123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140 |
- import numpy as np
- import sys
- import os
- import fnmatch
- import argparse
- try:
- import cv2 as cv
- except ImportError:
- raise ImportError('Can\'t find OpenCV Python module. If you\'ve built it from sources without installation, '
- 'configure environment variable PYTHONPATH to "opencv_build_dir/lib" directory (with "python3" subdirectory if required)')
- try:
- import torch
- except ImportError:
- raise ImportError('Can\'t find pytorch. Please install it by following instructions on the official site')
- from torch.utils.serialization import load_lua
- from pascal_semsegm_test_fcn import eval_segm_result, get_conf_mat, get_metrics, DatasetImageFetch, SemSegmEvaluation
- from imagenet_cls_test_alexnet import Framework, DnnCaffeModel
- class NormalizePreproc:
- def __init__(self):
- pass
- @staticmethod
- def process(img):
- image_data = np.array(img).transpose(2, 0, 1).astype(np.float32)
- image_data = np.expand_dims(image_data, 0)
- image_data /= 255.0
- return image_data
- class CityscapesDataFetch(DatasetImageFetch):
- img_dir = ''
- segm_dir = ''
- segm_files = []
- colors = []
- i = 0
- def __init__(self, img_dir, segm_dir, preproc):
- self.img_dir = img_dir
- self.segm_dir = segm_dir
- self.segm_files = sorted([img for img in self.locate('*_color.png', segm_dir)])
- self.colors = self.get_colors()
- self.data_prepoc = preproc
- self.i = 0
- @staticmethod
- def get_colors():
- result = []
- colors_list = (
- (0, 0, 0), (128, 64, 128), (244, 35, 232), (70, 70, 70), (102, 102, 156), (190, 153, 153), (153, 153, 153),
- (250, 170, 30), (220, 220, 0), (107, 142, 35), (152, 251, 152), (70, 130, 180), (220, 20, 60), (255, 0, 0),
- (0, 0, 142), (0, 0, 70), (0, 60, 100), (0, 80, 100), (0, 0, 230), (119, 11, 32))
- for c in colors_list:
- result.append(DatasetImageFetch.pix_to_c(c))
- return result
- def __iter__(self):
- return self
- def next(self):
- if self.i < len(self.segm_files):
- segm_file = self.segm_files[self.i]
- segm = cv.imread(segm_file, cv.IMREAD_COLOR)[:, :, ::-1]
- segm = cv.resize(segm, (1024, 512), interpolation=cv.INTER_NEAREST)
- img_file = self.rreplace(self.img_dir + segm_file[len(self.segm_dir):], 'gtFine_color', 'leftImg8bit')
- assert os.path.exists(img_file)
- img = cv.imread(img_file, cv.IMREAD_COLOR)[:, :, ::-1]
- img = cv.resize(img, (1024, 512))
- self.i += 1
- gt = self.color_to_gt(segm, self.colors)
- img = self.data_prepoc.process(img)
- return img, gt
- else:
- self.i = 0
- raise StopIteration
- def get_num_classes(self):
- return len(self.colors)
- @staticmethod
- def locate(pattern, root_path):
- for path, dirs, files in os.walk(os.path.abspath(root_path)):
- for filename in fnmatch.filter(files, pattern):
- yield os.path.join(path, filename)
- @staticmethod
- def rreplace(s, old, new, occurrence=1):
- li = s.rsplit(old, occurrence)
- return new.join(li)
- class TorchModel(Framework):
- net = object
- def __init__(self, model_file):
- self.net = load_lua(model_file)
- def get_name(self):
- return 'Torch'
- def get_output(self, input_blob):
- tensor = torch.FloatTensor(input_blob)
- out = self.net.forward(tensor).numpy()
- return out
- class DnnTorchModel(DnnCaffeModel):
- net = cv.dnn.Net()
- def __init__(self, model_file):
- self.net = cv.dnn.readNetFromTorch(model_file)
- def get_output(self, input_blob):
- self.net.setBlob("", input_blob)
- self.net.forward()
- return self.net.getBlob(self.net.getLayerNames()[-1])
- if __name__ == "__main__":
- parser = argparse.ArgumentParser()
- parser.add_argument("--imgs_dir", help="path to Cityscapes validation images dir, imgsfine/leftImg8bit/val")
- parser.add_argument("--segm_dir", help="path to Cityscapes dir with segmentation, gtfine/gtFine/val")
- parser.add_argument("--model", help="path to torch model, download it here: "
- "https://www.dropbox.com/sh/dywzk3gyb12hpe5/AAD5YkUa8XgMpHs2gCRgmCVCa")
- parser.add_argument("--log", help="path to logging file")
- args = parser.parse_args()
- prep = NormalizePreproc()
- df = CityscapesDataFetch(args.imgs_dir, args.segm_dir, prep)
- fw = [TorchModel(args.model),
- DnnTorchModel(args.model)]
- segm_eval = SemSegmEvaluation(args.log)
- segm_eval.process(fw, df)
|