1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684 |
- /*M///////////////////////////////////////////////////////////////////////////////////////
- //
- // IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
- //
- // By downloading, copying, installing or using the software you agree to this license.
- // If you do not agree to this license, do not download, install,
- // copy or use the software.
- //
- //
- // Intel License Agreement
- //
- // Copyright (C) 2000, Intel Corporation, all rights reserved.
- // Third party copyrights are property of their respective owners.
- //
- // Redistribution and use in source and binary forms, with or without modification,
- // are permitted provided that the following conditions are met:
- //
- // * Redistribution's of source code must retain the above copyright notice,
- // this list of conditions and the following disclaimer.
- //
- // * Redistribution's in binary form must reproduce the above copyright notice,
- // this list of conditions and the following disclaimer in the documentation
- // and/or other materials provided with the distribution.
- //
- // * The name of Intel Corporation may not be used to endorse or promote products
- // derived from this software without specific prior written permission.
- //
- // This software is provided by the copyright holders and contributors "as is" and
- // any express or implied warranties, including, but not limited to, the implied
- // warranties of merchantability and fitness for a particular purpose are disclaimed.
- // In no event shall the Intel Corporation or contributors be liable for any direct,
- // indirect, incidental, special, exemplary, or consequential damages
- // (including, but not limited to, procurement of substitute goods or services;
- // loss of use, data, or profits; or business interruption) however caused
- // and on any theory of liability, whether in contract, strict liability,
- // or tort (including negligence or otherwise) arising in any way out of
- // the use of this software, even if advised of the possibility of such damage.
- //
- //M*/
- #include "old_ml_precomp.hpp"
- CvStatModel::CvStatModel()
- {
- default_model_name = "my_stat_model";
- }
- CvStatModel::~CvStatModel()
- {
- clear();
- }
- void CvStatModel::clear()
- {
- }
- void CvStatModel::save( const char* filename, const char* name ) const
- {
- cv::FileStorage fs;
- CV_FUNCNAME( "CvStatModel::save" );
- __BEGIN__;
- if( !fs.open( filename, cv::FileStorage::WRITE ))
- CV_ERROR( CV_StsError, "Could not open the file storage. Check the path and permissions" );
- write( fs, name ? name : default_model_name );
- __END__;
- }
- void CvStatModel::load( const char* filename, const char* name )
- {
- cv::FileStorage fs;
- CV_FUNCNAME( "CvStatModel::load" );
- __BEGIN__;
- cv::FileNode model_node;
- if( !fs.open(filename, cv::FileStorage::READ) )
- CV_ERROR( CV_StsError, "Could not open the file storage. Check the path and permissions" );
- if( name )
- model_node = fs[ name ];
- else
- {
- auto root = fs.root();
- if ( root.size() > 0 )
- model_node = fs[0];
- }
- read( model_node );
- __END__;
- }
- void CvStatModel::write( cv::FileStorage&, const char* ) const
- {
- OPENCV_ERROR( CV_StsNotImplemented, "CvStatModel::write", "" );
- }
- void CvStatModel::read( const cv::FileNode& )
- {
- OPENCV_ERROR( CV_StsNotImplemented, "CvStatModel::read", "" );
- }
- CvMat* icvGenerateRandomClusterCenters ( int seed, const CvMat* data,
- int num_of_clusters, CvMat* _centers )
- {
- CvMat* centers = _centers;
- CV_FUNCNAME("icvGenerateRandomClusterCenters");
- __BEGIN__;
- CvRNG rng;
- CvMat data_comp, centers_comp;
- CvPoint minLoc, maxLoc; // Not used, just for function "cvMinMaxLoc"
- double minVal, maxVal;
- int i;
- int dim = data ? data->cols : 0;
- if( ICV_IS_MAT_OF_TYPE(data, CV_32FC1) )
- {
- if( _centers && !ICV_IS_MAT_OF_TYPE (_centers, CV_32FC1) )
- {
- CV_ERROR(CV_StsBadArg,"");
- }
- else if( !_centers )
- CV_CALL(centers = cvCreateMat (num_of_clusters, dim, CV_32FC1));
- }
- else if( ICV_IS_MAT_OF_TYPE(data, CV_64FC1) )
- {
- if( _centers && !ICV_IS_MAT_OF_TYPE (_centers, CV_64FC1) )
- {
- CV_ERROR(CV_StsBadArg,"");
- }
- else if( !_centers )
- CV_CALL(centers = cvCreateMat (num_of_clusters, dim, CV_64FC1));
- }
- else
- CV_ERROR (CV_StsBadArg,"");
- if( num_of_clusters < 1 )
- CV_ERROR (CV_StsBadArg,"");
- rng = cvRNG(seed);
- for (i = 0; i < dim; i++)
- {
- CV_CALL(cvGetCol (data, &data_comp, i));
- CV_CALL(cvMinMaxLoc (&data_comp, &minVal, &maxVal, &minLoc, &maxLoc));
- CV_CALL(cvGetCol (centers, ¢ers_comp, i));
- CV_CALL(cvRandArr (&rng, ¢ers_comp, CV_RAND_UNI, cvScalarAll(minVal), cvScalarAll(maxVal)));
- }
- __END__;
- if( (cvGetErrStatus () < 0) || (centers != _centers) )
- cvReleaseMat (¢ers);
- return _centers ? _centers : centers;
- } // end of icvGenerateRandomClusterCenters
- static int CV_CDECL
- icvCmpIntegers( const void* a, const void* b )
- {
- return *(const int*)a - *(const int*)b;
- }
- static int CV_CDECL
- icvCmpIntegersPtr( const void* _a, const void* _b )
- {
- int a = **(const int**)_a;
- int b = **(const int**)_b;
- return (a < b ? -1 : 0)|(a > b);
- }
- static int icvCmpSparseVecElems( const void* a, const void* b )
- {
- return ((CvSparseVecElem32f*)a)->idx - ((CvSparseVecElem32f*)b)->idx;
- }
- CvMat*
- cvPreprocessIndexArray( const CvMat* idx_arr, int data_arr_size, bool check_for_duplicates )
- {
- CvMat* idx = 0;
- CV_FUNCNAME( "cvPreprocessIndexArray" );
- __BEGIN__;
- int i, idx_total, idx_selected = 0, step, type, prev = INT_MIN, is_sorted = 1;
- uchar* srcb = 0;
- int* srci = 0;
- int* dsti;
- if( !CV_IS_MAT(idx_arr) )
- CV_ERROR( CV_StsBadArg, "Invalid index array" );
- if( idx_arr->rows != 1 && idx_arr->cols != 1 )
- CV_ERROR( CV_StsBadSize, "the index array must be 1-dimensional" );
- idx_total = idx_arr->rows + idx_arr->cols - 1;
- srcb = idx_arr->data.ptr;
- srci = idx_arr->data.i;
- type = CV_MAT_TYPE(idx_arr->type);
- step = CV_IS_MAT_CONT(idx_arr->type) ? 1 : idx_arr->step/CV_ELEM_SIZE(type);
- switch( type )
- {
- case CV_8UC1:
- case CV_8SC1:
- // idx_arr is array of 1's and 0's -
- // i.e. it is a mask of the selected components
- if( idx_total != data_arr_size )
- CV_ERROR( CV_StsUnmatchedSizes,
- "Component mask should contain as many elements as the total number of input variables" );
- for( i = 0; i < idx_total; i++ )
- idx_selected += srcb[i*step] != 0;
- if( idx_selected == 0 )
- CV_ERROR( CV_StsOutOfRange, "No components/input_variables is selected!" );
- break;
- case CV_32SC1:
- // idx_arr is array of integer indices of selected components
- if( idx_total > data_arr_size )
- CV_ERROR( CV_StsOutOfRange,
- "index array may not contain more elements than the total number of input variables" );
- idx_selected = idx_total;
- // check if sorted already
- for( i = 0; i < idx_total; i++ )
- {
- int val = srci[i*step];
- if( val >= prev )
- {
- is_sorted = 0;
- break;
- }
- prev = val;
- }
- break;
- default:
- CV_ERROR( CV_StsUnsupportedFormat, "Unsupported index array data type "
- "(it should be 8uC1, 8sC1 or 32sC1)" );
- }
- CV_CALL( idx = cvCreateMat( 1, idx_selected, CV_32SC1 ));
- dsti = idx->data.i;
- if( type < CV_32SC1 )
- {
- for( i = 0; i < idx_total; i++ )
- if( srcb[i*step] )
- *dsti++ = i;
- }
- else
- {
- for( i = 0; i < idx_total; i++ )
- dsti[i] = srci[i*step];
- if( !is_sorted )
- qsort( dsti, idx_total, sizeof(dsti[0]), icvCmpIntegers );
- if( dsti[0] < 0 || dsti[idx_total-1] >= data_arr_size )
- CV_ERROR( CV_StsOutOfRange, "the index array elements are out of range" );
- if( check_for_duplicates )
- {
- for( i = 1; i < idx_total; i++ )
- if( dsti[i] <= dsti[i-1] )
- CV_ERROR( CV_StsBadArg, "There are duplicated index array elements" );
- }
- }
- __END__;
- if( cvGetErrStatus() < 0 )
- cvReleaseMat( &idx );
- return idx;
- }
- CvMat*
- cvPreprocessVarType( const CvMat* var_type, const CvMat* var_idx,
- int var_count, int* response_type )
- {
- CvMat* out_var_type = 0;
- CV_FUNCNAME( "cvPreprocessVarType" );
- if( response_type )
- *response_type = -1;
- __BEGIN__;
- int i, tm_size, tm_step;
- //int* map = 0;
- const uchar* src;
- uchar* dst;
- if( !CV_IS_MAT(var_type) )
- CV_ERROR( var_type ? CV_StsBadArg : CV_StsNullPtr, "Invalid or absent var_type array" );
- if( var_type->rows != 1 && var_type->cols != 1 )
- CV_ERROR( CV_StsBadSize, "var_type array must be 1-dimensional" );
- if( !CV_IS_MASK_ARR(var_type))
- CV_ERROR( CV_StsUnsupportedFormat, "type mask must be 8uC1 or 8sC1 array" );
- tm_size = var_type->rows + var_type->cols - 1;
- tm_step = var_type->rows == 1 ? 1 : var_type->step/CV_ELEM_SIZE(var_type->type);
- if( /*tm_size != var_count &&*/ tm_size != var_count + 1 )
- CV_ERROR( CV_StsBadArg,
- "type mask must be of <input var count> + 1 size" );
- if( response_type && tm_size > var_count )
- *response_type = var_type->data.ptr[var_count*tm_step] != 0;
- if( var_idx )
- {
- if( !CV_IS_MAT(var_idx) || CV_MAT_TYPE(var_idx->type) != CV_32SC1 ||
- (var_idx->rows != 1 && var_idx->cols != 1) || !CV_IS_MAT_CONT(var_idx->type) )
- CV_ERROR( CV_StsBadArg, "var index array should be continuous 1-dimensional integer vector" );
- if( var_idx->rows + var_idx->cols - 1 > var_count )
- CV_ERROR( CV_StsBadSize, "var index array is too large" );
- //map = var_idx->data.i;
- var_count = var_idx->rows + var_idx->cols - 1;
- }
- CV_CALL( out_var_type = cvCreateMat( 1, var_count, CV_8UC1 ));
- src = var_type->data.ptr;
- dst = out_var_type->data.ptr;
- for( i = 0; i < var_count; i++ )
- {
- //int idx = map ? map[i] : i;
- assert( (unsigned)/*idx*/i < (unsigned)tm_size );
- dst[i] = (uchar)(src[/*idx*/i*tm_step] != 0);
- }
- __END__;
- return out_var_type;
- }
- CvMat*
- cvPreprocessOrderedResponses( const CvMat* responses, const CvMat* sample_idx, int sample_all )
- {
- CvMat* out_responses = 0;
- CV_FUNCNAME( "cvPreprocessOrderedResponses" );
- __BEGIN__;
- int i, r_type, r_step;
- const int* map = 0;
- float* dst;
- int sample_count = sample_all;
- if( !CV_IS_MAT(responses) )
- CV_ERROR( CV_StsBadArg, "Invalid response array" );
- if( responses->rows != 1 && responses->cols != 1 )
- CV_ERROR( CV_StsBadSize, "Response array must be 1-dimensional" );
- if( responses->rows + responses->cols - 1 != sample_count )
- CV_ERROR( CV_StsUnmatchedSizes,
- "Response array must contain as many elements as the total number of samples" );
- r_type = CV_MAT_TYPE(responses->type);
- if( r_type != CV_32FC1 && r_type != CV_32SC1 )
- CV_ERROR( CV_StsUnsupportedFormat, "Unsupported response type" );
- r_step = responses->step ? responses->step / CV_ELEM_SIZE(responses->type) : 1;
- if( r_type == CV_32FC1 && CV_IS_MAT_CONT(responses->type) && !sample_idx )
- {
- out_responses = cvCloneMat( responses );
- EXIT;
- }
- if( sample_idx )
- {
- if( !CV_IS_MAT(sample_idx) || CV_MAT_TYPE(sample_idx->type) != CV_32SC1 ||
- (sample_idx->rows != 1 && sample_idx->cols != 1) || !CV_IS_MAT_CONT(sample_idx->type) )
- CV_ERROR( CV_StsBadArg, "sample index array should be continuous 1-dimensional integer vector" );
- if( sample_idx->rows + sample_idx->cols - 1 > sample_count )
- CV_ERROR( CV_StsBadSize, "sample index array is too large" );
- map = sample_idx->data.i;
- sample_count = sample_idx->rows + sample_idx->cols - 1;
- }
- CV_CALL( out_responses = cvCreateMat( 1, sample_count, CV_32FC1 ));
- dst = out_responses->data.fl;
- if( r_type == CV_32FC1 )
- {
- const float* src = responses->data.fl;
- for( i = 0; i < sample_count; i++ )
- {
- int idx = map ? map[i] : i;
- assert( (unsigned)idx < (unsigned)sample_all );
- dst[i] = src[idx*r_step];
- }
- }
- else
- {
- const int* src = responses->data.i;
- for( i = 0; i < sample_count; i++ )
- {
- int idx = map ? map[i] : i;
- assert( (unsigned)idx < (unsigned)sample_all );
- dst[i] = (float)src[idx*r_step];
- }
- }
- __END__;
- return out_responses;
- }
- CvMat*
- cvPreprocessCategoricalResponses( const CvMat* responses,
- const CvMat* sample_idx, int sample_all,
- CvMat** out_response_map, CvMat** class_counts )
- {
- CvMat* out_responses = 0;
- int** response_ptr = 0;
- CV_FUNCNAME( "cvPreprocessCategoricalResponses" );
- if( out_response_map )
- *out_response_map = 0;
- if( class_counts )
- *class_counts = 0;
- __BEGIN__;
- int i, r_type, r_step;
- int cls_count = 1, prev_cls, prev_i;
- const int* map = 0;
- const int* srci;
- const float* srcfl;
- int* dst;
- int* cls_map;
- int* cls_counts = 0;
- int sample_count = sample_all;
- if( !CV_IS_MAT(responses) )
- CV_ERROR( CV_StsBadArg, "Invalid response array" );
- if( responses->rows != 1 && responses->cols != 1 )
- CV_ERROR( CV_StsBadSize, "Response array must be 1-dimensional" );
- if( responses->rows + responses->cols - 1 != sample_count )
- CV_ERROR( CV_StsUnmatchedSizes,
- "Response array must contain as many elements as the total number of samples" );
- r_type = CV_MAT_TYPE(responses->type);
- if( r_type != CV_32FC1 && r_type != CV_32SC1 )
- CV_ERROR( CV_StsUnsupportedFormat, "Unsupported response type" );
- r_step = responses->rows == 1 ? 1 : responses->step / CV_ELEM_SIZE(responses->type);
- if( sample_idx )
- {
- if( !CV_IS_MAT(sample_idx) || CV_MAT_TYPE(sample_idx->type) != CV_32SC1 ||
- (sample_idx->rows != 1 && sample_idx->cols != 1) || !CV_IS_MAT_CONT(sample_idx->type) )
- CV_ERROR( CV_StsBadArg, "sample index array should be continuous 1-dimensional integer vector" );
- if( sample_idx->rows + sample_idx->cols - 1 > sample_count )
- CV_ERROR( CV_StsBadSize, "sample index array is too large" );
- map = sample_idx->data.i;
- sample_count = sample_idx->rows + sample_idx->cols - 1;
- }
- CV_CALL( out_responses = cvCreateMat( 1, sample_count, CV_32SC1 ));
- if( !out_response_map )
- CV_ERROR( CV_StsNullPtr, "out_response_map pointer is NULL" );
- CV_CALL( response_ptr = (int**)cvAlloc( sample_count*sizeof(response_ptr[0])));
- srci = responses->data.i;
- srcfl = responses->data.fl;
- dst = out_responses->data.i;
- for( i = 0; i < sample_count; i++ )
- {
- int idx = map ? map[i] : i;
- assert( (unsigned)idx < (unsigned)sample_all );
- if( r_type == CV_32SC1 )
- dst[i] = srci[idx*r_step];
- else
- {
- float rf = srcfl[idx*r_step];
- int ri = cvRound(rf);
- if( ri != rf )
- {
- char buf[100];
- snprintf( buf, sizeof(buf), "response #%d is not integral", idx );
- CV_ERROR( CV_StsBadArg, buf );
- }
- dst[i] = ri;
- }
- response_ptr[i] = dst + i;
- }
- qsort( response_ptr, sample_count, sizeof(int*), icvCmpIntegersPtr );
- // count the classes
- for( i = 1; i < sample_count; i++ )
- cls_count += *response_ptr[i] != *response_ptr[i-1];
- if( cls_count < 2 )
- CV_ERROR( CV_StsBadArg, "There is only a single class" );
- CV_CALL( *out_response_map = cvCreateMat( 1, cls_count, CV_32SC1 ));
- if( class_counts )
- {
- CV_CALL( *class_counts = cvCreateMat( 1, cls_count, CV_32SC1 ));
- cls_counts = (*class_counts)->data.i;
- }
- // compact the class indices and build the map
- prev_cls = ~*response_ptr[0];
- cls_count = -1;
- cls_map = (*out_response_map)->data.i;
- for( i = 0, prev_i = -1; i < sample_count; i++ )
- {
- int cur_cls = *response_ptr[i];
- if( cur_cls != prev_cls )
- {
- if( cls_counts && cls_count >= 0 )
- cls_counts[cls_count] = i - prev_i;
- cls_map[++cls_count] = prev_cls = cur_cls;
- prev_i = i;
- }
- *response_ptr[i] = cls_count;
- }
- if( cls_counts )
- cls_counts[cls_count] = i - prev_i;
- __END__;
- cvFree( &response_ptr );
- return out_responses;
- }
- const float**
- cvGetTrainSamples( const CvMat* train_data, int tflag,
- const CvMat* var_idx, const CvMat* sample_idx,
- int* _var_count, int* _sample_count,
- bool always_copy_data )
- {
- float** samples = 0;
- CV_FUNCNAME( "cvGetTrainSamples" );
- __BEGIN__;
- int i, j, var_count, sample_count, s_step, v_step;
- bool copy_data;
- const float* data;
- const int *s_idx, *v_idx;
- if( !CV_IS_MAT(train_data) )
- CV_ERROR( CV_StsBadArg, "Invalid or NULL training data matrix" );
- var_count = var_idx ? var_idx->cols + var_idx->rows - 1 :
- tflag == CV_ROW_SAMPLE ? train_data->cols : train_data->rows;
- sample_count = sample_idx ? sample_idx->cols + sample_idx->rows - 1 :
- tflag == CV_ROW_SAMPLE ? train_data->rows : train_data->cols;
- if( _var_count )
- *_var_count = var_count;
- if( _sample_count )
- *_sample_count = sample_count;
- copy_data = tflag != CV_ROW_SAMPLE || var_idx || always_copy_data;
- CV_CALL( samples = (float**)cvAlloc(sample_count*sizeof(samples[0]) +
- (copy_data ? 1 : 0)*var_count*sample_count*sizeof(samples[0][0])) );
- data = train_data->data.fl;
- s_step = train_data->step / sizeof(samples[0][0]);
- v_step = 1;
- s_idx = sample_idx ? sample_idx->data.i : 0;
- v_idx = var_idx ? var_idx->data.i : 0;
- if( !copy_data )
- {
- for( i = 0; i < sample_count; i++ )
- samples[i] = (float*)(data + (s_idx ? s_idx[i] : i)*s_step);
- }
- else
- {
- samples[0] = (float*)(samples + sample_count);
- if( tflag != CV_ROW_SAMPLE )
- CV_SWAP( s_step, v_step, i );
- for( i = 0; i < sample_count; i++ )
- {
- float* dst = samples[i] = samples[0] + i*var_count;
- const float* src = data + (s_idx ? s_idx[i] : i)*s_step;
- if( !v_idx )
- for( j = 0; j < var_count; j++ )
- dst[j] = src[j*v_step];
- else
- for( j = 0; j < var_count; j++ )
- dst[j] = src[v_idx[j]*v_step];
- }
- }
- __END__;
- return (const float**)samples;
- }
- void
- cvCheckTrainData( const CvMat* train_data, int tflag,
- const CvMat* missing_mask,
- int* var_all, int* sample_all )
- {
- CV_FUNCNAME( "cvCheckTrainData" );
- if( var_all )
- *var_all = 0;
- if( sample_all )
- *sample_all = 0;
- __BEGIN__;
- // check parameter types and sizes
- if( !CV_IS_MAT(train_data) || CV_MAT_TYPE(train_data->type) != CV_32FC1 )
- CV_ERROR( CV_StsBadArg, "train data must be floating-point matrix" );
- if( missing_mask )
- {
- if( !CV_IS_MAT(missing_mask) || !CV_IS_MASK_ARR(missing_mask) ||
- !CV_ARE_SIZES_EQ(train_data, missing_mask) )
- CV_ERROR( CV_StsBadArg,
- "missing value mask must be 8-bit matrix of the same size as training data" );
- }
- if( tflag != CV_ROW_SAMPLE && tflag != CV_COL_SAMPLE )
- CV_ERROR( CV_StsBadArg,
- "Unknown training data layout (must be CV_ROW_SAMPLE or CV_COL_SAMPLE)" );
- if( var_all )
- *var_all = tflag == CV_ROW_SAMPLE ? train_data->cols : train_data->rows;
- if( sample_all )
- *sample_all = tflag == CV_ROW_SAMPLE ? train_data->rows : train_data->cols;
- __END__;
- }
- int
- cvPrepareTrainData( const char* /*funcname*/,
- const CvMat* train_data, int tflag,
- const CvMat* responses, int response_type,
- const CvMat* var_idx,
- const CvMat* sample_idx,
- bool always_copy_data,
- const float*** out_train_samples,
- int* _sample_count,
- int* _var_count,
- int* _var_all,
- CvMat** out_responses,
- CvMat** out_response_map,
- CvMat** out_var_idx,
- CvMat** out_sample_idx )
- {
- int ok = 0;
- CvMat* _var_idx = 0;
- CvMat* _sample_idx = 0;
- CvMat* _responses = 0;
- int sample_all = 0, sample_count = 0, var_all = 0, var_count = 0;
- CV_FUNCNAME( "cvPrepareTrainData" );
- // step 0. clear all the output pointers to ensure we do not try
- // to call free() with uninitialized pointers
- if( out_responses )
- *out_responses = 0;
- if( out_response_map )
- *out_response_map = 0;
- if( out_var_idx )
- *out_var_idx = 0;
- if( out_sample_idx )
- *out_sample_idx = 0;
- if( out_train_samples )
- *out_train_samples = 0;
- if( _sample_count )
- *_sample_count = 0;
- if( _var_count )
- *_var_count = 0;
- if( _var_all )
- *_var_all = 0;
- __BEGIN__;
- if( !out_train_samples )
- CV_ERROR( CV_StsBadArg, "output pointer to train samples is NULL" );
- CV_CALL( cvCheckTrainData( train_data, tflag, 0, &var_all, &sample_all ));
- if( sample_idx )
- CV_CALL( _sample_idx = cvPreprocessIndexArray( sample_idx, sample_all ));
- if( var_idx )
- CV_CALL( _var_idx = cvPreprocessIndexArray( var_idx, var_all ));
- if( responses )
- {
- if( !out_responses )
- CV_ERROR( CV_StsNullPtr, "output response pointer is NULL" );
- if( response_type == CV_VAR_NUMERICAL )
- {
- CV_CALL( _responses = cvPreprocessOrderedResponses( responses,
- _sample_idx, sample_all ));
- }
- else
- {
- CV_CALL( _responses = cvPreprocessCategoricalResponses( responses,
- _sample_idx, sample_all, out_response_map, 0 ));
- }
- }
- CV_CALL( *out_train_samples =
- cvGetTrainSamples( train_data, tflag, _var_idx, _sample_idx,
- &var_count, &sample_count, always_copy_data ));
- ok = 1;
- __END__;
- if( ok )
- {
- if( out_responses )
- *out_responses = _responses, _responses = 0;
- if( out_var_idx )
- *out_var_idx = _var_idx, _var_idx = 0;
- if( out_sample_idx )
- *out_sample_idx = _sample_idx, _sample_idx = 0;
- if( _sample_count )
- *_sample_count = sample_count;
- if( _var_count )
- *_var_count = var_count;
- if( _var_all )
- *_var_all = var_all;
- }
- else
- {
- if( out_response_map )
- cvReleaseMat( out_response_map );
- cvFree( out_train_samples );
- }
- if( _responses != responses )
- cvReleaseMat( &_responses );
- cvReleaseMat( &_var_idx );
- cvReleaseMat( &_sample_idx );
- return ok;
- }
- typedef struct CvSampleResponsePair
- {
- const float* sample;
- const uchar* mask;
- int response;
- int index;
- }
- CvSampleResponsePair;
- static int
- CV_CDECL icvCmpSampleResponsePairs( const void* a, const void* b )
- {
- int ra = ((const CvSampleResponsePair*)a)->response;
- int rb = ((const CvSampleResponsePair*)b)->response;
- int ia = ((const CvSampleResponsePair*)a)->index;
- int ib = ((const CvSampleResponsePair*)b)->index;
- return ra < rb ? -1 : ra > rb ? 1 : ia - ib;
- //return (ra > rb ? -1 : 0)|(ra < rb);
- }
- void
- cvSortSamplesByClasses( const float** samples, const CvMat* classes,
- int* class_ranges, const uchar** mask )
- {
- CvSampleResponsePair* pairs = 0;
- CV_FUNCNAME( "cvSortSamplesByClasses" );
- __BEGIN__;
- int i, k = 0, sample_count;
- if( !samples || !classes || !class_ranges )
- CV_ERROR( CV_StsNullPtr, "INTERNAL ERROR: some of the args are NULL pointers" );
- if( classes->rows != 1 || CV_MAT_TYPE(classes->type) != CV_32SC1 )
- CV_ERROR( CV_StsBadArg, "classes array must be a single row of integers" );
- sample_count = classes->cols;
- CV_CALL( pairs = (CvSampleResponsePair*)cvAlloc( (sample_count+1)*sizeof(pairs[0])));
- for( i = 0; i < sample_count; i++ )
- {
- pairs[i].sample = samples[i];
- pairs[i].mask = (mask) ? (mask[i]) : 0;
- pairs[i].response = classes->data.i[i];
- pairs[i].index = i;
- assert( classes->data.i[i] >= 0 );
- }
- qsort( pairs, sample_count, sizeof(pairs[0]), icvCmpSampleResponsePairs );
- pairs[sample_count].response = -1;
- class_ranges[0] = 0;
- for( i = 0; i < sample_count; i++ )
- {
- samples[i] = pairs[i].sample;
- if (mask)
- mask[i] = pairs[i].mask;
- classes->data.i[i] = pairs[i].response;
- if( pairs[i].response != pairs[i+1].response )
- class_ranges[++k] = i+1;
- }
- __END__;
- cvFree( &pairs );
- }
- void
- cvPreparePredictData( const CvArr* _sample, int dims_all,
- const CvMat* comp_idx, int class_count,
- const CvMat* prob, float** _row_sample,
- int as_sparse )
- {
- float* row_sample = 0;
- int* inverse_comp_idx = 0;
- CV_FUNCNAME( "cvPreparePredictData" );
- __BEGIN__;
- const CvMat* sample = (const CvMat*)_sample;
- float* sample_data;
- int sample_step;
- int is_sparse = CV_IS_SPARSE_MAT(sample);
- int d, sizes[CV_MAX_DIM];
- int i, dims_selected;
- int vec_size;
- if( !is_sparse && !CV_IS_MAT(sample) )
- CV_ERROR( !sample ? CV_StsNullPtr : CV_StsBadArg, "The sample is not a valid vector" );
- if( cvGetElemType( sample ) != CV_32FC1 )
- CV_ERROR( CV_StsUnsupportedFormat, "Input sample must have 32fC1 type" );
- CV_CALL( d = cvGetDims( sample, sizes ));
- if( !((is_sparse && d == 1) || (!is_sparse && d == 2 && (sample->rows == 1 || sample->cols == 1))) )
- CV_ERROR( CV_StsBadSize, "Input sample must be 1-dimensional vector" );
- if( d == 1 )
- sizes[1] = 1;
- if( sizes[0] + sizes[1] - 1 != dims_all )
- CV_ERROR( CV_StsUnmatchedSizes,
- "The sample size is different from what has been used for training" );
- if( !_row_sample )
- CV_ERROR( CV_StsNullPtr, "INTERNAL ERROR: The row_sample pointer is NULL" );
- if( comp_idx && (!CV_IS_MAT(comp_idx) || comp_idx->rows != 1 ||
- CV_MAT_TYPE(comp_idx->type) != CV_32SC1) )
- CV_ERROR( CV_StsBadArg, "INTERNAL ERROR: invalid comp_idx" );
- dims_selected = comp_idx ? comp_idx->cols : dims_all;
- if( prob )
- {
- if( !CV_IS_MAT(prob) )
- CV_ERROR( CV_StsBadArg, "The output matrix of probabilities is invalid" );
- if( (prob->rows != 1 && prob->cols != 1) ||
- (CV_MAT_TYPE(prob->type) != CV_32FC1 &&
- CV_MAT_TYPE(prob->type) != CV_64FC1) )
- CV_ERROR( CV_StsBadSize,
- "The matrix of probabilities must be 1-dimensional vector of 32fC1 type" );
- if( prob->rows + prob->cols - 1 != class_count )
- CV_ERROR( CV_StsUnmatchedSizes,
- "The vector of probabilities must contain as many elements as "
- "the number of classes in the training set" );
- }
- vec_size = !as_sparse ? dims_selected*sizeof(row_sample[0]) :
- (dims_selected + 1)*sizeof(CvSparseVecElem32f);
- if( CV_IS_MAT(sample) )
- {
- sample_data = sample->data.fl;
- sample_step = CV_IS_MAT_CONT(sample->type) ? 1 : sample->step/sizeof(row_sample[0]);
- if( !comp_idx && CV_IS_MAT_CONT(sample->type) && !as_sparse )
- *_row_sample = sample_data;
- else
- {
- CV_CALL( row_sample = (float*)cvAlloc( vec_size ));
- if( !comp_idx )
- for( i = 0; i < dims_selected; i++ )
- row_sample[i] = sample_data[sample_step*i];
- else
- {
- int* comp = comp_idx->data.i;
- for( i = 0; i < dims_selected; i++ )
- row_sample[i] = sample_data[sample_step*comp[i]];
- }
- *_row_sample = row_sample;
- }
- if( as_sparse )
- {
- const float* src = (const float*)row_sample;
- CvSparseVecElem32f* dst = (CvSparseVecElem32f*)row_sample;
- dst[dims_selected].idx = -1;
- for( i = dims_selected - 1; i >= 0; i-- )
- {
- dst[i].idx = i;
- dst[i].val = src[i];
- }
- }
- }
- else
- {
- CvSparseNode* node;
- CvSparseMatIterator mat_iterator;
- const CvSparseMat* sparse = (const CvSparseMat*)sample;
- assert( is_sparse );
- node = cvInitSparseMatIterator( sparse, &mat_iterator );
- CV_CALL( row_sample = (float*)cvAlloc( vec_size ));
- if( comp_idx )
- {
- CV_CALL( inverse_comp_idx = (int*)cvAlloc( dims_all*sizeof(int) ));
- memset( inverse_comp_idx, -1, dims_all*sizeof(int) );
- for( i = 0; i < dims_selected; i++ )
- inverse_comp_idx[comp_idx->data.i[i]] = i;
- }
- if( !as_sparse )
- {
- memset( row_sample, 0, vec_size );
- for( ; node != 0; node = cvGetNextSparseNode(&mat_iterator) )
- {
- int idx = *CV_NODE_IDX( sparse, node );
- if( inverse_comp_idx )
- {
- idx = inverse_comp_idx[idx];
- if( idx < 0 )
- continue;
- }
- row_sample[idx] = *(float*)CV_NODE_VAL( sparse, node );
- }
- }
- else
- {
- CvSparseVecElem32f* ptr = (CvSparseVecElem32f*)row_sample;
- for( ; node != 0; node = cvGetNextSparseNode(&mat_iterator) )
- {
- int idx = *CV_NODE_IDX( sparse, node );
- if( inverse_comp_idx )
- {
- idx = inverse_comp_idx[idx];
- if( idx < 0 )
- continue;
- }
- ptr->idx = idx;
- ptr->val = *(float*)CV_NODE_VAL( sparse, node );
- ptr++;
- }
- qsort( row_sample, ptr - (CvSparseVecElem32f*)row_sample,
- sizeof(ptr[0]), icvCmpSparseVecElems );
- ptr->idx = -1;
- }
- *_row_sample = row_sample;
- }
- __END__;
- if( inverse_comp_idx )
- cvFree( &inverse_comp_idx );
- if( cvGetErrStatus() < 0 && _row_sample )
- {
- cvFree( &row_sample );
- *_row_sample = 0;
- }
- }
- static void
- icvConvertDataToSparse( const uchar* src, int src_step, int src_type,
- uchar* dst, int dst_step, int dst_type,
- CvSize size, int* idx )
- {
- CV_FUNCNAME( "icvConvertDataToSparse" );
- __BEGIN__;
- int i, j;
- src_type = CV_MAT_TYPE(src_type);
- dst_type = CV_MAT_TYPE(dst_type);
- if( CV_MAT_CN(src_type) != 1 || CV_MAT_CN(dst_type) != 1 )
- CV_ERROR( CV_StsUnsupportedFormat, "The function supports only single-channel arrays" );
- if( src_step == 0 )
- src_step = CV_ELEM_SIZE(src_type);
- if( dst_step == 0 )
- dst_step = CV_ELEM_SIZE(dst_type);
- // if there is no "idx" and if both arrays are continuous,
- // do the whole processing (copying or conversion) in a single loop
- if( !idx && CV_ELEM_SIZE(src_type)*size.width == src_step &&
- CV_ELEM_SIZE(dst_type)*size.width == dst_step )
- {
- size.width *= size.height;
- size.height = 1;
- }
- if( src_type == dst_type )
- {
- int full_width = CV_ELEM_SIZE(dst_type)*size.width;
- if( full_width == sizeof(int) ) // another common case: copy int's or float's
- for( i = 0; i < size.height; i++, src += src_step )
- *(int*)(dst + dst_step*(idx ? idx[i] : i)) = *(int*)src;
- else
- for( i = 0; i < size.height; i++, src += src_step )
- memcpy( dst + dst_step*(idx ? idx[i] : i), src, full_width );
- }
- else if( src_type == CV_32SC1 && (dst_type == CV_32FC1 || dst_type == CV_64FC1) )
- for( i = 0; i < size.height; i++, src += src_step )
- {
- uchar* _dst = dst + dst_step*(idx ? idx[i] : i);
- if( dst_type == CV_32FC1 )
- for( j = 0; j < size.width; j++ )
- ((float*)_dst)[j] = (float)((int*)src)[j];
- else
- for( j = 0; j < size.width; j++ )
- ((double*)_dst)[j] = ((int*)src)[j];
- }
- else if( (src_type == CV_32FC1 || src_type == CV_64FC1) && dst_type == CV_32SC1 )
- for( i = 0; i < size.height; i++, src += src_step )
- {
- uchar* _dst = dst + dst_step*(idx ? idx[i] : i);
- if( src_type == CV_32FC1 )
- for( j = 0; j < size.width; j++ )
- ((int*)_dst)[j] = cvRound(((float*)src)[j]);
- else
- for( j = 0; j < size.width; j++ )
- ((int*)_dst)[j] = cvRound(((double*)src)[j]);
- }
- else if( (src_type == CV_32FC1 && dst_type == CV_64FC1) ||
- (src_type == CV_64FC1 && dst_type == CV_32FC1) )
- for( i = 0; i < size.height; i++, src += src_step )
- {
- uchar* _dst = dst + dst_step*(idx ? idx[i] : i);
- if( src_type == CV_32FC1 )
- for( j = 0; j < size.width; j++ )
- ((double*)_dst)[j] = ((float*)src)[j];
- else
- for( j = 0; j < size.width; j++ )
- ((float*)_dst)[j] = (float)((double*)src)[j];
- }
- else
- CV_ERROR( CV_StsUnsupportedFormat, "Unsupported combination of input and output vectors" );
- __END__;
- }
- void
- cvWritebackLabels( const CvMat* labels, CvMat* dst_labels,
- const CvMat* centers, CvMat* dst_centers,
- const CvMat* probs, CvMat* dst_probs,
- const CvMat* sample_idx, int samples_all,
- const CvMat* comp_idx, int dims_all )
- {
- CV_FUNCNAME( "cvWritebackLabels" );
- __BEGIN__;
- int samples_selected = samples_all, dims_selected = dims_all;
- if( dst_labels && !CV_IS_MAT(dst_labels) )
- CV_ERROR( CV_StsBadArg, "Array of output labels is not a valid matrix" );
- if( dst_centers )
- if( !ICV_IS_MAT_OF_TYPE(dst_centers, CV_32FC1) &&
- !ICV_IS_MAT_OF_TYPE(dst_centers, CV_64FC1) )
- CV_ERROR( CV_StsBadArg, "Array of cluster centers is not a valid matrix" );
- if( dst_probs && !CV_IS_MAT(dst_probs) )
- CV_ERROR( CV_StsBadArg, "Probability matrix is not valid" );
- if( sample_idx )
- {
- CV_ASSERT( sample_idx->rows == 1 && CV_MAT_TYPE(sample_idx->type) == CV_32SC1 );
- samples_selected = sample_idx->cols;
- }
- if( comp_idx )
- {
- CV_ASSERT( comp_idx->rows == 1 && CV_MAT_TYPE(comp_idx->type) == CV_32SC1 );
- dims_selected = comp_idx->cols;
- }
- if( dst_labels && (!labels || labels->data.ptr != dst_labels->data.ptr) )
- {
- if( !labels )
- CV_ERROR( CV_StsNullPtr, "NULL labels" );
- CV_ASSERT( labels->rows == 1 );
- if( dst_labels->rows != 1 && dst_labels->cols != 1 )
- CV_ERROR( CV_StsBadSize, "Array of output labels should be 1d vector" );
- if( dst_labels->rows + dst_labels->cols - 1 != samples_all )
- CV_ERROR( CV_StsUnmatchedSizes,
- "Size of vector of output labels is not equal to the total number of input samples" );
- CV_ASSERT( labels->cols == samples_selected );
- CV_CALL( icvConvertDataToSparse( labels->data.ptr, labels->step, labels->type,
- dst_labels->data.ptr, dst_labels->step, dst_labels->type,
- cvSize( 1, samples_selected ), sample_idx ? sample_idx->data.i : 0 ));
- }
- if( dst_centers && (!centers || centers->data.ptr != dst_centers->data.ptr) )
- {
- int i;
- if( !centers )
- CV_ERROR( CV_StsNullPtr, "NULL centers" );
- if( centers->rows != dst_centers->rows )
- CV_ERROR( CV_StsUnmatchedSizes, "Invalid number of rows in matrix of output centers" );
- if( dst_centers->cols != dims_all )
- CV_ERROR( CV_StsUnmatchedSizes,
- "Number of columns in matrix of output centers is "
- "not equal to the total number of components in the input samples" );
- CV_ASSERT( centers->cols == dims_selected );
- for( i = 0; i < centers->rows; i++ )
- CV_CALL( icvConvertDataToSparse( centers->data.ptr + i*centers->step, 0, centers->type,
- dst_centers->data.ptr + i*dst_centers->step, 0, dst_centers->type,
- cvSize( 1, dims_selected ), comp_idx ? comp_idx->data.i : 0 ));
- }
- if( dst_probs && (!probs || probs->data.ptr != dst_probs->data.ptr) )
- {
- if( !probs )
- CV_ERROR( CV_StsNullPtr, "NULL probs" );
- if( probs->cols != dst_probs->cols )
- CV_ERROR( CV_StsUnmatchedSizes, "Invalid number of columns in output probability matrix" );
- if( dst_probs->rows != samples_all )
- CV_ERROR( CV_StsUnmatchedSizes,
- "Number of rows in output probability matrix is "
- "not equal to the total number of input samples" );
- CV_ASSERT( probs->rows == samples_selected );
- CV_CALL( icvConvertDataToSparse( probs->data.ptr, probs->step, probs->type,
- dst_probs->data.ptr, dst_probs->step, dst_probs->type,
- cvSize( probs->cols, samples_selected ),
- sample_idx ? sample_idx->data.i : 0 ));
- }
- __END__;
- }
- #if 0
- CV_IMPL void
- cvStatModelMultiPredict( const CvStatModel* stat_model,
- const CvArr* predict_input,
- int flags, CvMat* predict_output,
- CvMat* probs, const CvMat* sample_idx )
- {
- CvMemStorage* storage = 0;
- CvMat* sample_idx_buffer = 0;
- CvSparseMat** sparse_rows = 0;
- int samples_selected = 0;
- CV_FUNCNAME( "cvStatModelMultiPredict" );
- __BEGIN__;
- int i;
- int predict_output_step = 1, sample_idx_step = 1;
- int type;
- int d, sizes[CV_MAX_DIM];
- int tflag = flags == CV_COL_SAMPLE;
- int samples_all, dims_all;
- int is_sparse = CV_IS_SPARSE_MAT(predict_input);
- CvMat predict_input_part;
- CvArr* sample = &predict_input_part;
- CvMat probs_part;
- CvMat* probs1 = probs ? &probs_part : 0;
- if( !CV_IS_STAT_MODEL(stat_model) )
- CV_ERROR( !stat_model ? CV_StsNullPtr : CV_StsBadArg, "Invalid statistical model" );
- if( !stat_model->predict )
- CV_ERROR( CV_StsNotImplemented, "There is no \"predict\" method" );
- if( !predict_input || !predict_output )
- CV_ERROR( CV_StsNullPtr, "NULL input or output matrices" );
- if( !is_sparse && !CV_IS_MAT(predict_input) )
- CV_ERROR( CV_StsBadArg, "predict_input should be a matrix or a sparse matrix" );
- if( !CV_IS_MAT(predict_output) )
- CV_ERROR( CV_StsBadArg, "predict_output should be a matrix" );
- type = cvGetElemType( predict_input );
- if( type != CV_32FC1 ||
- (CV_MAT_TYPE(predict_output->type) != CV_32FC1 &&
- CV_MAT_TYPE(predict_output->type) != CV_32SC1 ))
- CV_ERROR( CV_StsUnsupportedFormat, "The input or output matrix has unsupported format" );
- CV_CALL( d = cvGetDims( predict_input, sizes ));
- if( d > 2 )
- CV_ERROR( CV_StsBadSize, "The input matrix should be 1- or 2-dimensional" );
- if( !tflag )
- {
- samples_all = samples_selected = sizes[0];
- dims_all = sizes[1];
- }
- else
- {
- samples_all = samples_selected = sizes[1];
- dims_all = sizes[0];
- }
- if( sample_idx )
- {
- if( !CV_IS_MAT(sample_idx) )
- CV_ERROR( CV_StsBadArg, "Invalid sample_idx matrix" );
- if( sample_idx->cols != 1 && sample_idx->rows != 1 )
- CV_ERROR( CV_StsBadSize, "sample_idx must be 1-dimensional matrix" );
- samples_selected = sample_idx->rows + sample_idx->cols - 1;
- if( CV_MAT_TYPE(sample_idx->type) == CV_32SC1 )
- {
- if( samples_selected > samples_all )
- CV_ERROR( CV_StsBadSize, "sample_idx is too large vector" );
- }
- else if( samples_selected != samples_all )
- CV_ERROR( CV_StsUnmatchedSizes, "sample_idx has incorrect size" );
- sample_idx_step = sample_idx->step ?
- sample_idx->step / CV_ELEM_SIZE(sample_idx->type) : 1;
- }
- if( predict_output->rows != 1 && predict_output->cols != 1 )
- CV_ERROR( CV_StsBadSize, "predict_output should be a 1-dimensional matrix" );
- if( predict_output->rows + predict_output->cols - 1 != samples_all )
- CV_ERROR( CV_StsUnmatchedSizes, "predict_output and predict_input have uncoordinated sizes" );
- predict_output_step = predict_output->step ?
- predict_output->step / CV_ELEM_SIZE(predict_output->type) : 1;
- if( probs )
- {
- if( !CV_IS_MAT(probs) )
- CV_ERROR( CV_StsBadArg, "Invalid matrix of probabilities" );
- if( probs->rows != samples_all )
- CV_ERROR( CV_StsUnmatchedSizes,
- "matrix of probabilities must have as many rows as the total number of samples" );
- if( CV_MAT_TYPE(probs->type) != CV_32FC1 )
- CV_ERROR( CV_StsUnsupportedFormat, "matrix of probabilities must have 32fC1 type" );
- }
- if( is_sparse )
- {
- CvSparseNode* node;
- CvSparseMatIterator mat_iterator;
- CvSparseMat* sparse = (CvSparseMat*)predict_input;
- if( sample_idx && CV_MAT_TYPE(sample_idx->type) == CV_32SC1 )
- {
- CV_CALL( sample_idx_buffer = cvCreateMat( 1, samples_all, CV_8UC1 ));
- cvZero( sample_idx_buffer );
- for( i = 0; i < samples_selected; i++ )
- sample_idx_buffer->data.ptr[sample_idx->data.i[i*sample_idx_step]] = 1;
- samples_selected = samples_all;
- sample_idx = sample_idx_buffer;
- sample_idx_step = 1;
- }
- CV_CALL( sparse_rows = (CvSparseMat**)cvAlloc( samples_selected*sizeof(sparse_rows[0])));
- for( i = 0; i < samples_selected; i++ )
- {
- if( sample_idx && sample_idx->data.ptr[i*sample_idx_step] == 0 )
- continue;
- CV_CALL( sparse_rows[i] = cvCreateSparseMat( 1, &dims_all, type ));
- if( !storage )
- storage = sparse_rows[i]->heap->storage;
- else
- {
- // hack: to decrease memory footprint, make all the sparse matrices
- // reside in the same storage
- int elem_size = sparse_rows[i]->heap->elem_size;
- cvReleaseMemStorage( &sparse_rows[i]->heap->storage );
- sparse_rows[i]->heap = cvCreateSet( 0, sizeof(CvSet), elem_size, storage );
- }
- }
- // put each row (or column) of predict_input into separate sparse matrix.
- node = cvInitSparseMatIterator( sparse, &mat_iterator );
- for( ; node != 0; node = cvGetNextSparseNode( &mat_iterator ))
- {
- int* idx = CV_NODE_IDX( sparse, node );
- int idx0 = idx[tflag ^ 1];
- int idx1 = idx[tflag];
- if( sample_idx && sample_idx->data.ptr[idx0*sample_idx_step] == 0 )
- continue;
- assert( sparse_rows[idx0] != 0 );
- *(float*)cvPtrND( sparse, &idx1, 0, 1, 0 ) = *(float*)CV_NODE_VAL( sparse, node );
- }
- }
- for( i = 0; i < samples_selected; i++ )
- {
- int idx = i;
- float response;
- if( sample_idx )
- {
- if( CV_MAT_TYPE(sample_idx->type) == CV_32SC1 )
- {
- idx = sample_idx->data.i[i*sample_idx_step];
- if( (unsigned)idx >= (unsigned)samples_all )
- CV_ERROR( CV_StsOutOfRange, "Some of sample_idx elements are out of range" );
- }
- else if( CV_MAT_TYPE(sample_idx->type) == CV_8UC1 &&
- sample_idx->data.ptr[i*sample_idx_step] == 0 )
- continue;
- }
- if( !is_sparse )
- {
- if( !tflag )
- cvGetRow( predict_input, &predict_input_part, idx );
- else
- {
- cvGetCol( predict_input, &predict_input_part, idx );
- }
- }
- else
- sample = sparse_rows[idx];
- if( probs )
- cvGetRow( probs, probs1, idx );
- CV_CALL( response = stat_model->predict( stat_model, (CvMat*)sample, probs1 ));
- if( CV_MAT_TYPE(predict_output->type) == CV_32FC1 )
- predict_output->data.fl[idx*predict_output_step] = response;
- else
- {
- CV_ASSERT( cvRound(response) == response );
- predict_output->data.i[idx*predict_output_step] = cvRound(response);
- }
- }
- __END__;
- if( sparse_rows )
- {
- int i;
- for( i = 0; i < samples_selected; i++ )
- if( sparse_rows[i] )
- {
- sparse_rows[i]->heap->storage = 0;
- cvReleaseSparseMat( &sparse_rows[i] );
- }
- cvFree( &sparse_rows );
- }
- cvReleaseMat( &sample_idx_buffer );
- cvReleaseMemStorage( &storage );
- }
- #endif
- // By P. Yarykin - begin -
- void cvCombineResponseMaps (CvMat* _responses,
- const CvMat* old_response_map,
- CvMat* new_response_map,
- CvMat** out_response_map)
- {
- int** old_data = NULL;
- int** new_data = NULL;
- CV_FUNCNAME ("cvCombineResponseMaps");
- __BEGIN__
- int i,j;
- int old_n, new_n, out_n;
- int samples, free_response;
- int* first;
- int* responses;
- int* out_data;
- if( out_response_map )
- *out_response_map = 0;
- // Check input data.
- if ((!ICV_IS_MAT_OF_TYPE (_responses, CV_32SC1)) ||
- (!ICV_IS_MAT_OF_TYPE (old_response_map, CV_32SC1)) ||
- (!ICV_IS_MAT_OF_TYPE (new_response_map, CV_32SC1)))
- {
- CV_ERROR (CV_StsBadArg, "Some of input arguments is not the CvMat")
- }
- // Prepare sorted responses.
- first = new_response_map->data.i;
- new_n = new_response_map->cols;
- CV_CALL (new_data = (int**)cvAlloc (new_n * sizeof (new_data[0])));
- for (i = 0; i < new_n; i++)
- new_data[i] = first + i;
- qsort (new_data, new_n, sizeof(int*), icvCmpIntegersPtr);
- first = old_response_map->data.i;
- old_n = old_response_map->cols;
- CV_CALL (old_data = (int**)cvAlloc (old_n * sizeof (old_data[0])));
- for (i = 0; i < old_n; i++)
- old_data[i] = first + i;
- qsort (old_data, old_n, sizeof(int*), icvCmpIntegersPtr);
- // Count the number of different responses.
- for (i = 0, j = 0, out_n = 0; i < old_n && j < new_n; out_n++)
- {
- if (*old_data[i] == *new_data[j])
- {
- i++;
- j++;
- }
- else if (*old_data[i] < *new_data[j])
- i++;
- else
- j++;
- }
- out_n += old_n - i + new_n - j;
- // Create and fill the result response maps.
- CV_CALL (*out_response_map = cvCreateMat (1, out_n, CV_32SC1));
- out_data = (*out_response_map)->data.i;
- memcpy (out_data, first, old_n * sizeof (int));
- free_response = old_n;
- for (i = 0, j = 0; i < old_n && j < new_n; )
- {
- if (*old_data[i] == *new_data[j])
- {
- *new_data[j] = (int)(old_data[i] - first);
- i++;
- j++;
- }
- else if (*old_data[i] < *new_data[j])
- i++;
- else
- {
- out_data[free_response] = *new_data[j];
- *new_data[j] = free_response++;
- j++;
- }
- }
- for (; j < new_n; j++)
- {
- out_data[free_response] = *new_data[j];
- *new_data[j] = free_response++;
- }
- CV_ASSERT (free_response == out_n);
- // Change <responses> according to out response map.
- samples = _responses->cols + _responses->rows - 1;
- responses = _responses->data.i;
- first = new_response_map->data.i;
- for (i = 0; i < samples; i++)
- {
- responses[i] = first[responses[i]];
- }
- __END__
- cvFree(&old_data);
- cvFree(&new_data);
- }
- static int icvGetNumberOfCluster( double* prob_vector, int num_of_clusters, float r,
- float outlier_thresh, int normalize_probs )
- {
- int max_prob_loc = 0;
- CV_FUNCNAME("icvGetNumberOfCluster");
- __BEGIN__;
- double prob, maxprob, sum;
- int i;
- CV_ASSERT(prob_vector);
- CV_ASSERT(num_of_clusters >= 0);
- maxprob = prob_vector[0];
- max_prob_loc = 0;
- sum = maxprob;
- for( i = 1; i < num_of_clusters; i++ )
- {
- prob = prob_vector[i];
- sum += prob;
- if( prob > maxprob )
- {
- max_prob_loc = i;
- maxprob = prob;
- }
- }
- if( normalize_probs && fabs(sum - 1.) > FLT_EPSILON )
- {
- for( i = 0; i < num_of_clusters; i++ )
- prob_vector[i] /= sum;
- }
- if( fabs(r - 1.) > FLT_EPSILON && fabs(sum - 1.) < outlier_thresh )
- max_prob_loc = -1;
- __END__;
- return max_prob_loc;
- } // End of icvGetNumberOfCluster
- void icvFindClusterLabels( const CvMat* probs, float outlier_thresh, float r,
- const CvMat* labels )
- {
- CvMat* counts = 0;
- CV_FUNCNAME("icvFindClusterLabels");
- __BEGIN__;
- int nclusters, nsamples;
- int i, j;
- double* probs_data;
- CV_ASSERT( ICV_IS_MAT_OF_TYPE(probs, CV_64FC1) );
- CV_ASSERT( ICV_IS_MAT_OF_TYPE(labels, CV_32SC1) );
- nclusters = probs->cols;
- nsamples = probs->rows;
- CV_ASSERT( nsamples == labels->cols );
- CV_CALL( counts = cvCreateMat( 1, nclusters + 1, CV_32SC1 ) );
- CV_CALL( cvSetZero( counts ));
- for( i = 0; i < nsamples; i++ )
- {
- labels->data.i[i] = icvGetNumberOfCluster( probs->data.db + i*probs->cols,
- nclusters, r, outlier_thresh, 1 );
- counts->data.i[labels->data.i[i] + 1]++;
- }
- CV_ASSERT((int)cvSum(counts).val[0] == nsamples);
- // Filling empty clusters with the vector, that has the maximal probability
- for( j = 0; j < nclusters; j++ ) // outliers are ignored
- {
- int maxprob_loc = -1;
- double maxprob = 0;
- if( counts->data.i[j+1] ) // j-th class is not empty
- continue;
- // look for the presentative, which is not lonely in it's cluster
- // and that has a maximal probability among all these vectors
- probs_data = probs->data.db;
- for( i = 0; i < nsamples; i++, probs_data++ )
- {
- int label = labels->data.i[i];
- double prob;
- if( counts->data.i[label+1] == 0 ||
- (counts->data.i[label+1] <= 1 && label != -1) )
- continue;
- prob = *probs_data;
- if( prob >= maxprob )
- {
- maxprob = prob;
- maxprob_loc = i;
- }
- }
- // maxprob_loc == 0 <=> number of vectors less then number of clusters
- CV_ASSERT( maxprob_loc >= 0 );
- counts->data.i[labels->data.i[maxprob_loc] + 1]--;
- labels->data.i[maxprob_loc] = j;
- counts->data.i[j + 1]++;
- }
- __END__;
- cvReleaseMat( &counts );
- } // End of icvFindClusterLabels
- /* End of file */
|