123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365 |
- from __future__ import print_function
- import sys
- import argparse
- import cv2 as cv
- import tensorflow as tf
- import numpy as np
- import struct
- if sys.version_info > (3,):
- long = int
- from tensorflow.python.tools import optimize_for_inference_lib
- from tensorflow.tools.graph_transforms import TransformGraph
- from tensorflow.core.framework.node_def_pb2 import NodeDef
- from google.protobuf import text_format
- parser = argparse.ArgumentParser(description="Use this script to create TensorFlow graph "
- "with weights from OpenCV's face detection network. "
- "Only backbone part of SSD model is converted this way. "
- "Look for .pbtxt configuration file at "
- "https://github.com/opencv/opencv_extra/tree/4.x/testdata/dnn/opencv_face_detector.pbtxt")
- parser.add_argument('--model', help='Path to .caffemodel weights', required=True)
- parser.add_argument('--proto', help='Path to .prototxt Caffe model definition', required=True)
- parser.add_argument('--pb', help='Path to output .pb TensorFlow model', required=True)
- parser.add_argument('--pbtxt', help='Path to output .pbxt TensorFlow graph', required=True)
- parser.add_argument('--quantize', help='Quantize weights to uint8', action='store_true')
- parser.add_argument('--fp16', help='Convert weights to half precision floats', action='store_true')
- args = parser.parse_args()
- assert(not args.quantize or not args.fp16)
- dtype = tf.float16 if args.fp16 else tf.float32
- ################################################################################
- cvNet = cv.dnn.readNetFromCaffe(args.proto, args.model)
- def dnnLayer(name):
- return cvNet.getLayer(long(cvNet.getLayerId(name)))
- def scale(x, name):
- with tf.variable_scope(name):
- layer = dnnLayer(name)
- w = tf.Variable(layer.blobs[0].flatten(), dtype=dtype, name='mul')
- if len(layer.blobs) > 1:
- b = tf.Variable(layer.blobs[1].flatten(), dtype=dtype, name='add')
- return tf.nn.bias_add(tf.multiply(x, w), b)
- else:
- return tf.multiply(x, w, name)
- def conv(x, name, stride=1, pad='SAME', dilation=1, activ=None):
- with tf.variable_scope(name):
- layer = dnnLayer(name)
- w = tf.Variable(layer.blobs[0].transpose(2, 3, 1, 0), dtype=dtype, name='weights')
- if dilation == 1:
- conv = tf.nn.conv2d(x, filter=w, strides=(1, stride, stride, 1), padding=pad)
- else:
- assert(stride == 1)
- conv = tf.nn.atrous_conv2d(x, w, rate=dilation, padding=pad)
- if len(layer.blobs) > 1:
- b = tf.Variable(layer.blobs[1].flatten(), dtype=dtype, name='bias')
- conv = tf.nn.bias_add(conv, b)
- return activ(conv) if activ else conv
- def batch_norm(x, name):
- with tf.variable_scope(name):
- # Unfortunately, TensorFlow's batch normalization layer doesn't work with fp16 input.
- # Here we do a cast to fp32 but remove it in the frozen graph.
- if x.dtype != tf.float32:
- x = tf.cast(x, tf.float32)
- layer = dnnLayer(name)
- assert(len(layer.blobs) >= 3)
- mean = layer.blobs[0].flatten()
- std = layer.blobs[1].flatten()
- scale = layer.blobs[2].flatten()
- eps = 1e-5
- hasBias = len(layer.blobs) > 3
- hasWeights = scale.shape != (1,)
- if not hasWeights and not hasBias:
- mean /= scale[0]
- std /= scale[0]
- mean = tf.Variable(mean, dtype=tf.float32, name='mean')
- std = tf.Variable(std, dtype=tf.float32, name='std')
- gamma = tf.Variable(scale if hasWeights else np.ones(mean.shape), dtype=tf.float32, name='gamma')
- beta = tf.Variable(layer.blobs[3].flatten() if hasBias else np.zeros(mean.shape), dtype=tf.float32, name='beta')
- bn = tf.nn.fused_batch_norm(x, gamma, beta, mean, std, eps,
- is_training=False)[0]
- if bn.dtype != dtype:
- bn = tf.cast(bn, dtype)
- return bn
- def l2norm(x, name):
- with tf.variable_scope(name):
- layer = dnnLayer(name)
- w = tf.Variable(layer.blobs[0].flatten(), dtype=dtype, name='mul')
- return tf.nn.l2_normalize(x, 3, epsilon=1e-10) * w
- ### Graph definition ###########################################################
- inp = tf.placeholder(dtype, [1, 300, 300, 3], 'data')
- data_bn = batch_norm(inp, 'data_bn')
- data_scale = scale(data_bn, 'data_scale')
- # Instead of tf.pad we use tf.space_to_batch_nd layers which override convolution's padding strategy to explicit numbers
- # data_scale = tf.pad(data_scale, [[0, 0], [3, 3], [3, 3], [0, 0]])
- data_scale = tf.space_to_batch_nd(data_scale, [1, 1], [[3, 3], [3, 3]], name='Pad')
- conv1_h = conv(data_scale, stride=2, pad='VALID', name='conv1_h')
- conv1_bn_h = batch_norm(conv1_h, 'conv1_bn_h')
- conv1_scale_h = scale(conv1_bn_h, 'conv1_scale_h')
- conv1_relu = tf.nn.relu(conv1_scale_h)
- conv1_pool = tf.layers.max_pooling2d(conv1_relu, pool_size=(3, 3), strides=(2, 2),
- padding='SAME', name='conv1_pool')
- layer_64_1_conv1_h = conv(conv1_pool, 'layer_64_1_conv1_h')
- layer_64_1_bn2_h = batch_norm(layer_64_1_conv1_h, 'layer_64_1_bn2_h')
- layer_64_1_scale2_h = scale(layer_64_1_bn2_h, 'layer_64_1_scale2_h')
- layer_64_1_relu2 = tf.nn.relu(layer_64_1_scale2_h)
- layer_64_1_conv2_h = conv(layer_64_1_relu2, 'layer_64_1_conv2_h')
- layer_64_1_sum = layer_64_1_conv2_h + conv1_pool
- layer_128_1_bn1_h = batch_norm(layer_64_1_sum, 'layer_128_1_bn1_h')
- layer_128_1_scale1_h = scale(layer_128_1_bn1_h, 'layer_128_1_scale1_h')
- layer_128_1_relu1 = tf.nn.relu(layer_128_1_scale1_h)
- layer_128_1_conv1_h = conv(layer_128_1_relu1, stride=2, name='layer_128_1_conv1_h')
- layer_128_1_bn2 = batch_norm(layer_128_1_conv1_h, 'layer_128_1_bn2')
- layer_128_1_scale2 = scale(layer_128_1_bn2, 'layer_128_1_scale2')
- layer_128_1_relu2 = tf.nn.relu(layer_128_1_scale2)
- layer_128_1_conv2 = conv(layer_128_1_relu2, 'layer_128_1_conv2')
- layer_128_1_conv_expand_h = conv(layer_128_1_relu1, stride=2, name='layer_128_1_conv_expand_h')
- layer_128_1_sum = layer_128_1_conv2 + layer_128_1_conv_expand_h
- layer_256_1_bn1 = batch_norm(layer_128_1_sum, 'layer_256_1_bn1')
- layer_256_1_scale1 = scale(layer_256_1_bn1, 'layer_256_1_scale1')
- layer_256_1_relu1 = tf.nn.relu(layer_256_1_scale1)
- # layer_256_1_conv1 = tf.pad(layer_256_1_relu1, [[0, 0], [1, 1], [1, 1], [0, 0]])
- layer_256_1_conv1 = tf.space_to_batch_nd(layer_256_1_relu1, [1, 1], [[1, 1], [1, 1]], name='Pad_1')
- layer_256_1_conv1 = conv(layer_256_1_conv1, stride=2, pad='VALID', name='layer_256_1_conv1')
- layer_256_1_bn2 = batch_norm(layer_256_1_conv1, 'layer_256_1_bn2')
- layer_256_1_scale2 = scale(layer_256_1_bn2, 'layer_256_1_scale2')
- layer_256_1_relu2 = tf.nn.relu(layer_256_1_scale2)
- layer_256_1_conv2 = conv(layer_256_1_relu2, 'layer_256_1_conv2')
- layer_256_1_conv_expand = conv(layer_256_1_relu1, stride=2, name='layer_256_1_conv_expand')
- layer_256_1_sum = layer_256_1_conv2 + layer_256_1_conv_expand
- layer_512_1_bn1 = batch_norm(layer_256_1_sum, 'layer_512_1_bn1')
- layer_512_1_scale1 = scale(layer_512_1_bn1, 'layer_512_1_scale1')
- layer_512_1_relu1 = tf.nn.relu(layer_512_1_scale1)
- layer_512_1_conv1_h = conv(layer_512_1_relu1, 'layer_512_1_conv1_h')
- layer_512_1_bn2_h = batch_norm(layer_512_1_conv1_h, 'layer_512_1_bn2_h')
- layer_512_1_scale2_h = scale(layer_512_1_bn2_h, 'layer_512_1_scale2_h')
- layer_512_1_relu2 = tf.nn.relu(layer_512_1_scale2_h)
- layer_512_1_conv2_h = conv(layer_512_1_relu2, dilation=2, name='layer_512_1_conv2_h')
- layer_512_1_conv_expand_h = conv(layer_512_1_relu1, 'layer_512_1_conv_expand_h')
- layer_512_1_sum = layer_512_1_conv2_h + layer_512_1_conv_expand_h
- last_bn_h = batch_norm(layer_512_1_sum, 'last_bn_h')
- last_scale_h = scale(last_bn_h, 'last_scale_h')
- fc7 = tf.nn.relu(last_scale_h, name='last_relu')
- conv6_1_h = conv(fc7, 'conv6_1_h', activ=tf.nn.relu)
- conv6_2_h = conv(conv6_1_h, stride=2, name='conv6_2_h', activ=tf.nn.relu)
- conv7_1_h = conv(conv6_2_h, 'conv7_1_h', activ=tf.nn.relu)
- # conv7_2_h = tf.pad(conv7_1_h, [[0, 0], [1, 1], [1, 1], [0, 0]])
- conv7_2_h = tf.space_to_batch_nd(conv7_1_h, [1, 1], [[1, 1], [1, 1]], name='Pad_2')
- conv7_2_h = conv(conv7_2_h, stride=2, pad='VALID', name='conv7_2_h', activ=tf.nn.relu)
- conv8_1_h = conv(conv7_2_h, pad='SAME', name='conv8_1_h', activ=tf.nn.relu)
- conv8_2_h = conv(conv8_1_h, pad='VALID', name='conv8_2_h', activ=tf.nn.relu)
- conv9_1_h = conv(conv8_2_h, 'conv9_1_h', activ=tf.nn.relu)
- conv9_2_h = conv(conv9_1_h, pad='VALID', name='conv9_2_h', activ=tf.nn.relu)
- conv4_3_norm = l2norm(layer_256_1_relu1, 'conv4_3_norm')
- ### Locations and confidences ##################################################
- locations = []
- confidences = []
- flattenLayersNames = [] # Collect all reshape layers names that should be replaced to flattens.
- for top, suffix in zip([locations, confidences], ['_mbox_loc', '_mbox_conf']):
- for bottom, name in zip([conv4_3_norm, fc7, conv6_2_h, conv7_2_h, conv8_2_h, conv9_2_h],
- ['conv4_3_norm', 'fc7', 'conv6_2', 'conv7_2', 'conv8_2', 'conv9_2']):
- name += suffix
- flat = tf.layers.flatten(conv(bottom, name))
- flattenLayersNames.append(flat.name[:flat.name.find(':')])
- top.append(flat)
- mbox_loc = tf.concat(locations, axis=-1, name='mbox_loc')
- mbox_conf = tf.concat(confidences, axis=-1, name='mbox_conf')
- total = int(np.prod(mbox_conf.shape[1:]))
- mbox_conf_reshape = tf.reshape(mbox_conf, [-1, 2], name='mbox_conf_reshape')
- mbox_conf_softmax = tf.nn.softmax(mbox_conf_reshape, name='mbox_conf_softmax')
- mbox_conf_flatten = tf.reshape(mbox_conf_softmax, [-1, total], name='mbox_conf_flatten')
- flattenLayersNames.append('mbox_conf_flatten')
- with tf.Session() as sess:
- sess.run(tf.global_variables_initializer())
- ### Check correctness ######################################################
- out_nodes = ['mbox_loc', 'mbox_conf_flatten']
- inp_nodes = [inp.name[:inp.name.find(':')]]
- np.random.seed(2701)
- inputData = np.random.standard_normal([1, 3, 300, 300]).astype(np.float32)
- cvNet.setInput(inputData)
- cvNet.setPreferableBackend(cv.dnn.DNN_BACKEND_OPENCV)
- outDNN = cvNet.forward(out_nodes)
- outTF = sess.run([mbox_loc, mbox_conf_flatten], feed_dict={inp: inputData.transpose(0, 2, 3, 1)})
- print('Max diff @ locations: %e' % np.max(np.abs(outDNN[0] - outTF[0])))
- print('Max diff @ confidence: %e' % np.max(np.abs(outDNN[1] - outTF[1])))
- # Save a graph
- graph_def = sess.graph.as_graph_def()
- # Freeze graph. Replaces variables to constants.
- graph_def = tf.graph_util.convert_variables_to_constants(sess, graph_def, out_nodes)
- # Optimize graph. Removes training-only ops, unused nodes.
- graph_def = optimize_for_inference_lib.optimize_for_inference(graph_def, inp_nodes, out_nodes, dtype.as_datatype_enum)
- # Fuse constant operations.
- transforms = ["fold_constants(ignore_errors=True)"]
- if args.quantize:
- transforms += ["quantize_weights(minimum_size=0)"]
- transforms += ["sort_by_execution_order"]
- graph_def = TransformGraph(graph_def, inp_nodes, out_nodes, transforms)
- # By default, float16 weights are stored in repeated tensor's field called
- # `half_val`. It has type int32 with leading zeros for unused bytes.
- # This type is encoded by Variant that means only 7 bits are used for value
- # representation but the last one is indicated the end of encoding. This way
- # float16 might takes 1 or 2 or 3 bytes depends on value. To improve compression,
- # we replace all `half_val` values to `tensor_content` using only 2 bytes for everyone.
- for node in graph_def.node:
- if 'value' in node.attr:
- halfs = node.attr["value"].tensor.half_val
- if not node.attr["value"].tensor.tensor_content and halfs:
- node.attr["value"].tensor.tensor_content = struct.pack('H' * len(halfs), *halfs)
- node.attr["value"].tensor.ClearField('half_val')
- # Serialize
- with tf.gfile.FastGFile(args.pb, 'wb') as f:
- f.write(graph_def.SerializeToString())
- ################################################################################
- # Write a text graph representation
- ################################################################################
- def tensorMsg(values):
- msg = 'tensor { dtype: DT_FLOAT tensor_shape { dim { size: %d } }' % len(values)
- for value in values:
- msg += 'float_val: %f ' % value
- return msg + '}'
- # Remove Const nodes and unused attributes.
- for i in reversed(range(len(graph_def.node))):
- if graph_def.node[i].op in ['Const', 'Dequantize']:
- del graph_def.node[i]
- for attr in ['T', 'data_format', 'Tshape', 'N', 'Tidx', 'Tdim',
- 'use_cudnn_on_gpu', 'Index', 'Tperm', 'is_training',
- 'Tpaddings', 'Tblock_shape', 'Tcrops']:
- if attr in graph_def.node[i].attr:
- del graph_def.node[i].attr[attr]
- # Append prior box generators
- min_sizes = [30, 60, 111, 162, 213, 264]
- max_sizes = [60, 111, 162, 213, 264, 315]
- steps = [8, 16, 32, 64, 100, 300]
- aspect_ratios = [[2], [2, 3], [2, 3], [2, 3], [2], [2]]
- layers = [conv4_3_norm, fc7, conv6_2_h, conv7_2_h, conv8_2_h, conv9_2_h]
- for i in range(6):
- priorBox = NodeDef()
- priorBox.name = 'PriorBox_%d' % i
- priorBox.op = 'PriorBox'
- priorBox.input.append(layers[i].name[:layers[i].name.find(':')])
- priorBox.input.append(inp_nodes[0]) # data
- text_format.Merge('i: %d' % min_sizes[i], priorBox.attr["min_size"])
- text_format.Merge('i: %d' % max_sizes[i], priorBox.attr["max_size"])
- text_format.Merge('b: true', priorBox.attr["flip"])
- text_format.Merge('b: false', priorBox.attr["clip"])
- text_format.Merge(tensorMsg(aspect_ratios[i]), priorBox.attr["aspect_ratio"])
- text_format.Merge(tensorMsg([0.1, 0.1, 0.2, 0.2]), priorBox.attr["variance"])
- text_format.Merge('f: %f' % steps[i], priorBox.attr["step"])
- text_format.Merge('f: 0.5', priorBox.attr["offset"])
- graph_def.node.extend([priorBox])
- # Concatenate prior boxes
- concat = NodeDef()
- concat.name = 'mbox_priorbox'
- concat.op = 'ConcatV2'
- for i in range(6):
- concat.input.append('PriorBox_%d' % i)
- concat.input.append('mbox_loc/axis')
- graph_def.node.extend([concat])
- # DetectionOutput layer
- detectionOut = NodeDef()
- detectionOut.name = 'detection_out'
- detectionOut.op = 'DetectionOutput'
- detectionOut.input.append('mbox_loc')
- detectionOut.input.append('mbox_conf_flatten')
- detectionOut.input.append('mbox_priorbox')
- text_format.Merge('i: 2', detectionOut.attr['num_classes'])
- text_format.Merge('b: true', detectionOut.attr['share_location'])
- text_format.Merge('i: 0', detectionOut.attr['background_label_id'])
- text_format.Merge('f: 0.45', detectionOut.attr['nms_threshold'])
- text_format.Merge('i: 400', detectionOut.attr['top_k'])
- text_format.Merge('s: "CENTER_SIZE"', detectionOut.attr['code_type'])
- text_format.Merge('i: 200', detectionOut.attr['keep_top_k'])
- text_format.Merge('f: 0.01', detectionOut.attr['confidence_threshold'])
- graph_def.node.extend([detectionOut])
- # Replace L2Normalization subgraph onto a single node.
- for i in reversed(range(len(graph_def.node))):
- if graph_def.node[i].name in ['conv4_3_norm/l2_normalize/Square',
- 'conv4_3_norm/l2_normalize/Sum',
- 'conv4_3_norm/l2_normalize/Maximum',
- 'conv4_3_norm/l2_normalize/Rsqrt']:
- del graph_def.node[i]
- for node in graph_def.node:
- if node.name == 'conv4_3_norm/l2_normalize':
- node.op = 'L2Normalize'
- node.input.pop()
- node.input.pop()
- node.input.append(layer_256_1_relu1.name)
- node.input.append('conv4_3_norm/l2_normalize/Sum/reduction_indices')
- break
- softmaxShape = NodeDef()
- softmaxShape.name = 'reshape_before_softmax'
- softmaxShape.op = 'Const'
- text_format.Merge(
- 'tensor {'
- ' dtype: DT_INT32'
- ' tensor_shape { dim { size: 3 } }'
- ' int_val: 0'
- ' int_val: -1'
- ' int_val: 2'
- '}', softmaxShape.attr["value"])
- graph_def.node.extend([softmaxShape])
- for node in graph_def.node:
- if node.name == 'mbox_conf_reshape':
- node.input[1] = softmaxShape.name
- elif node.name == 'mbox_conf_softmax':
- text_format.Merge('i: 2', node.attr['axis'])
- elif node.name in flattenLayersNames:
- node.op = 'Flatten'
- inpName = node.input[0]
- node.input.pop()
- node.input.pop()
- node.input.append(inpName)
- tf.train.write_graph(graph_def, "", args.pbtxt, as_text=True)
|