123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177 |
- /*
- Text detection model: https://github.com/argman/EAST
- Download link: https://www.dropbox.com/s/r2ingd0l3zt8hxs/frozen_east_text_detection.tar.gz?dl=1
- Text recognition models can be downloaded directly here:
- Download link: https://drive.google.com/drive/folders/1cTbQ3nuZG-EKWak6emD_s8_hHXWz7lAr?usp=sharing
- and doc/tutorials/dnn/dnn_text_spotting/dnn_text_spotting.markdown
- How to convert from pb to onnx:
- Using classes from here: https://github.com/meijieru/crnn.pytorch/blob/master/models/crnn.py
- import torch
- from models.crnn import CRNN
- model = CRNN(32, 1, 37, 256)
- model.load_state_dict(torch.load('crnn.pth'))
- dummy_input = torch.randn(1, 1, 32, 100)
- torch.onnx.export(model, dummy_input, "crnn.onnx", verbose=True)
- For more information, please refer to doc/tutorials/dnn/dnn_text_spotting/dnn_text_spotting.markdown and doc/tutorials/dnn/dnn_OCR/dnn_OCR.markdown
- */
- #include <iostream>
- #include <fstream>
- #include <opencv2/imgproc.hpp>
- #include <opencv2/highgui.hpp>
- #include <opencv2/dnn.hpp>
- using namespace cv;
- using namespace cv::dnn;
- const char* keys =
- "{ help h | | Print help message. }"
- "{ input i | | Path to input image or video file. Skip this argument to capture frames from a camera.}"
- "{ detModel dmp | | Path to a binary .pb file contains trained detector network.}"
- "{ width | 320 | Preprocess input image by resizing to a specific width. It should be multiple by 32. }"
- "{ height | 320 | Preprocess input image by resizing to a specific height. It should be multiple by 32. }"
- "{ thr | 0.5 | Confidence threshold. }"
- "{ nms | 0.4 | Non-maximum suppression threshold. }"
- "{ recModel rmp | | Path to a binary .onnx file contains trained CRNN text recognition model. "
- "Download links are provided in doc/tutorials/dnn/dnn_text_spotting/dnn_text_spotting.markdown}"
- "{ RGBInput rgb |0| 0: imread with flags=IMREAD_GRAYSCALE; 1: imread with flags=IMREAD_COLOR. }"
- "{ vocabularyPath vp | alphabet_36.txt | Path to benchmarks for evaluation. "
- "Download links are provided in doc/tutorials/dnn/dnn_text_spotting/dnn_text_spotting.markdown}";
- void fourPointsTransform(const Mat& frame, const Point2f vertices[], Mat& result);
- int main(int argc, char** argv)
- {
- // Parse command line arguments.
- CommandLineParser parser(argc, argv, keys);
- parser.about("Use this script to run TensorFlow implementation (https://github.com/argman/EAST) of "
- "EAST: An Efficient and Accurate Scene Text Detector (https://arxiv.org/abs/1704.03155v2)");
- if (argc == 1 || parser.has("help"))
- {
- parser.printMessage();
- return 0;
- }
- float confThreshold = parser.get<float>("thr");
- float nmsThreshold = parser.get<float>("nms");
- int width = parser.get<int>("width");
- int height = parser.get<int>("height");
- int imreadRGB = parser.get<int>("RGBInput");
- String detModelPath = parser.get<String>("detModel");
- String recModelPath = parser.get<String>("recModel");
- String vocPath = parser.get<String>("vocabularyPath");
- if (!parser.check())
- {
- parser.printErrors();
- return 1;
- }
- // Load networks.
- CV_Assert(!detModelPath.empty() && !recModelPath.empty());
- TextDetectionModel_EAST detector(detModelPath);
- detector.setConfidenceThreshold(confThreshold)
- .setNMSThreshold(nmsThreshold);
- TextRecognitionModel recognizer(recModelPath);
- // Load vocabulary
- CV_Assert(!vocPath.empty());
- std::ifstream vocFile;
- vocFile.open(samples::findFile(vocPath));
- CV_Assert(vocFile.is_open());
- String vocLine;
- std::vector<String> vocabulary;
- while (std::getline(vocFile, vocLine)) {
- vocabulary.push_back(vocLine);
- }
- recognizer.setVocabulary(vocabulary);
- recognizer.setDecodeType("CTC-greedy");
- // Parameters for Recognition
- double recScale = 1.0 / 127.5;
- Scalar recMean = Scalar(127.5, 127.5, 127.5);
- Size recInputSize = Size(100, 32);
- recognizer.setInputParams(recScale, recInputSize, recMean);
- // Parameters for Detection
- double detScale = 1.0;
- Size detInputSize = Size(width, height);
- Scalar detMean = Scalar(123.68, 116.78, 103.94);
- bool swapRB = true;
- detector.setInputParams(detScale, detInputSize, detMean, swapRB);
- // Open a video file or an image file or a camera stream.
- VideoCapture cap;
- bool openSuccess = parser.has("input") ? cap.open(parser.get<String>("input")) : cap.open(0);
- CV_Assert(openSuccess);
- static const std::string kWinName = "EAST: An Efficient and Accurate Scene Text Detector";
- Mat frame;
- while (waitKey(1) < 0)
- {
- cap >> frame;
- if (frame.empty())
- {
- waitKey();
- break;
- }
- std::cout << frame.size << std::endl;
- // Detection
- std::vector< std::vector<Point> > detResults;
- detector.detect(frame, detResults);
- Mat frame2 = frame.clone();
- if (detResults.size() > 0) {
- // Text Recognition
- Mat recInput;
- if (!imreadRGB) {
- cvtColor(frame, recInput, cv::COLOR_BGR2GRAY);
- } else {
- recInput = frame;
- }
- std::vector< std::vector<Point> > contours;
- for (uint i = 0; i < detResults.size(); i++)
- {
- const auto& quadrangle = detResults[i];
- CV_CheckEQ(quadrangle.size(), (size_t)4, "");
- contours.emplace_back(quadrangle);
- std::vector<Point2f> quadrangle_2f;
- for (int j = 0; j < 4; j++)
- quadrangle_2f.emplace_back(quadrangle[j]);
- Mat cropped;
- fourPointsTransform(recInput, &quadrangle_2f[0], cropped);
- std::string recognitionResult = recognizer.recognize(cropped);
- std::cout << i << ": '" << recognitionResult << "'" << std::endl;
- putText(frame2, recognitionResult, quadrangle[3], FONT_HERSHEY_SIMPLEX, 1.5, Scalar(0, 0, 255), 2);
- }
- polylines(frame2, contours, true, Scalar(0, 255, 0), 2);
- }
- imshow(kWinName, frame2);
- }
- return 0;
- }
- void fourPointsTransform(const Mat& frame, const Point2f vertices[], Mat& result)
- {
- const Size outputSize = Size(100, 32);
- Point2f targetVertices[4] = {
- Point(0, outputSize.height - 1),
- Point(0, 0), Point(outputSize.width - 1, 0),
- Point(outputSize.width - 1, outputSize.height - 1)
- };
- Mat rotationMatrix = getPerspectiveTransform(vertices, targetVertices);
- warpPerspective(frame, result, rotationMatrix, outputSize);
- }
|