123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200 |
- #include "opencv2/core.hpp"
- #include "opencv2/core/ocl.hpp"
- #include "opencv2/core/utility.hpp"
- #include "opencv2/imgproc.hpp"
- #include "opencv2/imgcodecs.hpp"
- #include "opencv2/highgui.hpp"
- #include <iostream>
- using namespace cv;
- using namespace std;
- int thresh = 50, N = 11;
- const char* wndname = "Square Detection Demo";
- // helper function:
- // finds a cosine of angle between vectors
- // from pt0->pt1 and from pt0->pt2
- static double angle( Point pt1, Point pt2, Point pt0 )
- {
- double dx1 = pt1.x - pt0.x;
- double dy1 = pt1.y - pt0.y;
- double dx2 = pt2.x - pt0.x;
- double dy2 = pt2.y - pt0.y;
- return (dx1*dx2 + dy1*dy2)/sqrt((dx1*dx1 + dy1*dy1)*(dx2*dx2 + dy2*dy2) + 1e-10);
- }
- // returns sequence of squares detected on the image.
- static void findSquares( const UMat& image, vector<vector<Point> >& squares )
- {
- squares.clear();
- UMat pyr, timg, gray0(image.size(), CV_8U), gray;
- // down-scale and upscale the image to filter out the noise
- pyrDown(image, pyr, Size(image.cols/2, image.rows/2));
- pyrUp(pyr, timg, image.size());
- vector<vector<Point> > contours;
- // find squares in every color plane of the image
- for( int c = 0; c < 3; c++ )
- {
- int ch[] = {c, 0};
- mixChannels(timg, gray0, ch, 1);
- // try several threshold levels
- for( int l = 0; l < N; l++ )
- {
- // hack: use Canny instead of zero threshold level.
- // Canny helps to catch squares with gradient shading
- if( l == 0 )
- {
- // apply Canny. Take the upper threshold from slider
- // and set the lower to 0 (which forces edges merging)
- Canny(gray0, gray, 0, thresh, 5);
- // dilate canny output to remove potential
- // holes between edge segments
- dilate(gray, gray, UMat(), Point(-1,-1));
- }
- else
- {
- // apply threshold if l!=0:
- // tgray(x,y) = gray(x,y) < (l+1)*255/N ? 255 : 0
- threshold(gray0, gray, (l+1)*255/N, 255, THRESH_BINARY);
- }
- // find contours and store them all as a list
- findContours(gray, contours, RETR_LIST, CHAIN_APPROX_SIMPLE);
- vector<Point> approx;
- // test each contour
- for( size_t i = 0; i < contours.size(); i++ )
- {
- // approximate contour with accuracy proportional
- // to the contour perimeter
- approxPolyDP(contours[i], approx, arcLength(contours[i], true)*0.02, true);
- // square contours should have 4 vertices after approximation
- // relatively large area (to filter out noisy contours)
- // and be convex.
- // Note: absolute value of an area is used because
- // area may be positive or negative - in accordance with the
- // contour orientation
- if( approx.size() == 4 &&
- fabs(contourArea(approx)) > 1000 &&
- isContourConvex(approx) )
- {
- double maxCosine = 0;
- for( int j = 2; j < 5; j++ )
- {
- // find the maximum cosine of the angle between joint edges
- double cosine = fabs(angle(approx[j%4], approx[j-2], approx[j-1]));
- maxCosine = MAX(maxCosine, cosine);
- }
- // if cosines of all angles are small
- // (all angles are ~90 degree) then write quandrange
- // vertices to resultant sequence
- if( maxCosine < 0.3 )
- squares.push_back(approx);
- }
- }
- }
- }
- }
- // the function draws all the squares in the image
- static void drawSquares( UMat& _image, const vector<vector<Point> >& squares )
- {
- Mat image = _image.getMat(ACCESS_WRITE);
- for( size_t i = 0; i < squares.size(); i++ )
- {
- const Point* p = &squares[i][0];
- int n = (int)squares[i].size();
- polylines(image, &p, &n, 1, true, Scalar(0,255,0), 3, LINE_AA);
- }
- }
- // draw both pure-C++ and ocl square results onto a single image
- static UMat drawSquaresBoth( const UMat& image,
- const vector<vector<Point> >& sqs)
- {
- UMat imgToShow(Size(image.cols, image.rows), image.type());
- image.copyTo(imgToShow);
- drawSquares(imgToShow, sqs);
- return imgToShow;
- }
- int main(int argc, char** argv)
- {
- const char* keys =
- "{ i input | ../data/pic1.png | specify input image }"
- "{ o output | squares_output.jpg | specify output save path}"
- "{ h help | | print help message }"
- "{ m cpu_mode | | run without OpenCL }";
- CommandLineParser cmd(argc, argv, keys);
- if(cmd.has("help"))
- {
- cout << "Usage : " << argv[0] << " [options]" << endl;
- cout << "Available options:" << endl;
- cmd.printMessage();
- return EXIT_SUCCESS;
- }
- if (cmd.has("cpu_mode"))
- {
- ocl::setUseOpenCL(false);
- cout << "OpenCL was disabled" << endl;
- }
- string inputName = samples::findFile(cmd.get<string>("i"));
- string outfile = cmd.get<string>("o");
- int iterations = 10;
- namedWindow( wndname, WINDOW_AUTOSIZE );
- vector<vector<Point> > squares;
- UMat image;
- imread(inputName, IMREAD_COLOR).copyTo(image);
- if( image.empty() )
- {
- cout << "Couldn't load " << inputName << endl;
- cmd.printMessage();
- return EXIT_FAILURE;
- }
- int j = iterations;
- int64 t_cpp = 0;
- //warm-ups
- cout << "warming up ..." << endl;
- findSquares(image, squares);
- do
- {
- int64 t_start = getTickCount();
- findSquares(image, squares);
- t_cpp += cv::getTickCount() - t_start;
- t_start = getTickCount();
- cout << "run loop: " << j << endl;
- }
- while(--j);
- cout << "average time: " << 1000.0f * (double)t_cpp / getTickFrequency() / iterations << "ms" << endl;
- UMat result = drawSquaresBoth(image, squares);
- imshow(wndname, result);
- imwrite(outfile, result);
- waitKey(0);
- return EXIT_SUCCESS;
- }
|