123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342 |
- // This file is part of OpenCV project.
- // It is subject to the license terms in the LICENSE file found in the top-level directory
- // of this distribution and at http://opencv.org/license.html
- #include "opencv2/calib3d.hpp"
- #include "opencv2/highgui.hpp"
- #include "opencv2/imgproc.hpp"
- #include <vector>
- #include <iostream>
- #include <fstream>
- using namespace cv;
- static double getError2EpipLines (const Mat &F, const Mat &pts1, const Mat &pts2, const Mat &mask) {
- Mat points1, points2;
- vconcat(pts1, Mat::ones(1, pts1.cols, pts1.type()), points1);
- vconcat(pts2, Mat::ones(1, pts2.cols, pts2.type()), points2);
- double mean_error = 0;
- for (int pt = 0; pt < (int) mask.total(); pt++)
- if (mask.at<uchar>(pt)) {
- const Mat l2 = F * points1.col(pt);
- const Mat l1 = F.t() * points2.col(pt);
- mean_error += (fabs(points1.col(pt).dot(l1)) / sqrt(pow(l1.at<double>(0), 2) + pow(l1.at<double>(1), 2)) +
- fabs(points2.col(pt).dot(l2) / sqrt(pow(l2.at<double>(0), 2) + pow(l2.at<double>(1), 2)))) / 2;
- }
- return mean_error / mask.total();
- }
- static int sgn(double val) { return (0 < val) - (val < 0); }
- /*
- * @points3d - vector of Point3 or Mat of size Nx3
- * @planes - vector of found planes
- * @labels - vector of size point3d. Every point which has non-zero label is classified to this plane.
- */
- static void getPlanes (InputArray points3d_, std::vector<int> &labels, std::vector<Vec4d> &planes, int desired_num_planes, double thr_, double conf_, int max_iters_) {
- Mat points3d = points3d_.getMat();
- points3d.convertTo(points3d, CV_64F); // convert points to have double precision
- if (points3d_.isVector())
- points3d = Mat((int)points3d.total(), 3, CV_64F, points3d.data);
- else {
- if (points3d.type() != CV_64F)
- points3d = points3d.reshape(1, (int)points3d.total()); // convert point to have 1 channel
- if (points3d.rows < points3d.cols)
- transpose(points3d, points3d); // transpose so points will be in rows
- CV_CheckEQ(points3d.cols, 3, "Invalid dimension of point");
- }
- /*
- * 3D plane fitting with RANSAC
- * @best_model contains coefficients [a b c d] s.t. ax + by + cz = d
- *
- */
- auto plane_ransac = [] (const Mat &pts, double thr, double conf, int max_iters, Vec4d &best_model, std::vector<bool> &inliers) {
- const int pts_size = pts.rows, max_lo_inliers = 15, max_lo_iters = 10;
- int best_inls = 0;
- if (pts_size < 3) return false;
- RNG rng;
- const auto * const points = (double *) pts.data;
- std::vector<int> min_sample(3);
- inliers = std::vector<bool>(pts_size);
- const double log_conf = log(1-conf);
- Vec4d model, lo_model;
- std::vector<int> random_pool (pts_size);
- for (int p = 0; p < pts_size; p++)
- random_pool[p] = p;
- // estimate plane coefficients using covariance matrix
- auto estimate = [&] (const std::vector<int> &sample, Vec4d &model_) {
- // https://www.ilikebigbits.com/2017_09_25_plane_from_points_2.html
- const int n = static_cast<int>(sample.size());
- if (n < 3) return false;
- double sum_x = 0, sum_y = 0, sum_z = 0;
- for (int s : sample) {
- sum_x += points[3*s ];
- sum_y += points[3*s+1];
- sum_z += points[3*s+2];
- }
- const double c_x = sum_x / n, c_y = sum_y / n, c_z = sum_z / n;
- double xx = 0, yy = 0, zz = 0, xy = 0, xz = 0, yz = 0;
- for (int s : sample) {
- const double x_ = points[3*s] - c_x, y_ = points[3*s+1] - c_y, z_ = points[3*s+2] - c_z;
- xx += x_*x_; yy += y_*y_; zz += z_*z_; xy += x_*y_; yz += y_*z_; xz += x_*z_;
- }
- xx /= n; yy /= n; zz /= n; xy /= n; yz /= n; xz /= n;
- Vec3d weighted_normal(0,0,0);
- const double det_x = yy*zz - yz*yz, det_y = xx*zz - xz*xz, det_z = xx*yy - xy*xy;
- Vec3d axis_x (det_x, xz*xz-xy*zz, xy*yz-xz*yy);
- Vec3d axis_y (xz*yz-xy*zz, det_y, xy*xz-yz*xx);
- Vec3d axis_z (xy*yz-xz*yy, xy*xz-yz*xx, det_z);
- weighted_normal += axis_x * det_x * det_x;
- weighted_normal += sgn(weighted_normal.dot(axis_y)) * axis_y * det_y * det_y;
- weighted_normal += sgn(weighted_normal.dot(axis_z)) * axis_z * det_z * det_z;
- weighted_normal /= norm(weighted_normal);
- if (std::isinf(weighted_normal(0)) ||
- std::isinf(weighted_normal(1)) ||
- std::isinf(weighted_normal(2))) return false;
- // find plane model from normal and centroid
- model_ = Vec4d(weighted_normal(0), weighted_normal(1), weighted_normal(2),
- weighted_normal.dot(Vec3d(c_x, c_y, c_z)));
- return true;
- };
- // calculate number of inliers
- auto getInliers = [&] (const Vec4d &model_) {
- const double a = model_(0), b = model_(1), c = model_(2), d = model_(3);
- int num_inliers = 0;
- std::fill(inliers.begin(), inliers.end(), false);
- for (int p = 0; p < pts_size; p++) {
- inliers[p] = fabs(a * points[3*p] + b * points[3*p+1] + c * points[3*p+2] - d) < thr;
- if (inliers[p]) num_inliers++;
- if (num_inliers + pts_size - p < best_inls) break;
- }
- return num_inliers;
- };
- // main RANSAC loop
- for (int iters = 0; iters < max_iters; iters++) {
- // find minimal sample: 3 points
- min_sample[0] = rng.uniform(0, pts_size);
- min_sample[1] = rng.uniform(0, pts_size);
- min_sample[2] = rng.uniform(0, pts_size);
- if (! estimate(min_sample, model))
- continue;
- int num_inliers = getInliers(model);
- if (num_inliers > best_inls) {
- // store so-far-the-best
- std::vector<bool> best_inliers = inliers;
- // do Local Optimization
- for (int lo_iter = 0; lo_iter < max_lo_iters; lo_iter++) {
- std::vector<int> inliers_idx; inliers_idx.reserve(max_lo_inliers);
- randShuffle(random_pool);
- for (int p : random_pool) {
- if (best_inliers[p]) {
- inliers_idx.emplace_back(p);
- if ((int)inliers_idx.size() >= max_lo_inliers)
- break;
- }
- }
- if (! estimate(inliers_idx, lo_model))
- continue;
- int lo_inls = getInliers(lo_model);
- if (best_inls < lo_inls) {
- best_model = lo_model;
- best_inls = lo_inls;
- best_inliers = inliers;
- }
- }
- if (best_inls < num_inliers) {
- best_model = model;
- best_inls = num_inliers;
- }
- // update max iters
- // because points are quite noisy we need more iterations
- const double max_hyp = 3 * log_conf / log(1 - pow(double(best_inls) / pts_size, 3));
- if (! std::isinf(max_hyp) && max_hyp < max_iters)
- max_iters = static_cast<int>(max_hyp);
- }
- }
- getInliers(best_model);
- return best_inls != 0;
- };
- labels = std::vector<int>(points3d.rows, 0);
- Mat pts3d_plane_fit = points3d.clone();
- // keep array of indices of points corresponding to original points3d
- std::vector<int> to_orig_pts_arr(pts3d_plane_fit.rows);
- for (int i = 0; i < (int) to_orig_pts_arr.size(); i++)
- to_orig_pts_arr[i] = i;
- for (int num_planes = 1; num_planes <= desired_num_planes; num_planes++) {
- Vec4d model;
- std::vector<bool> inl;
- if (!plane_ransac(pts3d_plane_fit, thr_, conf_, max_iters_, model, inl))
- break;
- planes.emplace_back(model);
- const int pts3d_size = pts3d_plane_fit.rows;
- pts3d_plane_fit = Mat();
- pts3d_plane_fit.reserve(points3d.rows);
- int cnt = 0;
- for (int p = 0; p < pts3d_size; p++) {
- if (! inl[p]) {
- // if point is not inlier to found plane - add it to next run
- to_orig_pts_arr[cnt] = to_orig_pts_arr[p];
- pts3d_plane_fit.push_back(points3d.row(to_orig_pts_arr[cnt]));
- cnt++;
- } else labels[to_orig_pts_arr[p]] = num_planes; // otherwise label this point
- }
- }
- }
- int main(int args, char** argv) {
- std::string data_file, image_dir;
- if (args < 3) {
- CV_Error(Error::StsBadArg,
- "Path to data file and directory to image files are missing!\nData file must have"
- " format:\n--------------\n image_name_1\nimage_name_2\nk11 k12 k13\n0 k22 k23\n"
- "0 0 1\n--------------\nIf image_name_{1,2} are not in the same directory as "
- "the data file then add argument with directory to image files.\nFor example: "
- "./essential_mat_reconstr essential_mat_data.txt ./");
- } else {
- data_file = argv[1];
- image_dir = argv[2];
- }
- std::ifstream file(data_file, std::ios_base::in);
- CV_CheckEQ((int)file.is_open(), 1, "Data file is not found!");
- std::string filename1, filename2;
- std::getline(file, filename1);
- std::getline(file, filename2);
- Mat image1 = imread(image_dir+filename1);
- Mat image2 = imread(image_dir+filename2);
- CV_CheckEQ((int)image1.empty(), 0, "Image 1 is not found!");
- CV_CheckEQ((int)image2.empty(), 0, "Image 2 is not found!");
- // read calibration
- Matx33d K;
- for (int i = 0; i < 3; i++)
- for (int j = 0; j < 3; j++)
- file >> K(i,j);
- file.close();
- Mat descriptors1, descriptors2;
- std::vector<KeyPoint> keypoints1, keypoints2;
- // detect points with SIFT
- Ptr<SIFT> detector = SIFT::create();
- detector->detect(image1, keypoints1);
- detector->detect(image2, keypoints2);
- detector->compute(image1, keypoints1, descriptors1);
- detector->compute(image2, keypoints2, descriptors2);
- FlannBasedMatcher matcher(makePtr<flann::KDTreeIndexParams>(5), makePtr<flann::SearchParams>(32));
- // get k=2 best match that we can apply ratio test explained by D.Lowe
- std::vector<std::vector<DMatch>> matches_vector;
- matcher.knnMatch(descriptors1, descriptors2, matches_vector, 2);
- // filter keypoints with Lowe ratio test
- std::vector<Point2d> pts1, pts2;
- pts1.reserve(matches_vector.size()); pts2.reserve(matches_vector.size());
- for (const auto &m : matches_vector) {
- // compare best and second match using Lowe ratio test
- if (m[0].distance / m[1].distance < 0.75) {
- pts1.emplace_back(keypoints1[m[0].queryIdx].pt);
- pts2.emplace_back(keypoints2[m[0].trainIdx].pt);
- }
- }
- Mat inliers;
- const int pts_size = (int) pts1.size();
- const auto begin_time = std::chrono::steady_clock::now();
- // fine essential matrix
- const Mat E = findEssentialMat(pts1, pts2, Mat(K), RANSAC, 0.99, 1.0, inliers);
- std::cout << "RANSAC essential matrix time " << std::chrono::duration_cast<std::chrono::microseconds>
- (std::chrono::steady_clock::now() - begin_time).count() <<
- "mcs.\nNumber of inliers " << countNonZero(inliers) << "\n";
- Mat points1 = Mat((int)pts1.size(), 2, CV_64F, pts1.data());
- Mat points2 = Mat((int)pts2.size(), 2, CV_64F, pts2.data());
- points1 = points1.t(); points2 = points2.t();
- std::cout << "Mean error to epipolar lines " <<
- getError2EpipLines(K.inv().t() * E * K.inv(), points1, points2, inliers) << "\n";
- // decompose essential into rotation and translation
- Mat R1, R2, t;
- decomposeEssentialMat(E, R1, R2, t);
- // Create two relative pose
- // P1 = K [ I | 0 ]
- // P2 = K [R{1,2} | {+-}t]
- Mat P1;
- hconcat(K, Vec3d::zeros(), P1);
- std::vector<Mat> P2s(4);
- hconcat(K * R1, K * t, P2s[0]);
- hconcat(K * R1, -K * t, P2s[1]);
- hconcat(K * R2, K * t, P2s[2]);
- hconcat(K * R2, -K * t, P2s[3]);
- // find objects point by enumerating over 4 different projection matrices of second camera
- // vector to keep object points
- std::vector<std::vector<Vec3d>> obj_pts_per_cam(4);
- // vector to keep indices of image points corresponding to object points
- std::vector<std::vector<int>> img_idxs_per_cam(4);
- int cam_idx = 0, best_cam_idx = 0, max_obj_pts = 0;
- for (const auto &P2 : P2s) {
- obj_pts_per_cam[cam_idx].reserve(pts_size);
- img_idxs_per_cam[cam_idx].reserve(pts_size);
- for (int i = 0; i < pts_size; i++) {
- // process only inliers
- if (! inliers.at<uchar>(i))
- continue;
- Vec4d obj_pt;
- // find object point using triangulation
- triangulatePoints(P1, P2, points1.col(i), points2.col(i), obj_pt);
- obj_pt /= obj_pt(3); // normalize 4d point
- if (obj_pt(2) > 0) { // check if projected point has positive depth
- obj_pts_per_cam[cam_idx].emplace_back(Vec3d(obj_pt(0), obj_pt(1), obj_pt(2)));
- img_idxs_per_cam[cam_idx].emplace_back(i);
- }
- }
- if (max_obj_pts < (int) obj_pts_per_cam[cam_idx].size()) {
- max_obj_pts = (int) obj_pts_per_cam[cam_idx].size();
- best_cam_idx = cam_idx;
- }
- cam_idx++;
- }
- std::cout << "Number of object points " << max_obj_pts << "\n";
- const int circle_sz = 7;
- // draw image points that are inliers on two images
- std::vector<int> labels;
- std::vector<Vec4d> planes;
- getPlanes (obj_pts_per_cam[best_cam_idx], labels, planes, 4, 0.002, 0.99, 10000);
- const int num_found_planes = (int) planes.size();
- RNG rng;
- std::vector<Scalar> plane_colors (num_found_planes);
- for (int pl = 0; pl < num_found_planes; pl++)
- plane_colors[pl] = Scalar (rng.uniform(0,256), rng.uniform(0,256), rng.uniform(0,256));
- for (int obj_pt = 0; obj_pt < max_obj_pts; obj_pt++) {
- const int pt = img_idxs_per_cam[best_cam_idx][obj_pt];
- if (labels[obj_pt] > 0) { // plot plane points
- circle (image1, pts1[pt], circle_sz, plane_colors[labels[obj_pt]-1], -1);
- circle (image2, pts2[pt], circle_sz, plane_colors[labels[obj_pt]-1], -1);
- } else { // plot inliers
- circle (image1, pts1[pt], circle_sz, Scalar(0,0,0), -1);
- circle (image2, pts2[pt], circle_sz, Scalar(0,0,0), -1);
- }
- }
- // concatenate two images
- hconcat(image1, image2, image1);
- const int new_img_size = 1200 * 800; // for example
- // resize with the same aspect ratio
- resize(image1, image1, Size((int)sqrt ((double) image1.cols * new_img_size / image1.rows),
- (int)sqrt ((double) image1.rows * new_img_size / image1.cols)));
- imshow("image 1-2", image1);
- imwrite("planes.png", image1);
- waitKey(0);
- }
|