import tensorflow as tf from numpy.random import RandomState # define the size of a batch batch_size=4 # define coefficient matrices w1 = tf.Variable(tf.random_normal([2, 3], stddev=1, seed=1)) w2 = tf.Variable(tf.random_normal([3, 1], stddev=1, seed=1)) # define place for input and output, use param 'None' in shape can make the placeholder more flexible x = tf.placeholder(tf.float32, shape=[None, 2], name="x-input") y_ = tf.placeholder(tf.float32, shape=[None, 1], name="y-input") # forward propagation a = tf.matmul(x, w1) y = tf.matmul(a, w2) # define loss function ( sigmoid : 1/1+exp(-x) ), cross_entropy and train_step y = tf.sigmoid(y) cross_entropy=-tf.reduce_mean( y_ * tf.log(tf.clip_by_value(y, 1e-10, 1.0)) + (1-y)*tf.log(tf.clip_by_value(1-y, 1e-10, 1.0))) train_step = tf.train.AdamOptimizer().minimize(cross_entropy) # create a simulated dataset with a random number generator rdm = RandomState(1) dataset_size = 1280 X = rdm.rand(dataset_size, 2) Y = [[int(x1+x2<1)] for (x1, x2) in X] with tf.Session() as sess: sess.run(tf.global_variables_initializer()) print w1.eval(session=sess) print sess.run(w2) # writer = tf.summary.FileWriter("logs", tf.get_default_graph()) # set the number of iteration STEPS = 50000 for i in range(STEPS): start = (i * batch_size) % dataset_size end = min(start+ batch_size, dataset_size) sess.run(train_step, feed_dict={x: X[start: end], y_: Y[start: end]}) if i%1000==0: # calculate cross entropy with some interval total_cross_entropy = sess.run(cross_entropy, feed_dict={x: X, y_: Y}) print ("after %d training step(s), cross entropy on all data is %g." % (i, total_cross_entropy)) # tf.summary.histogram("iteration-w1", w1) # tf.summary.histogram("iteration-w2", w2) print sess.run(w1) print sess.run(w2) # writer.close()