123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250 |
- #include "opencv2/core.hpp"
- #include "opencv2/imgproc.hpp"
- #include "HOGfeatures.h"
- #include "cascadeclassifier.h"
- using namespace std;
- using namespace cv;
- CvHOGFeatureParams::CvHOGFeatureParams()
- {
- maxCatCount = 0;
- name = HOGF_NAME;
- featSize = N_BINS * N_CELLS;
- }
- void CvHOGEvaluator::init(const CvFeatureParams *_featureParams, int _maxSampleCount, Size _winSize)
- {
- CV_Assert( _maxSampleCount > 0);
- int cols = (_winSize.width + 1) * (_winSize.height + 1);
- for (int bin = 0; bin < N_BINS; bin++)
- {
- hist.push_back(Mat(_maxSampleCount, cols, CV_32FC1));
- }
- normSum.create( (int)_maxSampleCount, cols, CV_32FC1 );
- CvFeatureEvaluator::init( _featureParams, _maxSampleCount, _winSize );
- }
- void CvHOGEvaluator::setImage(const Mat &img, uchar clsLabel, int idx)
- {
- CV_DbgAssert( !hist.empty());
- CvFeatureEvaluator::setImage( img, clsLabel, idx );
- vector<Mat> integralHist;
- for (int bin = 0; bin < N_BINS; bin++)
- {
- integralHist.push_back( Mat(winSize.height + 1, winSize.width + 1, hist[bin].type(), hist[bin].ptr<float>((int)idx)) );
- }
- Mat integralNorm(winSize.height + 1, winSize.width + 1, normSum.type(), normSum.ptr<float>((int)idx));
- integralHistogram(img, integralHist, integralNorm, (int)N_BINS);
- }
- //void CvHOGEvaluator::writeFeatures( FileStorage &fs, const Mat& featureMap ) const
- //{
- // _writeFeatures( features, fs, featureMap );
- //}
- void CvHOGEvaluator::writeFeatures( FileStorage &fs, const Mat& featureMap ) const
- {
- int featIdx;
- int componentIdx;
- const Mat_<int>& featureMap_ = (const Mat_<int>&)featureMap;
- fs << FEATURES << "[";
- for ( int fi = 0; fi < featureMap.cols; fi++ )
- if ( featureMap_(0, fi) >= 0 )
- {
- fs << "{";
- featIdx = fi / getFeatureSize();
- componentIdx = fi % getFeatureSize();
- features[featIdx].write( fs, componentIdx );
- fs << "}";
- }
- fs << "]";
- }
- void CvHOGEvaluator::generateFeatures()
- {
- int offset = winSize.width + 1;
- Size blockStep;
- int x, y, t, w, h;
- for (t = 8; t <= winSize.width/2; t+=8) //t = size of a cell. blocksize = 4*cellSize
- {
- blockStep = Size(4,4);
- w = 2*t; //width of a block
- h = 2*t; //height of a block
- for (x = 0; x <= winSize.width - w; x += blockStep.width)
- {
- for (y = 0; y <= winSize.height - h; y += blockStep.height)
- {
- features.push_back(Feature(offset, x, y, t, t));
- }
- }
- w = 2*t;
- h = 4*t;
- for (x = 0; x <= winSize.width - w; x += blockStep.width)
- {
- for (y = 0; y <= winSize.height - h; y += blockStep.height)
- {
- features.push_back(Feature(offset, x, y, t, 2*t));
- }
- }
- w = 4*t;
- h = 2*t;
- for (x = 0; x <= winSize.width - w; x += blockStep.width)
- {
- for (y = 0; y <= winSize.height - h; y += blockStep.height)
- {
- features.push_back(Feature(offset, x, y, 2*t, t));
- }
- }
- }
- numFeatures = (int)features.size();
- }
- CvHOGEvaluator::Feature::Feature()
- {
- for (int i = 0; i < N_CELLS; i++)
- {
- rect[i] = Rect(0, 0, 0, 0);
- }
- }
- CvHOGEvaluator::Feature::Feature( int offset, int x, int y, int cellW, int cellH )
- {
- rect[0] = Rect(x, y, cellW, cellH); //cell0
- rect[1] = Rect(x+cellW, y, cellW, cellH); //cell1
- rect[2] = Rect(x, y+cellH, cellW, cellH); //cell2
- rect[3] = Rect(x+cellW, y+cellH, cellW, cellH); //cell3
- for (int i = 0; i < N_CELLS; i++)
- {
- CV_SUM_OFFSETS(fastRect[i].p0, fastRect[i].p1, fastRect[i].p2, fastRect[i].p3, rect[i], offset);
- }
- }
- void CvHOGEvaluator::Feature::write(FileStorage &fs) const
- {
- fs << CC_RECTS << "[";
- for( int i = 0; i < N_CELLS; i++ )
- {
- fs << "[:" << rect[i].x << rect[i].y << rect[i].width << rect[i].height << "]";
- }
- fs << "]";
- }
- //cell and bin idx writing
- //void CvHOGEvaluator::Feature::write(FileStorage &fs, int varIdx) const
- //{
- // int featComponent = varIdx % (N_CELLS * N_BINS);
- // int cellIdx = featComponent / N_BINS;
- // int binIdx = featComponent % N_BINS;
- //
- // fs << CC_RECTS << "[:" << rect[cellIdx].x << rect[cellIdx].y <<
- // rect[cellIdx].width << rect[cellIdx].height << binIdx << "]";
- //}
- //cell[0] and featComponent idx writing. By cell[0] it's possible to recover all block
- //All block is necessary for block normalization
- void CvHOGEvaluator::Feature::write(FileStorage &fs, int featComponentIdx) const
- {
- fs << CC_RECT << "[:" << rect[0].x << rect[0].y <<
- rect[0].width << rect[0].height << featComponentIdx << "]";
- }
- void CvHOGEvaluator::integralHistogram(const Mat &img, vector<Mat> &histogram, Mat &norm, int nbins) const
- {
- CV_Assert( img.type() == CV_8U || img.type() == CV_8UC3 );
- int x, y, binIdx;
- Size gradSize(img.size());
- Size histSize(histogram[0].size());
- Mat grad(gradSize, CV_32F);
- Mat qangle(gradSize, CV_8U);
- AutoBuffer<int> mapbuf(gradSize.width + gradSize.height + 4);
- int* xmap = mapbuf.data() + 1;
- int* ymap = xmap + gradSize.width + 2;
- const int borderType = (int)BORDER_REPLICATE;
- for( x = -1; x < gradSize.width + 1; x++ )
- xmap[x] = borderInterpolate(x, gradSize.width, borderType);
- for( y = -1; y < gradSize.height + 1; y++ )
- ymap[y] = borderInterpolate(y, gradSize.height, borderType);
- int width = gradSize.width;
- AutoBuffer<float> _dbuf(width*4);
- float* dbuf = _dbuf.data();
- Mat Dx(1, width, CV_32F, dbuf);
- Mat Dy(1, width, CV_32F, dbuf + width);
- Mat Mag(1, width, CV_32F, dbuf + width*2);
- Mat Angle(1, width, CV_32F, dbuf + width*3);
- float angleScale = (float)(nbins/CV_PI);
- for( y = 0; y < gradSize.height; y++ )
- {
- const uchar* currPtr = img.ptr(ymap[y]);
- const uchar* prevPtr = img.ptr(ymap[y-1]);
- const uchar* nextPtr = img.ptr(ymap[y+1]);
- float* gradPtr = grad.ptr<float>(y);
- uchar* qanglePtr = qangle.ptr(y);
- for( x = 0; x < width; x++ )
- {
- dbuf[x] = (float)(currPtr[xmap[x+1]] - currPtr[xmap[x-1]]);
- dbuf[width + x] = (float)(nextPtr[xmap[x]] - prevPtr[xmap[x]]);
- }
- cartToPolar( Dx, Dy, Mag, Angle, false );
- for( x = 0; x < width; x++ )
- {
- float mag = dbuf[x+width*2];
- float angle = dbuf[x+width*3];
- angle = angle*angleScale - 0.5f;
- int bidx = cvFloor(angle);
- angle -= bidx;
- if( bidx < 0 )
- bidx += nbins;
- else if( bidx >= nbins )
- bidx -= nbins;
- qanglePtr[x] = (uchar)bidx;
- gradPtr[x] = mag;
- }
- }
- integral(grad, norm, grad.depth());
- float* histBuf;
- const float* magBuf;
- const uchar* binsBuf;
- int binsStep = (int)( qangle.step / sizeof(uchar) );
- int histStep = (int)( histogram[0].step / sizeof(float) );
- int magStep = (int)( grad.step / sizeof(float) );
- for( binIdx = 0; binIdx < nbins; binIdx++ )
- {
- histBuf = histogram[binIdx].ptr<float>();
- magBuf = grad.ptr<float>();
- binsBuf = qangle.ptr();
- memset( histBuf, 0, histSize.width * sizeof(histBuf[0]) );
- histBuf += histStep + 1;
- for( y = 0; y < qangle.rows; y++ )
- {
- histBuf[-1] = 0.f;
- float strSum = 0.f;
- for( x = 0; x < qangle.cols; x++ )
- {
- if( binsBuf[x] == binIdx )
- strSum += magBuf[x];
- histBuf[x] = histBuf[-histStep + x] + strSum;
- }
- histBuf += histStep;
- binsBuf += binsStep;
- magBuf += magStep;
- }
- }
- }
|