123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137 |
- /* ----------------------------------------------------------------------------
- * GTSAM Copyright 2010, Georgia Tech Research Corporation,
- * Atlanta, Georgia 30332-0415
- * All Rights Reserved
- * Authors: Frank Dellaert, et al. (see THANKS for the full author list)
- * See LICENSE for the license information
- * -------------------------------------------------------------------------- */
- /**
- * @file testSubgraphSolver.cpp
- * @brief Unit tests for SubgraphSolver
- * @author Yong-Dian Jian
- **/
- #include <gtsam/linear/SubgraphSolver.h>
- #include <tests/smallExample.h>
- #include <gtsam/linear/GaussianBayesNet.h>
- #include <gtsam/linear/iterative.h>
- #include <gtsam/linear/GaussianFactorGraph.h>
- #include <gtsam/linear/SubgraphBuilder.h>
- #include <gtsam/inference/Symbol.h>
- #include <gtsam/inference/Ordering.h>
- #include <gtsam/base/numericalDerivative.h>
- #include <CppUnitLite/TestHarness.h>
- #include <boost/assign/std/list.hpp>
- using namespace boost::assign;
- using namespace std;
- using namespace gtsam;
- static size_t N = 3;
- static SubgraphSolverParameters kParameters;
- static auto kOrdering = example::planarOrdering(N);
- /* ************************************************************************* */
- /** unnormalized error */
- static double error(const GaussianFactorGraph& fg, const VectorValues& x) {
- double total_error = 0.;
- for(const GaussianFactor::shared_ptr& factor: fg)
- total_error += factor->error(x);
- return total_error;
- }
- /* ************************************************************************* */
- TEST( SubgraphSolver, Parameters )
- {
- LONGS_EQUAL(SubgraphSolverParameters::SILENT, kParameters.verbosity());
- LONGS_EQUAL(500, kParameters.maxIterations());
- }
- /* ************************************************************************* */
- TEST( SubgraphSolver, splitFactorGraph )
- {
- // Build a planar graph
- GaussianFactorGraph Ab;
- VectorValues xtrue;
- std::tie(Ab, xtrue) = example::planarGraph(N); // A*x-b
- SubgraphBuilderParameters params;
- params.augmentationFactor = 0.0;
- SubgraphBuilder builder(params);
- auto subgraph = builder(Ab);
- EXPECT_LONGS_EQUAL(9, subgraph.size());
- GaussianFactorGraph::shared_ptr Ab1, Ab2;
- std::tie(Ab1, Ab2) = splitFactorGraph(Ab, subgraph);
- EXPECT_LONGS_EQUAL(9, Ab1->size());
- EXPECT_LONGS_EQUAL(13, Ab2->size());
- }
- /* ************************************************************************* */
- TEST( SubgraphSolver, constructor1 )
- {
- // Build a planar graph
- GaussianFactorGraph Ab;
- VectorValues xtrue;
- std::tie(Ab, xtrue) = example::planarGraph(N); // A*x-b
- // The first constructor just takes a factor graph (and kParameters)
- // and it will split the graph into A1 and A2, where A1 is a spanning tree
- SubgraphSolver solver(Ab, kParameters, kOrdering);
- VectorValues optimized = solver.optimize(); // does PCG optimization
- DOUBLES_EQUAL(0.0, error(Ab, optimized), 1e-5);
- }
- /* ************************************************************************* */
- TEST( SubgraphSolver, constructor2 )
- {
- // Build a planar graph
- GaussianFactorGraph Ab;
- VectorValues xtrue;
- size_t N = 3;
- std::tie(Ab, xtrue) = example::planarGraph(N); // A*x-b
- // Get the spanning tree
- GaussianFactorGraph::shared_ptr Ab1, Ab2; // A1*x-b1 and A2*x-b2
- std::tie(Ab1, Ab2) = example::splitOffPlanarTree(N, Ab);
- // The second constructor takes two factor graphs, so the caller can specify
- // the preconditioner (Ab1) and the constraints that are left out (Ab2)
- SubgraphSolver solver(*Ab1, Ab2, kParameters, kOrdering);
- VectorValues optimized = solver.optimize();
- DOUBLES_EQUAL(0.0, error(Ab, optimized), 1e-5);
- }
- /* ************************************************************************* */
- TEST( SubgraphSolver, constructor3 )
- {
- // Build a planar graph
- GaussianFactorGraph Ab;
- VectorValues xtrue;
- size_t N = 3;
- std::tie(Ab, xtrue) = example::planarGraph(N); // A*x-b
- // Get the spanning tree and corresponding kOrdering
- GaussianFactorGraph::shared_ptr Ab1, Ab2; // A1*x-b1 and A2*x-b2
- std::tie(Ab1, Ab2) = example::splitOffPlanarTree(N, Ab);
- // The caller solves |A1*x-b1|^2 == |R1*x-c1|^2, where R1 is square UT
- auto Rc1 = Ab1->eliminateSequential();
- // The third constructor allows the caller to pass an already solved preconditioner Rc1_
- // as a Bayes net, in addition to the "loop closing constraints" Ab2, as before
- SubgraphSolver solver(Rc1, Ab2, kParameters);
- VectorValues optimized = solver.optimize();
- DOUBLES_EQUAL(0.0, error(Ab, optimized), 1e-5);
- }
- /* ************************************************************************* */
- int main() { TestResult tr; return TestRegistry::runAllTests(tr); }
- /* ************************************************************************* */
|