123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335 |
- /* ----------------------------------------------------------------------------
- * GTSAM Copyright 2010, Georgia Tech Research Corporation,
- * Atlanta, Georgia 30332-0415
- * All Rights Reserved
- * Authors: Frank Dellaert, et al. (see THANKS for the full author list)
- * See LICENSE for the license information
- * -------------------------------------------------------------------------- */
- /**
- * @file testGaussianISAM.cpp
- * @brief Unit tests for GaussianISAM
- * @author Michael Kaess
- */
- #include <tests/smallExample.h>
- #include <gtsam/inference/Symbol.h>
- #include <gtsam/linear/GaussianBayesTree.h>
- #include <gtsam/linear/GaussianBayesNet.h>
- #include <gtsam/linear/GaussianConditional.h>
- #include <gtsam/linear/GaussianDensity.h>
- #include <gtsam/linear/HessianFactor.h>
- #include <gtsam/geometry/Rot2.h>
- #include <CppUnitLite/TestHarness.h>
- #include <boost/assign/std/list.hpp> // for operator +=
- using namespace boost::assign;
- using namespace std;
- using namespace gtsam;
- using namespace example;
- using symbol_shorthand::X;
- using symbol_shorthand::L;
- /* ************************************************************************* */
- // Some numbers that should be consistent among all smoother tests
- static double sigmax1 = 0.786153, /*sigmax2 = 1.0/1.47292,*/ sigmax3 = 0.671512, sigmax4 =
- 0.669534 /*, sigmax5 = sigmax3, sigmax6 = sigmax2*/, sigmax7 = sigmax1;
- static const double tol = 1e-4;
- /* ************************************************************************* *
- Bayes tree for smoother with "natural" ordering:
- C1 x6 x7
- C2 x5 : x6
- C3 x4 : x5
- C4 x3 : x4
- C5 x2 : x3
- C6 x1 : x2
- **************************************************************************** */
- TEST( GaussianBayesTree, linear_smoother_shortcuts )
- {
- // Create smoother with 7 nodes
- GaussianFactorGraph smoother = createSmoother(7);
- GaussianBayesTree bayesTree = *smoother.eliminateMultifrontal();
- // Create the Bayes tree
- LONGS_EQUAL(6, (long)bayesTree.size());
- // Check the conditional P(Root|Root)
- GaussianBayesNet empty;
- GaussianBayesTree::sharedClique R = bayesTree.roots().front();
- GaussianBayesNet actual1 = R->shortcut(R);
- EXPECT(assert_equal(empty,actual1,tol));
- // Check the conditional P(C2|Root)
- GaussianBayesTree::sharedClique C2 = bayesTree[X(5)];
- GaussianBayesNet actual2 = C2->shortcut(R);
- EXPECT(assert_equal(empty,actual2,tol));
- // Check the conditional P(C3|Root)
- double sigma3 = 0.61808;
- Matrix A56 = (Matrix(2,2) << -0.382022,0.,0.,-0.382022).finished();
- GaussianBayesNet expected3;
- expected3 += GaussianConditional(X(5), Z_2x1, I_2x2/sigma3, X(6), A56/sigma3);
- GaussianBayesTree::sharedClique C3 = bayesTree[X(4)];
- GaussianBayesNet actual3 = C3->shortcut(R);
- EXPECT(assert_equal(expected3,actual3,tol));
- // Check the conditional P(C4|Root)
- double sigma4 = 0.661968;
- Matrix A46 = (Matrix(2,2) << -0.146067,0.,0.,-0.146067).finished();
- GaussianBayesNet expected4;
- expected4 += GaussianConditional(X(4), Z_2x1, I_2x2/sigma4, X(6), A46/sigma4);
- GaussianBayesTree::sharedClique C4 = bayesTree[X(3)];
- GaussianBayesNet actual4 = C4->shortcut(R);
- EXPECT(assert_equal(expected4,actual4,tol));
- }
- /* ************************************************************************* *
- Bayes tree for smoother with "nested dissection" ordering:
- Node[x1] P(x1 | x2)
- Node[x3] P(x3 | x2 x4)
- Node[x5] P(x5 | x4 x6)
- Node[x7] P(x7 | x6)
- Node[x2] P(x2 | x4)
- Node[x6] P(x6 | x4)
- Node[x4] P(x4)
- becomes
- C1 x5 x6 x4
- C2 x3 x2 : x4
- C3 x1 : x2
- C4 x7 : x6
- ************************************************************************* */
- TEST( GaussianBayesTree, balanced_smoother_marginals )
- {
- // Create smoother with 7 nodes
- GaussianFactorGraph smoother = createSmoother(7);
- // Create the Bayes tree
- Ordering ordering;
- ordering += X(1),X(3),X(5),X(7),X(2),X(6),X(4);
- GaussianBayesTree bayesTree = *smoother.eliminateMultifrontal(ordering);
- VectorValues actualSolution = bayesTree.optimize();
- VectorValues expectedSolution = VectorValues::Zero(actualSolution);
- EXPECT(assert_equal(expectedSolution,actualSolution,tol));
- LONGS_EQUAL(4, (long)bayesTree.size());
- double tol=1e-5;
- // Check marginal on x1
- JacobianFactor expected1 = GaussianDensity::FromMeanAndStddev(X(1), Z_2x1, sigmax1);
- JacobianFactor actual1 = *bayesTree.marginalFactor(X(1));
- Matrix expectedCovarianceX1 = I_2x2 * (sigmax1 * sigmax1);
- Matrix actualCovarianceX1;
- GaussianFactor::shared_ptr m = bayesTree.marginalFactor(X(1), EliminateCholesky);
- actualCovarianceX1 = bayesTree.marginalFactor(X(1), EliminateCholesky)->information().inverse();
- EXPECT(assert_equal(expectedCovarianceX1, actualCovarianceX1, tol));
- EXPECT(assert_equal(expected1,actual1,tol));
- // Check marginal on x2
- double sigx2 = 0.68712938; // FIXME: this should be corrected analytically
- JacobianFactor expected2 = GaussianDensity::FromMeanAndStddev(X(2), Z_2x1, sigx2);
- JacobianFactor actual2 = *bayesTree.marginalFactor(X(2));
- EXPECT(assert_equal(expected2,actual2,tol));
- // Check marginal on x3
- JacobianFactor expected3 = GaussianDensity::FromMeanAndStddev(X(3), Z_2x1, sigmax3);
- JacobianFactor actual3 = *bayesTree.marginalFactor(X(3));
- EXPECT(assert_equal(expected3,actual3,tol));
- // Check marginal on x4
- JacobianFactor expected4 = GaussianDensity::FromMeanAndStddev(X(4), Z_2x1, sigmax4);
- JacobianFactor actual4 = *bayesTree.marginalFactor(X(4));
- EXPECT(assert_equal(expected4,actual4,tol));
- // Check marginal on x7 (should be equal to x1)
- JacobianFactor expected7 = GaussianDensity::FromMeanAndStddev(X(7), Z_2x1, sigmax7);
- JacobianFactor actual7 = *bayesTree.marginalFactor(X(7));
- EXPECT(assert_equal(expected7,actual7,tol));
- }
- /* ************************************************************************* */
- TEST( GaussianBayesTree, balanced_smoother_shortcuts )
- {
- // Create smoother with 7 nodes
- GaussianFactorGraph smoother = createSmoother(7);
- // Create the Bayes tree
- Ordering ordering;
- ordering += X(1),X(3),X(5),X(7),X(2),X(6),X(4);
- GaussianBayesTree bayesTree = *smoother.eliminateMultifrontal(ordering);
- // Check the conditional P(Root|Root)
- GaussianBayesNet empty;
- GaussianBayesTree::sharedClique R = bayesTree.roots().front();
- GaussianBayesNet actual1 = R->shortcut(R);
- EXPECT(assert_equal(empty,actual1,tol));
- // Check the conditional P(C2|Root)
- GaussianBayesTree::sharedClique C2 = bayesTree[X(3)];
- GaussianBayesNet actual2 = C2->shortcut(R);
- EXPECT(assert_equal(empty,actual2,tol));
- // Check the conditional P(C3|Root), which should be equal to P(x2|x4)
- /** TODO: Note for multifrontal conditional:
- * p_x2_x4 is now an element conditional of the multifrontal conditional bayesTree[ordering[X(2)]]->conditional()
- * We don't know yet how to take it out.
- */
- // GaussianConditional::shared_ptr p_x2_x4 = bayesTree[ordering[X(2)]]->conditional();
- // p_x2_x4->print("Conditional p_x2_x4: ");
- // GaussianBayesNet expected3(p_x2_x4);
- // GaussianISAM::sharedClique C3 = isamTree[ordering[X(1)]];
- // GaussianBayesNet actual3 = GaussianISAM::shortcut(C3,R);
- // EXPECT(assert_equal(expected3,actual3,tol));
- }
- ///* ************************************************************************* */
- //TEST( BayesTree, balanced_smoother_clique_marginals )
- //{
- // // Create smoother with 7 nodes
- // Ordering ordering;
- // ordering += X(1),X(3),X(5),X(7),X(2),X(6),X(4);
- // GaussianFactorGraph smoother = createSmoother(7, ordering).first;
- //
- // // Create the Bayes tree
- // GaussianBayesNet chordalBayesNet = *GaussianSequentialSolver(smoother).eliminate();
- // GaussianISAM bayesTree(chordalBayesNet);
- //
- // // Check the clique marginal P(C3)
- // double sigmax2_alt = 1/1.45533; // THIS NEEDS TO BE CHECKED!
- // GaussianBayesNet expected = simpleGaussian(ordering[X(2)],Z_2x1,sigmax2_alt);
- // push_front(expected,ordering[X(1)], Z_2x1, eye(2)*sqrt(2), ordering[X(2)], -eye(2)*sqrt(2)/2, ones(2));
- // GaussianISAM::sharedClique R = bayesTree.root(), C3 = bayesTree[ordering[X(1)]];
- // GaussianFactorGraph marginal = C3->marginal(R);
- // GaussianVariableIndex varIndex(marginal);
- // Permutation toFront(Permutation::PullToFront(C3->keys(), varIndex.size()));
- // Permutation toFrontInverse(*toFront.inverse());
- // varIndex.permute(toFront);
- // for(const GaussianFactor::shared_ptr& factor: marginal) {
- // factor->permuteWithInverse(toFrontInverse); }
- // GaussianBayesNet actual = *inference::EliminateUntil(marginal, C3->keys().size(), varIndex);
- // actual.permuteWithInverse(toFront);
- // EXPECT(assert_equal(expected,actual,tol));
- //}
- /* ************************************************************************* */
- TEST( GaussianBayesTree, balanced_smoother_joint )
- {
- // Create smoother with 7 nodes
- Ordering ordering;
- ordering += X(1),X(3),X(5),X(7),X(2),X(6),X(4);
- GaussianFactorGraph smoother = createSmoother(7);
- // Create the Bayes tree, expected to look like:
- // x5 x6 x4
- // x3 x2 : x4
- // x1 : x2
- // x7 : x6
- GaussianBayesTree bayesTree = *smoother.eliminateMultifrontal(ordering);
- // Conditional density elements reused by both tests
- const Matrix I = I_2x2, A = -0.00429185*I;
- // Check the joint density P(x1,x7) factored as P(x1|x7)P(x7)
- GaussianBayesNet expected1 = list_of
- // Why does the sign get flipped on the prior?
- (GaussianConditional(X(1), Z_2x1, I/sigmax7, X(7), A/sigmax7))
- (GaussianConditional(X(7), Z_2x1, -1*I/sigmax7));
- GaussianBayesNet actual1 = *bayesTree.jointBayesNet(X(1),X(7));
- EXPECT(assert_equal(expected1, actual1, tol));
- // // Check the joint density P(x7,x1) factored as P(x7|x1)P(x1)
- // GaussianBayesNet expected2;
- // GaussianConditional::shared_ptr
- // parent2(new GaussianConditional(X(1), Z_2x1, -1*I/sigmax1, ones(2)));
- // expected2.push_front(parent2);
- // push_front(expected2,X(7), Z_2x1, I/sigmax1, X(1), A/sigmax1, sigma);
- // GaussianBayesNet actual2 = *bayesTree.jointBayesNet(X(7),X(1));
- // EXPECT(assert_equal(expected2,actual2,tol));
- // Check the joint density P(x1,x4), i.e. with a root variable
- double sig14 = 0.784465;
- Matrix A14 = -0.0769231*I;
- GaussianBayesNet expected3 = list_of
- (GaussianConditional(X(1), Z_2x1, I/sig14, X(4), A14/sig14))
- (GaussianConditional(X(4), Z_2x1, I/sigmax4));
- GaussianBayesNet actual3 = *bayesTree.jointBayesNet(X(1),X(4));
- EXPECT(assert_equal(expected3,actual3,tol));
- // // Check the joint density P(x4,x1), i.e. with a root variable, factored the other way
- // GaussianBayesNet expected4;
- // GaussianConditional::shared_ptr
- // parent4(new GaussianConditional(X(1), Z_2x1, -1.0*I/sigmax1, ones(2)));
- // expected4.push_front(parent4);
- // double sig41 = 0.668096;
- // Matrix A41 = -0.055794*I;
- // push_front(expected4,X(4), Z_2x1, I/sig41, X(1), A41/sig41, sigma);
- // GaussianBayesNet actual4 = *bayesTree.jointBayesNet(X(4),X(1));
- // EXPECT(assert_equal(expected4,actual4,tol));
- }
- /* ************************************************************************* */
- TEST(GaussianBayesTree, shortcut_overlapping_separator)
- {
- // Test computing shortcuts when the separator overlaps. This previously
- // would have highlighted a problem where information was duplicated.
- // Create factor graph:
- // f(1,2,5)
- // f(3,4,5)
- // f(5,6)
- // f(6,7)
- GaussianFactorGraph fg;
- noiseModel::Diagonal::shared_ptr model = noiseModel::Unit::Create(1);
- fg.add(1, (Matrix(1, 1) << 1.0).finished(), 3, (Matrix(1, 1) << 2.0).finished(), 5, (Matrix(1, 1) << 3.0).finished(), (Vector(1) << 4.0).finished(), model);
- fg.add(1, (Matrix(1, 1) << 5.0).finished(), (Vector(1) << 6.0).finished(), model);
- fg.add(2, (Matrix(1, 1) << 7.0).finished(), 4, (Matrix(1, 1) << 8.0).finished(), 5, (Matrix(1, 1) << 9.0).finished(), (Vector(1) << 10.0).finished(), model);
- fg.add(2, (Matrix(1, 1) << 11.0).finished(), (Vector(1) << 12.0).finished(), model);
- fg.add(5, (Matrix(1, 1) << 13.0).finished(), 6, (Matrix(1, 1) << 14.0).finished(), (Vector(1) << 15.0).finished(), model);
- fg.add(6, (Matrix(1, 1) << 17.0).finished(), 7, (Matrix(1, 1) << 18.0).finished(), (Vector(1) << 19.0).finished(), model);
- fg.add(7, (Matrix(1, 1) << 20.0).finished(), (Vector(1) << 21.0).finished(), model);
- // Eliminate into BayesTree
- // c(6,7)
- // c(5|6)
- // c(1,2|5)
- // c(3,4|5)
- Ordering ordering(fg.keys());
- GaussianBayesTree bt = *fg.eliminateMultifrontal(ordering); // eliminate in increasing key order, fg.keys() is sorted.
- GaussianFactorGraph joint = *bt.joint(1,2, EliminateQR);
- Matrix expectedJointJ = (Matrix(2,3) <<
- 5, 0, 6,
- 0, -11, -12
- ).finished();
- Matrix actualJointJ = joint.augmentedJacobian();
- // PR 315: sign of rows in joint are immaterial
- if (signbit(expectedJointJ(0, 2)) != signbit(actualJointJ(0, 2)))
- expectedJointJ.row(0) = -expectedJointJ.row(0);
- if (signbit(expectedJointJ(1, 2)) != signbit(actualJointJ(1, 2)))
- expectedJointJ.row(1) = -expectedJointJ.row(1);
- EXPECT(assert_equal(expectedJointJ, actualJointJ));
- }
- /* ************************************************************************* */
- int main() { TestResult tr; return TestRegistry::runAllTests(tr);}
- /* ************************************************************************* */
|