import tensorflow as tf # define two variables w1 and w2 as weight matrices, use seed to guarantee we get constant result. w1 = tf.Variable(tf.random_normal([2, 3], stddev=1, seed=1)) w2 = tf.Variable(tf.random_normal([3, 1], stddev=1, seed=1)) # define input eigenvector as a constant vector # x = tf.constant([[0.7, 0.9]]) # use placeholder to store data in a constant place rather than create a large number of variables x = tf.placeholder(tf.float32, shape=[3, 2], name="input") # forward propagation to receive the output a = tf.matmul(x, w1) y = tf.matmul(a, w2) with tf.Session() as sess: # sess.run(w1.initializer) # sess.run(w2.initializer) sess.run(tf.global_variables_initializer()) print (sess.run(y, feed_dict={x: [[0.7, 0.9], [0.1, 0.4], [0.5, 0.8]]})) saver = tf.train.Saver() saver.export_meta_graph("model.ckpt.meda.json", as_text=True)