123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319 |
- //
- // Created by ubuntu on 3/16/23.
- //
- #include "yolov8-seg.h"
- using namespace seg;
- YOLOv8_seg::YOLOv8_seg(const std::string& engine_file_path)
- {
- std::ifstream file(engine_file_path, std::ios::binary);
- assert(file.good());
- file.seekg(0, std::ios::end);
- auto size = file.tellg();
- file.seekg(0, std::ios::beg);
- char* trtModelStream = new char[size];
- assert(trtModelStream);
- file.read(trtModelStream, size);
- file.close();
- initLibNvInferPlugins(&this->gLogger, "");
- this->runtime = nvinfer1::createInferRuntime(this->gLogger);
- assert(this->runtime != nullptr);
- this->engine = this->runtime->deserializeCudaEngine(trtModelStream, size);
- assert(this->engine != nullptr);
- delete[] trtModelStream;
- this->context = this->engine->createExecutionContext();
- assert(this->context != nullptr);
- cudaStreamCreate(&this->stream);
- this->num_bindings = this->engine->getNbBindings();
- for (int i = 0; i < this->num_bindings; ++i) {
- Binding binding;
- nvinfer1::Dims dims;
- nvinfer1::DataType dtype = this->engine->getBindingDataType(i);
- std::string name = this->engine->getBindingName(i);
- binding.name = name;
- binding.dsize = type_to_size(dtype);
- bool IsInput = engine->bindingIsInput(i);
- if (IsInput) {
- this->num_inputs += 1;
- dims = this->engine->getProfileDimensions(i, 0, nvinfer1::OptProfileSelector::kMAX);
- binding.size = get_size_by_dims(dims);
- binding.dims = dims;
- this->input_bindings.push_back(binding);
- // set max opt shape
- this->context->setBindingDimensions(i, dims);
- }
- else {
- dims = this->context->getBindingDimensions(i);
- binding.size = get_size_by_dims(dims);
- binding.dims = dims;
- this->output_bindings.push_back(binding);
- this->num_outputs += 1;
- }
- // printf("name: %s, size: %ld, dims: %d %d %d %d %d\n",
- // name.c_str(), binding.dsize, dims.nbDims, dims.d[0], dims.d[1], dims.d[2], dims.d[3]);
- }
- }
- YOLOv8_seg::~YOLOv8_seg()
- {
- this->context->destroy();
- this->engine->destroy();
- this->runtime->destroy();
- cudaStreamDestroy(this->stream);
- for (auto& ptr : this->device_ptrs) {
- CHECK(cudaFree(ptr));
- }
- for (auto& ptr : this->host_ptrs) {
- CHECK(cudaFreeHost(ptr));
- }
- }
- void YOLOv8_seg::make_pipe(bool warmup)
- {
- for (auto& bindings : this->input_bindings) {
- void* d_ptr;
- CHECK(cudaMalloc(&d_ptr, bindings.size * bindings.dsize));
- this->device_ptrs.push_back(d_ptr);
- }
- for (auto& bindings : this->output_bindings) {
- void * d_ptr, *h_ptr;
- size_t size = bindings.size * bindings.dsize;
- CHECK(cudaMalloc(&d_ptr, size));
- CHECK(cudaHostAlloc(&h_ptr, size, 0));
- this->device_ptrs.push_back(d_ptr);
- this->host_ptrs.push_back(h_ptr);
- }
- if (warmup) {
- for (int i = 0; i < 10; i++) {
- for (auto& bindings : this->input_bindings) {
- size_t size = bindings.size * bindings.dsize;
- void* h_ptr = malloc(size);
- memset(h_ptr, 0, size);
- CHECK(cudaMemcpyAsync(this->device_ptrs[0], h_ptr, size, cudaMemcpyHostToDevice, this->stream));
- free(h_ptr);
- }
- this->infer();
- }
- printf("model warmup 10 times\n");
- }
- }
- void YOLOv8_seg::letterbox(const cv::Mat& image, cv::Mat& out, cv::Size& size)
- {
- const float inp_h = size.height;
- const float inp_w = size.width;
- float height = image.rows;
- float width = image.cols;
- float r = std::min(inp_h / height, inp_w / width);
- int padw = std::round(width * r);
- int padh = std::round(height * r);
- cv::Mat tmp;
- if ((int)width != padw || (int)height != padh) {
- cv::resize(image, tmp, cv::Size(padw, padh));
- }
- else {
- tmp = image.clone();
- }
- float dw = inp_w - padw;
- float dh = inp_h - padh;
- dw /= 2.0f;
- dh /= 2.0f;
- int top = int(std::round(dh - 0.1f));
- int bottom = int(std::round(dh + 0.1f));
- int left = int(std::round(dw - 0.1f));
- int right = int(std::round(dw + 0.1f));
- cv::copyMakeBorder(tmp, tmp, top, bottom, left, right, cv::BORDER_CONSTANT, {114, 114, 114});
- cv::dnn::blobFromImage(tmp, out, 1 / 255.f, cv::Size(), cv::Scalar(0, 0, 0), true, false, CV_32F);
- this->pparam.ratio = 1 / r;
- this->pparam.dw = dw;
- this->pparam.dh = dh;
- this->pparam.height = height;
- this->pparam.width = width;
- }
- void YOLOv8_seg::copy_from_Mat(const cv::Mat& image)
- {
- cv::Mat nchw;
- auto& in_binding = this->input_bindings[0];
- auto width = in_binding.dims.d[3];
- auto height = in_binding.dims.d[2];
- cv::Size size{width, height};
- this->letterbox(image, nchw, size);
- this->context->setBindingDimensions(0, nvinfer1::Dims{4, {1, 3, height, width}});
- CHECK(cudaMemcpyAsync(
- this->device_ptrs[0], nchw.ptr<float>(), nchw.total() * nchw.elemSize(), cudaMemcpyHostToDevice, this->stream));
- }
- void YOLOv8_seg::copy_from_Mat(const cv::Mat& image, cv::Size& size)
- {
- cv::Mat nchw;
- this->letterbox(image, nchw, size);
- this->context->setBindingDimensions(0, nvinfer1::Dims{4, {1, 3, size.height, size.width}});
- CHECK(cudaMemcpyAsync(
- this->device_ptrs[0], nchw.ptr<float>(), nchw.total() * nchw.elemSize(), cudaMemcpyHostToDevice, this->stream));
- }
- void YOLOv8_seg::infer()
- {
- this->context->enqueueV2(this->device_ptrs.data(), this->stream, nullptr);
- for (int i = 0; i < this->num_outputs; i++) {
- size_t osize = this->output_bindings[i].size * this->output_bindings[i].dsize;
- CHECK(cudaMemcpyAsync(
- this->host_ptrs[i], this->device_ptrs[i + this->num_inputs], osize, cudaMemcpyDeviceToHost, this->stream));
- }
- cudaStreamSynchronize(this->stream);
- }
- void YOLOv8_seg::postprocess(
- std::vector<Object>& objs, float score_thres, float iou_thres, int topk, int seg_channels, int seg_h, int seg_w)
- {
- objs.clear();
- auto input_h = this->input_bindings[0].dims.d[2];
- auto input_w = this->input_bindings[0].dims.d[3];
- auto num_anchors = this->output_bindings[0].dims.d[1];
- auto num_channels = this->output_bindings[0].dims.d[2];
- auto& dw = this->pparam.dw;
- auto& dh = this->pparam.dh;
- auto& width = this->pparam.width;
- auto& height = this->pparam.height;
- auto& ratio = this->pparam.ratio;
- auto* output = static_cast<float*>(this->host_ptrs[0]);
- cv::Mat protos = cv::Mat(seg_channels, seg_h * seg_w, CV_32F, static_cast<float*>(this->host_ptrs[1]));
- std::vector<int> labels;
- std::vector<float> scores;
- std::vector<cv::Rect> bboxes;
- std::vector<cv::Mat> mask_confs;
- std::vector<int> indices;
- for (int i = 0; i < num_anchors; i++) {
- float* ptr = output + i * num_channels;
- float score = *(ptr + 4);
-
- /*if (score > score_thres) {
- printf("num_channels: %d, score: %f\n", num_channels, score);
- }*/
-
- if (score > score_thres) {
- float x0 = *ptr++ - dw;
- float y0 = *ptr++ - dh;
- float x1 = *ptr++ - dw;
- float y1 = *ptr++ - dh;
- x0 = clamp(x0 * ratio, 0.f, width);
- y0 = clamp(y0 * ratio, 0.f, height);
- x1 = clamp(x1 * ratio, 0.f, width);
- y1 = clamp(y1 * ratio, 0.f, height);
- int label = *(++ptr);
- cv::Mat mask_conf = cv::Mat(1, seg_channels, CV_32F, ++ptr);
- mask_confs.push_back(mask_conf);
- labels.push_back(label);
- scores.push_back(score);
- bboxes.push_back(cv::Rect_<float>(x0, y0, x1 - x0, y1 - y0));
- }
- }
- #if defined(BATCHED_NMS)
- cv::dnn::NMSBoxesBatched(bboxes, scores, labels, score_thres, iou_thres, indices);
- #else
- cv::dnn::NMSBoxes(bboxes, scores, score_thres, iou_thres, indices);
- #endif
- cv::Mat masks;
- int cnt = 0;
- for (auto& i : indices) {
- if (cnt >= topk) {
- break;
- }
- cv::Rect tmp = bboxes[i];
- Object obj;
- obj.label = labels[i];
- obj.rect = tmp;
- obj.prob = scores[i];
- masks.push_back(mask_confs[i]);
- objs.push_back(obj);
- cnt += 1;
- }
- if (masks.empty()) {
- // masks is empty
- }
- else {
- cv::Mat matmulRes = (masks * protos).t();
- cv::Mat maskMat = matmulRes.reshape(indices.size(), {seg_h, seg_w});
- std::vector<cv::Mat> maskChannels;
- cv::split(maskMat, maskChannels);
- int scale_dw = dw / input_w * seg_w;
- int scale_dh = dh / input_h * seg_h;
- cv::Rect roi(scale_dw, scale_dh, seg_w - 2 * scale_dw, seg_h - 2 * scale_dh);
- for (int i = 0; i < indices.size(); i++) {
- cv::Mat dest, mask;
- cv::exp(-maskChannels[i], dest);
- dest = 1.0 / (1.0 + dest);
- dest = dest(roi);
- cv::resize(dest, mask, cv::Size((int)width, (int)height), cv::INTER_LINEAR);
- objs[i].boxMask = mask(objs[i].rect) > 0.5f;
- }
- }
- }
- void YOLOv8_seg::draw_objects(const cv::Mat& image,
- cv::Mat& res,
- const std::vector<Object>& objs,
- const std::vector<std::string>& CLASS_NAMES,
- const std::vector<std::vector<unsigned int>>& COLORS,
- const std::vector<std::vector<unsigned int>>& MASK_COLORS)
- {
- res = image.clone();
- cv::Mat mask = image.clone();
- for (auto& obj : objs) {
- int idx = obj.label;
- cv::Scalar color = cv::Scalar(COLORS[idx][0], COLORS[idx][1], COLORS[idx][2]);
- cv::Scalar mask_color =
- cv::Scalar(MASK_COLORS[idx % 20][0], MASK_COLORS[idx % 20][1], MASK_COLORS[idx % 20][2]);
- cv::rectangle(res, obj.rect, color, 2);
- char text[256];
- sprintf(text, "%s %.1f%%", CLASS_NAMES[idx].c_str(), obj.prob * 100);
- mask(obj.rect).setTo(mask_color, obj.boxMask);
- int baseLine = 0;
- cv::Size label_size = cv::getTextSize(text, cv::FONT_HERSHEY_SIMPLEX, 0.4, 1, &baseLine);
- int x = (int)obj.rect.x;
- int y = (int)obj.rect.y + 1;
- if (y > res.rows)
- y = res.rows;
- cv::rectangle(res, cv::Rect(x, y, label_size.width, label_size.height + baseLine), {0, 0, 255}, -1);
- cv::putText(res, text, cv::Point(x, y + label_size.height), cv::FONT_HERSHEY_SIMPLEX, 0.4, {255, 255, 255}, 1);
- }
- cv::addWeighted(res, 0.5, mask, 0.8, 1, res);
- }
|