|
@@ -0,0 +1,32 @@
|
|
|
+import tensorflow as tf
|
|
|
+
|
|
|
+g1 = tf.Graph()
|
|
|
+with g1.as_default():
|
|
|
+ v = tf.get_variable(
|
|
|
+ "v", initializer=tf.zeros_initializer()(shape=[1])
|
|
|
+ )
|
|
|
+
|
|
|
+g2 = tf.Graph()
|
|
|
+with g2.as_default():
|
|
|
+ v = tf.get_variable(
|
|
|
+ "v", initializer=tf.ones_initializer()(shape=[1])
|
|
|
+ )
|
|
|
+
|
|
|
+with tf.Session(graph=g1) as sess:
|
|
|
+ tf.global_variables_initializer().run()
|
|
|
+ with tf.variable_scope("", reuse=True):
|
|
|
+ print(sess.run(tf.get_variable("v")))
|
|
|
+
|
|
|
+with tf.Session(graph=g2) as sess:
|
|
|
+ tf.global_variables_initializer().run()
|
|
|
+ with tf.variable_scope("", reuse=True):
|
|
|
+ print(sess.run(tf.get_variable("v")))
|
|
|
+
|
|
|
+# gpu acceleration
|
|
|
+a = tf.constant([1.0, 3.0], name="a")
|
|
|
+b = tf.constant([3.0, 6.0], name="b")
|
|
|
+g = tf.Graph()
|
|
|
+with g.device('/gpu:0'):
|
|
|
+ result = a+b
|
|
|
+ sess = tf.Session()
|
|
|
+ print (sess.run(result))
|