
- with tf.variable_scope('layer5-fc1'):
- fc1_weights = tf.get_variable(
- 'weights',
- [nodes, FC_SIZE],
- initializer=tf.truncated_normal_initializer(stddev=0.1)
- )
- # fc layer regularize
- if regularizer is not None:
- tf.add_to_collection('losses', regularizer(fc1_weights))
- fc1_biases = tf.get_variable('bias', [FC_SIZE], initializer=tf.constant_initializer(0.1))
- fc1 = tf.nn.relu(tf.matmul(reshaped, fc1_weights) + fc1_biases)
- if train:
- fc1 = tf.nn.dropout(fc1, 0.5)
- with tf.variable_scope('layer6-fc2'):
- fc2_weight = tf.get_variable(
- 'weight',
- [FC_SIZE, NUM_LABELS],
- initializer=tf.truncated_normal_initializer(stddev=0.1)
- )
- if regularizer is not None:
- tf.add_to_collection('losses', regularizer(fc2_weight))
- fc2_biases = tf.get_variable('bias', [NUM_LABELS], initializer=tf.constant_initializer(0.1))
- logit = tf.matmul(fc1, fc2_weight)+fc2_biases
- return logit
|