123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423 |
- /* ----------------------------------------------------------------------------
- * GTSAM Copyright 2010, Georgia Tech Research Corporation,
- * Atlanta, Georgia 30332-0415
- * All Rights Reserved
- * Authors: Frank Dellaert, et al. (see THANKS for the full author list)
- * See LICENSE for the license information
- * -------------------------------------------------------------------------- */
- /**
- * @file testExtendedKalmanFilter
- * @author Stephen Williams
- */
- #include <gtsam/nonlinear/PriorFactor.h>
- #include <gtsam/slam/BetweenFactor.h>
- #include <gtsam/nonlinear/ExtendedKalmanFilter-inl.h>
- #include <gtsam/nonlinear/NonlinearFactor.h>
- #include <gtsam/inference/Symbol.h>
- #include <gtsam/geometry/Point2.h>
- #include <CppUnitLite/TestHarness.h>
- using namespace gtsam;
- // Convenience for named keys
- using symbol_shorthand::X;
- using symbol_shorthand::L;
- /* ************************************************************************* */
- TEST( ExtendedKalmanFilter, linear ) {
- // Create the TestKeys for our example
- Symbol x0('x',0), x1('x',1), x2('x',2), x3('x',3);
- // Create the Kalman Filter initialization point
- Point2 x_initial(0.0, 0.0);
- SharedDiagonal P_initial = noiseModel::Diagonal::Sigmas(Vector2(0.1, 0.1));
- // Create an ExtendedKalmanFilter object
- ExtendedKalmanFilter<Point2> ekf(x0, x_initial, P_initial);
- // Create the controls and measurement properties for our example
- double dt = 1.0;
- Vector u = Vector2(1.0, 0.0);
- Point2 difference(u*dt);
- SharedDiagonal Q = noiseModel::Diagonal::Sigmas(Vector2(0.1, 0.1), true);
- Point2 z1(1.0, 0.0);
- Point2 z2(2.0, 0.0);
- Point2 z3(3.0, 0.0);
- SharedDiagonal R = noiseModel::Diagonal::Sigmas(Vector2(0.25, 0.25), true);
- // Create the set of expected output TestValues
- Point2 expected1(1.0, 0.0);
- Point2 expected2(2.0, 0.0);
- Point2 expected3(3.0, 0.0);
- // Run iteration 1
- // Create motion factor
- BetweenFactor<Point2> factor1(x0, x1, difference, Q);
- Point2 predict1 = ekf.predict(factor1);
- EXPECT(assert_equal(expected1,predict1));
- // Create the measurement factor
- PriorFactor<Point2> factor2(x1, z1, R);
- Point2 update1 = ekf.update(factor2);
- EXPECT(assert_equal(expected1,update1));
- // Run iteration 2
- BetweenFactor<Point2> factor3(x1, x2, difference, Q);
- Point2 predict2 = ekf.predict(factor3);
- EXPECT(assert_equal(expected2,predict2));
- PriorFactor<Point2> factor4(x2, z2, R);
- Point2 update2 = ekf.update(factor4);
- EXPECT(assert_equal(expected2,update2));
- // Run iteration 3
- BetweenFactor<Point2> factor5(x2, x3, difference, Q);
- Point2 predict3 = ekf.predict(factor5);
- EXPECT(assert_equal(expected3,predict3));
- PriorFactor<Point2> factor6(x3, z3, R);
- Point2 update3 = ekf.update(factor6);
- EXPECT(assert_equal(expected3,update3));
- return;
- }
- // Create Motion Model Factor
- class NonlinearMotionModel : public NoiseModelFactor2<Point2,Point2> {
- typedef NoiseModelFactor2<Point2, Point2> Base;
- typedef NonlinearMotionModel This;
- protected:
- Matrix Q_;
- Matrix Q_invsqrt_;
- public:
- NonlinearMotionModel(){}
- NonlinearMotionModel(const Symbol& TestKey1, const Symbol& TestKey2) :
- Base(noiseModel::Diagonal::Sigmas(Vector2(1.0, 1.0)), TestKey1, TestKey2), Q_(2,2) {
- // Initialize motion model parameters:
- // w is vector of motion noise sigmas. The final covariance is calculated as G*w*w'*G'
- // In this model, Q is fixed, so it may be calculated in the constructor
- Matrix G(2,2);
- Matrix w(2,2);
- G << 1.0, 0.0, 0.0, 1.0;
- w << 1.0, 0.0, 0.0, 1.0;
- w = G*w;
- Q_ = w*w.transpose();
- Q_invsqrt_ = inverse_square_root(Q_);
- }
- ~NonlinearMotionModel() override {}
- // Calculate the next state prediction using the nonlinear function f()
- Point2 f(const Point2& x_t0) const {
- // Calculate f(x)
- double x = x_t0.x() * x_t0.x();
- double y = x_t0.x() * x_t0.y();
- Point2 x_t1(x,y);
- // In this example, the noiseModel remains constant
- return x_t1;
- }
- // Calculate the Jacobian of the nonlinear function f()
- Matrix F(const Point2& x_t0) const {
- // Calculate Jacobian of f()
- Matrix F = Matrix(2,2);
- F(0,0) = 2*x_t0.x();
- F(0,1) = 0.0;
- F(1,0) = x_t0.y();
- F(1,1) = x_t0.x();
- return F;
- }
- // Calculate the inverse square root of the motion model covariance, Q
- Matrix QInvSqrt(const Point2& x_t0) const {
- // This motion model has a constant covariance
- return Q_invsqrt_;
- }
- /* print */
- void print(const std::string& s = "", const KeyFormatter& keyFormatter = DefaultKeyFormatter) const override {
- std::cout << s << ": NonlinearMotionModel\n";
- std::cout << " TestKey1: " << keyFormatter(key1()) << std::endl;
- std::cout << " TestKey2: " << keyFormatter(key2()) << std::endl;
- }
- /** Check if two factors are equal. Note type is IndexFactor and needs cast. */
- bool equals(const NonlinearFactor& f, double tol = 1e-9) const override {
- const This *e = dynamic_cast<const This*> (&f);
- return (e != nullptr) && (key1() == e->key1()) && (key2() == e->key2());
- }
- /**
- * calculate the error of the factor
- * Override for systems with unusual noise models
- */
- double error(const Values& c) const override {
- Vector w = whitenedError(c);
- return 0.5 * w.dot(w);
- }
- /** get the dimension of the factor (number of rows on linearization) */
- size_t dim() const override {
- return 2;
- }
- /** Vector of errors, whitened ! */
- Vector whitenedError(const Values& c) const {
- return QInvSqrt(c.at<Point2>(key1()))*unwhitenedError(c);
- }
- /**
- * Linearize a non-linearFactor2 to get a GaussianFactor
- * Ax-b \approx h(x1+dx1,x2+dx2)-z = h(x1,x2) + A2*dx1 + A2*dx2 - z
- * Hence b = z - h(x1,x2) = - error_vector(x)
- */
- boost::shared_ptr<GaussianFactor> linearize(const Values& c) const override {
- const X1& x1 = c.at<X1>(key1());
- const X2& x2 = c.at<X2>(key2());
- Matrix A1, A2;
- Vector b = -evaluateError(x1, x2, A1, A2);
- SharedDiagonal constrained =
- boost::dynamic_pointer_cast<noiseModel::Constrained>(this->noiseModel_);
- if (constrained.get() != nullptr) {
- return JacobianFactor::shared_ptr(new JacobianFactor(key1(), A1, key2(),
- A2, b, constrained));
- }
- // "Whiten" the system before converting to a Gaussian Factor
- Matrix Qinvsqrt = QInvSqrt(x1);
- A1 = Qinvsqrt*A1;
- A2 = Qinvsqrt*A2;
- b = Qinvsqrt*b;
- return GaussianFactor::shared_ptr(new JacobianFactor(key1(), A1, key2(),
- A2, b, noiseModel::Unit::Create(b.size())));
- }
- /** vector of errors */
- Vector evaluateError(const Point2& p1, const Point2& p2,
- boost::optional<Matrix&> H1 = boost::none, boost::optional<Matrix&> H2 =
- boost::none) const override {
- // error = p2 - f(p1)
- // H1 = d error / d p1 = -d f/ d p1 = -F
- // H2 = d error / d p2 = I
- Point2 prediction = f(p1);
- if(H1)
- *H1 = -F(p1);
- if(H2)
- *H2 = Matrix::Identity(dim(),dim());
- // Return the error between the prediction and the supplied value of p2
- return (p2 - prediction);
- }
- };
- // Create Measurement Model Factor
- class NonlinearMeasurementModel : public NoiseModelFactor1<Point2> {
- typedef NoiseModelFactor1<Point2> Base;
- typedef NonlinearMeasurementModel This;
- protected:
- Vector z_; /** The measurement */
- Matrix R_; /** The measurement error covariance */
- Matrix R_invsqrt_; /** The inv sqrt of the measurement error covariance */
- public:
- NonlinearMeasurementModel(){}
- NonlinearMeasurementModel(const Symbol& TestKey, Vector z) :
- Base(noiseModel::Unit::Create(z.size()), TestKey), z_(z), R_(1,1) {
- // Initialize nonlinear measurement model parameters:
- // z(t) = H*x(t) + v
- // where v ~ N(0, noiseModel_)
- R_ << 1.0;
- R_invsqrt_ = inverse_square_root(R_);
- }
- ~NonlinearMeasurementModel() override {}
- // Calculate the predicted measurement using the nonlinear function h()
- // Byproduct: updates Jacobian H, and noiseModel (R)
- Vector h(const Point2& x_t1) const {
- // Calculate prediction
- Vector z_hat(1);
- z_hat(0) = 2*x_t1.x()*x_t1.x() - x_t1.x()*x_t1.y() - 2.5*x_t1.x() + 7*x_t1.y();
- return z_hat;
- }
- Matrix H(const Point2& x_t1) const {
- // Update Jacobian
- Matrix H(1,2);
- H(0,0) = 4*x_t1.x() - x_t1.y() - 2.5;
- H(0,1) = -1*x_t1.x() + 7;
- return H;
- }
- // Calculate the inverse square root of the motion model covariance, Q
- Matrix RInvSqrt(const Point2& x_t0) const {
- // This motion model has a constant covariance
- return R_invsqrt_;
- }
- /* print */
- void print(const std::string& s = "", const KeyFormatter& keyFormatter = DefaultKeyFormatter) const override {
- std::cout << s << ": NonlinearMeasurementModel\n";
- std::cout << " TestKey: " << keyFormatter(key()) << std::endl;
- }
- /** Check if two factors are equal. Note type is IndexFactor and needs cast. */
- bool equals(const NonlinearFactor& f, double tol = 1e-9) const override {
- const This *e = dynamic_cast<const This*> (&f);
- return (e != nullptr) && Base::equals(f);
- }
- /**
- * calculate the error of the factor
- * Override for systems with unusual noise models
- */
- double error(const Values& c) const override {
- Vector w = whitenedError(c);
- return 0.5 * w.dot(w);
- }
- /** get the dimension of the factor (number of rows on linearization) */
- size_t dim() const override {
- return 1;
- }
- /** Vector of errors, whitened ! */
- Vector whitenedError(const Values& c) const {
- return RInvSqrt(c.at<Point2>(key()))*unwhitenedError(c);
- }
- /**
- * Linearize a nonlinearFactor1 measurement factor into a GaussianFactor
- * Ax-b \approx h(x1+dx1)-z = h(x1) + A1*dx1 - z
- * Hence b = z - h(x1) = - error_vector(x)
- */
- boost::shared_ptr<GaussianFactor> linearize(const Values& c) const override {
- const X& x1 = c.at<X>(key());
- Matrix A1;
- Vector b = -evaluateError(x1, A1);
- SharedDiagonal constrained =
- boost::dynamic_pointer_cast<noiseModel::Constrained>(this->noiseModel_);
- if (constrained.get() != nullptr) {
- return JacobianFactor::shared_ptr(new JacobianFactor(key(), A1, b, constrained));
- }
- // "Whiten" the system before converting to a Gaussian Factor
- Matrix Rinvsqrt = RInvSqrt(x1);
- A1 = Rinvsqrt*A1;
- b = Rinvsqrt*b;
- return GaussianFactor::shared_ptr(new JacobianFactor(key(), A1, b, noiseModel::Unit::Create(b.size())));
- }
- /** vector of errors */
- Vector evaluateError(const Point2& p, boost::optional<Matrix&> H1 = boost::none) const override {
- // error = z - h(p)
- // H = d error / d p = -d h/ d p = -H
- Vector z_hat = h(p);
- if(H1){
- *H1 = -H(p);
- }
- // Return the error between the prediction and the supplied value of p2
- return z_ - z_hat;
- }
- };
- /* ************************************************************************* */
- TEST( ExtendedKalmanFilter, nonlinear ) {
- // Create the set of expected output TestValues (generated using Matlab Kalman Filter)
- Point2 expected_predict[10];
- Point2 expected_update[10];
- expected_predict[0] = Point2(0.81,0.99);
- expected_update[0] = Point2(0.824926197027,0.29509808);
- expected_predict[1] = Point2(0.680503230541,0.24343413);
- expected_update[1] = Point2(0.773360464065,0.43518355);
- expected_predict[2] = Point2(0.598086407378,0.33655375);
- expected_update[2] = Point2(0.908781566884,0.60766713);
- expected_predict[3] = Point2(0.825883936308,0.55223668);
- expected_update[3] = Point2(1.23221370495,0.74372849);
- expected_predict[4] = Point2(1.51835061468,0.91643243);
- expected_update[4] = Point2(1.32823362774,0.855855);
- expected_predict[5] = Point2(1.76420456986,1.1367754);
- expected_update[5] = Point2(1.36378040243,1.0623832);
- expected_predict[6] = Point2(1.85989698605,1.4488574);
- expected_update[6] = Point2(1.24068063304,1.3431964);
- expected_predict[7] = Point2(1.53928843321,1.6664778);
- expected_update[7] = Point2(1.04229257957,1.4856408);
- expected_predict[8] = Point2(1.08637382142,1.5484724);
- expected_update[8] = Point2(1.13201933157,1.5795507);
- expected_predict[9] = Point2(1.28146776705,1.7880819);
- expected_update[9] = Point2(1.22159588179,1.7434982);
- // Measurements
- double z[10];
- z[0] = 1.0;
- z[1] = 2.0;
- z[2] = 3.0;
- z[3] = 4.0;
- z[4] = 5.0;
- z[5] = 6.0;
- z[6] = 7.0;
- z[7] = 8.0;
- z[8] = 9.0;
- z[9] = 10.0;
- // Create the Kalman Filter initialization point
- Point2 x_initial(0.90, 1.10);
- SharedDiagonal P_initial = noiseModel::Diagonal::Sigmas(Vector2(0.1, 0.1));
- // Create an ExtendedKalmanFilter object
- ExtendedKalmanFilter<Point2> ekf(X(0), x_initial, P_initial);
- // Enter Predict-Update Loop
- Point2 x_predict(0,0), x_update(0,0);
- for(unsigned int i = 0; i < 10; ++i){
- // Create motion factor
- NonlinearMotionModel motionFactor(X(i), X(i+1));
- x_predict = ekf.predict(motionFactor);
- // Create a measurement factor
- NonlinearMeasurementModel measurementFactor(X(i+1), (Vector(1) << z[i]).finished());
- x_update = ekf.update(measurementFactor);
- EXPECT(assert_equal(expected_predict[i],x_predict, 1e-6));
- EXPECT(assert_equal(expected_update[i], x_update, 1e-6));
- }
- return;
- }
- /* ************************************************************************* */
- int main() { TestResult tr; return TestRegistry::runAllTests(tr); }
- /* ************************************************************************* */
|