123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314 |
- /* ----------------------------------------------------------------------------
- * GTSAM Copyright 2010, Georgia Tech Research Corporation,
- * Atlanta, Georgia 30332-0415
- * All Rights Reserved
- * Authors: Frank Dellaert, et al. (see THANKS for the full author list)
- * See LICENSE for the license information
- * -------------------------------------------------------------------------- */
- /**
- * @file testNonlinearFactorGraph.cpp
- * @brief Unit tests for Non-Linear Factor NonlinearFactorGraph
- * @brief testNonlinearFactorGraph
- * @author Carlos Nieto
- * @author Christian Potthast
- */
- #include <gtsam/base/Testable.h>
- #include <gtsam/base/Matrix.h>
- #include <tests/smallExample.h>
- #include <gtsam/inference/FactorGraph.h>
- #include <gtsam/inference/Symbol.h>
- #include <gtsam/symbolic/SymbolicFactorGraph.h>
- #include <gtsam/nonlinear/NonlinearFactorGraph.h>
- #include <gtsam/geometry/Pose2.h>
- #include <gtsam/geometry/Pose3.h>
- #include <gtsam/sam/RangeFactor.h>
- #include <gtsam/slam/BetweenFactor.h>
- #include <CppUnitLite/TestHarness.h>
- #include <boost/assign/std/list.hpp>
- #include <boost/assign/std/set.hpp>
- using namespace boost::assign;
- /*STL/C++*/
- #include <iostream>
- using namespace std;
- using namespace gtsam;
- using namespace example;
- using symbol_shorthand::X;
- using symbol_shorthand::L;
- /* ************************************************************************* */
- TEST( NonlinearFactorGraph, equals )
- {
- NonlinearFactorGraph fg = createNonlinearFactorGraph();
- NonlinearFactorGraph fg2 = createNonlinearFactorGraph();
- CHECK( fg.equals(fg2) );
- }
- /* ************************************************************************* */
- TEST( NonlinearFactorGraph, error )
- {
- NonlinearFactorGraph fg = createNonlinearFactorGraph();
- Values c1 = createValues();
- double actual1 = fg.error(c1);
- DOUBLES_EQUAL( 0.0, actual1, 1e-9 );
- Values c2 = createNoisyValues();
- double actual2 = fg.error(c2);
- DOUBLES_EQUAL( 5.625, actual2, 1e-9 );
- }
- /* ************************************************************************* */
- TEST( NonlinearFactorGraph, keys )
- {
- NonlinearFactorGraph fg = createNonlinearFactorGraph();
- KeySet actual = fg.keys();
- LONGS_EQUAL(3, (long)actual.size());
- KeySet::const_iterator it = actual.begin();
- LONGS_EQUAL((long)L(1), (long)*(it++));
- LONGS_EQUAL((long)X(1), (long)*(it++));
- LONGS_EQUAL((long)X(2), (long)*(it++));
- }
- /* ************************************************************************* */
- TEST( NonlinearFactorGraph, GET_ORDERING)
- {
- Ordering expected; expected += L(1), X(2), X(1); // For starting with l1,x1,x2
- NonlinearFactorGraph nlfg = createNonlinearFactorGraph();
- Ordering actual = Ordering::Colamd(nlfg);
- EXPECT(assert_equal(expected,actual));
- // Constrained ordering - put x2 at the end
- Ordering expectedConstrained; expectedConstrained += L(1), X(1), X(2);
- FastMap<Key, int> constraints;
- constraints[X(2)] = 1;
- Ordering actualConstrained = Ordering::ColamdConstrained(nlfg, constraints);
- EXPECT(assert_equal(expectedConstrained, actualConstrained));
- }
- /* ************************************************************************* */
- TEST( NonlinearFactorGraph, probPrime )
- {
- NonlinearFactorGraph fg = createNonlinearFactorGraph();
- Values cfg = createValues();
- // evaluate the probability of the factor graph
- double actual = fg.probPrime(cfg);
- double expected = 1.0;
- DOUBLES_EQUAL(expected,actual,0);
- }
- /* ************************************************************************* */
- TEST( NonlinearFactorGraph, linearize )
- {
- NonlinearFactorGraph fg = createNonlinearFactorGraph();
- Values initial = createNoisyValues();
- GaussianFactorGraph linearFG = *fg.linearize(initial);
- GaussianFactorGraph expected = createGaussianFactorGraph();
- CHECK(assert_equal(expected,linearFG)); // Needs correct linearizations
- }
- /* ************************************************************************* */
- TEST( NonlinearFactorGraph, clone )
- {
- NonlinearFactorGraph fg = createNonlinearFactorGraph();
- NonlinearFactorGraph actClone = fg.clone();
- EXPECT(assert_equal(fg, actClone));
- for (size_t i=0; i<fg.size(); ++i)
- EXPECT(fg[i] != actClone[i]);
- }
- /* ************************************************************************* */
- TEST( NonlinearFactorGraph, rekey )
- {
- NonlinearFactorGraph init = createNonlinearFactorGraph();
- map<Key,Key> rekey_mapping;
- rekey_mapping.insert(make_pair(L(1), L(4)));
- NonlinearFactorGraph actRekey = init.rekey(rekey_mapping);
- // ensure deep clone
- LONGS_EQUAL((long)init.size(), (long)actRekey.size());
- for (size_t i=0; i<init.size(); ++i)
- EXPECT(init[i] != actRekey[i]);
- NonlinearFactorGraph expRekey;
- // original measurements
- expRekey.push_back(init[0]);
- expRekey.push_back(init[1]);
- // updated measurements
- Point2 z3(0, -1), z4(-1.5, -1.);
- SharedDiagonal sigma0_2 = noiseModel::Isotropic::Sigma(2,0.2);
- expRekey += simulated2D::Measurement(z3, sigma0_2, X(1), L(4));
- expRekey += simulated2D::Measurement(z4, sigma0_2, X(2), L(4));
- EXPECT(assert_equal(expRekey, actRekey));
- }
- /* ************************************************************************* */
- TEST( NonlinearFactorGraph, symbolic )
- {
- NonlinearFactorGraph graph = createNonlinearFactorGraph();
- SymbolicFactorGraph expected;
- expected.push_factor(X(1));
- expected.push_factor(X(1), X(2));
- expected.push_factor(X(1), L(1));
- expected.push_factor(X(2), L(1));
- SymbolicFactorGraph actual = *graph.symbolic();
- EXPECT(assert_equal(expected, actual));
- }
- /* ************************************************************************* */
- TEST(NonlinearFactorGraph, UpdateCholesky) {
- NonlinearFactorGraph fg = createNonlinearFactorGraph();
- Values initial = createNoisyValues();
- // solve conventionally
- GaussianFactorGraph linearFG = *fg.linearize(initial);
- auto delta = linearFG.optimizeDensely();
- auto expected = initial.retract(delta);
- // solve with new method
- EXPECT(assert_equal(expected, fg.updateCholesky(initial)));
- // solve with Ordering
- Ordering ordering;
- ordering += L(1), X(2), X(1);
- EXPECT(assert_equal(expected, fg.updateCholesky(initial, ordering)));
- // solve with new method, heavily damped
- auto dampen = [](const HessianFactor::shared_ptr& hessianFactor) {
- auto iterator = hessianFactor->begin();
- for (; iterator != hessianFactor->end(); iterator++) {
- const auto index = std::distance(hessianFactor->begin(), iterator);
- auto block = hessianFactor->info().diagonalBlock(index);
- for (int j = 0; j < block.rows(); j++) {
- block(j, j) += 1e9;
- }
- }
- };
- EXPECT(assert_equal(initial, fg.updateCholesky(initial, dampen), 1e-6));
- }
- /* ************************************************************************* */
- // Example from issue #452 which threw an ILS error. The reason was a very
- // weak prior on heading, which was tightened, and the ILS disappeared.
- TEST(testNonlinearFactorGraph, eliminate) {
- // Linearization point
- Pose2 T11(0, 0, 0);
- Pose2 T12(1, 0, 0);
- Pose2 T21(0, 1, 0);
- Pose2 T22(1, 1, 0);
- // Factor graph
- auto graph = NonlinearFactorGraph();
- // Priors
- auto prior = noiseModel::Isotropic::Sigma(3, 1);
- graph.addPrior(11, T11, prior);
- graph.addPrior(21, T21, prior);
- // Odometry
- auto model = noiseModel::Diagonal::Sigmas(Vector3(0.01, 0.01, 0.3));
- graph.add(BetweenFactor<Pose2>(11, 12, T11.between(T12), model));
- graph.add(BetweenFactor<Pose2>(21, 22, T21.between(T22), model));
- // Range factor
- auto model_rho = noiseModel::Isotropic::Sigma(1, 0.01);
- graph.add(RangeFactor<Pose2>(12, 22, 1.0, model_rho));
- Values values;
- values.insert(11, T11.retract(Vector3(0.1,0.2,0.3)));
- values.insert(12, T12);
- values.insert(21, T21);
- values.insert(22, T22);
- auto linearized = graph.linearize(values);
- // Eliminate
- Ordering ordering;
- ordering += 11, 21, 12, 22;
- auto bn = linearized->eliminateSequential(ordering);
- EXPECT_LONGS_EQUAL(4, bn->size());
- }
- /* ************************************************************************* */
- TEST(testNonlinearFactorGraph, addPrior) {
- Key k(0);
- // Factor graph.
- auto graph = NonlinearFactorGraph();
- // Add a prior factor for key k.
- auto model_double = noiseModel::Isotropic::Sigma(1, 1);
- graph.addPrior<double>(k, 10, model_double);
- // Assert the graph has 0 error with the correct values.
- Values values;
- values.insert(k, 10.0);
- EXPECT_DOUBLES_EQUAL(0, graph.error(values), 1e-16);
- // Assert the graph has some error with incorrect values.
- values.clear();
- values.insert(k, 11.0);
- EXPECT(0 != graph.error(values));
- // Clear the factor graph and values.
- values.clear();
- graph.erase(graph.begin(), graph.end());
- // Add a Pose3 prior to the factor graph. Use a gaussian noise model by
- // providing the covariance matrix.
- Eigen::DiagonalMatrix<double, 6, 6> covariance_pose3;
- covariance_pose3.setIdentity();
- Pose3 pose{Rot3(), Point3(0, 0, 0)};
- graph.addPrior(k, pose, covariance_pose3);
- // Assert the graph has 0 error with the correct values.
- values.insert(k, pose);
- EXPECT_DOUBLES_EQUAL(0, graph.error(values), 1e-16);
- // Assert the graph has some error with incorrect values.
- values.clear();
- Pose3 pose_incorrect{Rot3::RzRyRx(-M_PI, M_PI, -M_PI / 8), Point3(1, 2, 3)};
- values.insert(k, pose_incorrect);
- EXPECT(0 != graph.error(values));
- }
- TEST(NonlinearFactorGraph, printErrors)
- {
- const NonlinearFactorGraph fg = createNonlinearFactorGraph();
- const Values c = createValues();
- // Test that it builds with default parameters.
- // We cannot check the output since (at present) output is fixed to std::cout.
- fg.printErrors(c);
- // Second round: using callback filter to check that we actually visit all factors:
- std::vector<bool> visited;
- visited.assign(fg.size(), false);
- const auto testFilter =
- [&](const gtsam::Factor *f, double error, size_t index) {
- EXPECT(f!=nullptr);
- EXPECT(error>=.0);
- visited.at(index)=true;
- return false; // do not print
- };
- fg.printErrors(c,"Test graph: ", gtsam::DefaultKeyFormatter,testFilter);
- for (bool visit : visited) EXPECT(visit==true);
- }
- /* ************************************************************************* */
- int main() { TestResult tr; return TestRegistry::runAllTests(tr); }
- /* ************************************************************************* */
|