123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187 |
- /* ----------------------------------------------------------------------------
- * GTSAM Copyright 2010, Georgia Tech Research Corporation,
- * Atlanta, Georgia 30332-0415
- * All Rights Reserved
- * Authors: Frank Dellaert, et al. (see THANKS for the full author list)
- * See LICENSE for the license information
- * -------------------------------------------------------------------------- */
- /**
- * @file testDoglegOptimizer.cpp
- * @brief Unit tests for DoglegOptimizer
- * @author Richard Roberts
- * @author Frank dellaert
- */
- #include <CppUnitLite/TestHarness.h>
- #include <tests/smallExample.h>
- #include <gtsam/geometry/Pose2.h>
- #include <gtsam/nonlinear/DoglegOptimizer.h>
- #include <gtsam/nonlinear/DoglegOptimizerImpl.h>
- #include <gtsam/nonlinear/NonlinearEquality.h>
- #include <gtsam/slam/BetweenFactor.h>
- #include <gtsam/inference/Symbol.h>
- #include <gtsam/linear/JacobianFactor.h>
- #include <gtsam/linear/GaussianBayesTree.h>
- #include <gtsam/base/numericalDerivative.h>
- #include <boost/assign/list_of.hpp> // for 'list_of()'
- #include <functional>
- #include <boost/iterator/counting_iterator.hpp>
- using namespace std;
- using namespace gtsam;
- // Convenience for named keys
- using symbol_shorthand::X;
- using symbol_shorthand::L;
- /* ************************************************************************* */
- TEST(DoglegOptimizer, ComputeBlend) {
- // Create an arbitrary Bayes Net
- GaussianBayesNet gbn;
- gbn += GaussianConditional::shared_ptr(new GaussianConditional(
- 0, Vector2(1.0,2.0), (Matrix(2, 2) << 3.0,4.0,0.0,6.0).finished(),
- 3, (Matrix(2, 2) << 7.0,8.0,9.0,10.0).finished(),
- 4, (Matrix(2, 2) << 11.0,12.0,13.0,14.0).finished()));
- gbn += GaussianConditional::shared_ptr(new GaussianConditional(
- 1, Vector2(15.0,16.0), (Matrix(2, 2) << 17.0,18.0,0.0,20.0).finished(),
- 2, (Matrix(2, 2) << 21.0,22.0,23.0,24.0).finished(),
- 4, (Matrix(2, 2) << 25.0,26.0,27.0,28.0).finished()));
- gbn += GaussianConditional::shared_ptr(new GaussianConditional(
- 2, Vector2(29.0,30.0), (Matrix(2, 2) << 31.0,32.0,0.0,34.0).finished(),
- 3, (Matrix(2, 2) << 35.0,36.0,37.0,38.0).finished()));
- gbn += GaussianConditional::shared_ptr(new GaussianConditional(
- 3, Vector2(39.0,40.0), (Matrix(2, 2) << 41.0,42.0,0.0,44.0).finished(),
- 4, (Matrix(2, 2) << 45.0,46.0,47.0,48.0).finished()));
- gbn += GaussianConditional::shared_ptr(new GaussianConditional(
- 4, Vector2(49.0,50.0), (Matrix(2, 2) << 51.0,52.0,0.0,54.0).finished()));
- // Compute steepest descent point
- VectorValues xu = gbn.optimizeGradientSearch();
- // Compute Newton's method point
- VectorValues xn = gbn.optimize();
- // The Newton's method point should be more "adventurous", i.e. larger, than the steepest descent point
- EXPECT(xu.vector().norm() < xn.vector().norm());
- // Compute blend
- double Delta = 1.5;
- VectorValues xb = DoglegOptimizerImpl::ComputeBlend(Delta, xu, xn);
- DOUBLES_EQUAL(Delta, xb.vector().norm(), 1e-10);
- }
- /* ************************************************************************* */
- TEST(DoglegOptimizer, ComputeDoglegPoint) {
- // Create an arbitrary Bayes Net
- GaussianBayesNet gbn;
- gbn += GaussianConditional::shared_ptr(new GaussianConditional(
- 0, Vector2(1.0,2.0), (Matrix(2, 2) << 3.0,4.0,0.0,6.0).finished(),
- 3, (Matrix(2, 2) << 7.0,8.0,9.0,10.0).finished(),
- 4, (Matrix(2, 2) << 11.0,12.0,13.0,14.0).finished()));
- gbn += GaussianConditional::shared_ptr(new GaussianConditional(
- 1, Vector2(15.0,16.0), (Matrix(2, 2) << 17.0,18.0,0.0,20.0).finished(),
- 2, (Matrix(2, 2) << 21.0,22.0,23.0,24.0).finished(),
- 4, (Matrix(2, 2) << 25.0,26.0,27.0,28.0).finished()));
- gbn += GaussianConditional::shared_ptr(new GaussianConditional(
- 2, Vector2(29.0,30.0), (Matrix(2, 2) << 31.0,32.0,0.0,34.0).finished(),
- 3, (Matrix(2, 2) << 35.0,36.0,37.0,38.0).finished()));
- gbn += GaussianConditional::shared_ptr(new GaussianConditional(
- 3, Vector2(39.0,40.0), (Matrix(2, 2) << 41.0,42.0,0.0,44.0).finished(),
- 4, (Matrix(2, 2) << 45.0,46.0,47.0,48.0).finished()));
- gbn += GaussianConditional::shared_ptr(new GaussianConditional(
- 4, Vector2(49.0,50.0), (Matrix(2, 2) << 51.0,52.0,0.0,54.0).finished()));
- // Compute dogleg point for different deltas
- double Delta1 = 0.5; // Less than steepest descent
- VectorValues actual1 = DoglegOptimizerImpl::ComputeDoglegPoint(Delta1, gbn.optimizeGradientSearch(), gbn.optimize());
- DOUBLES_EQUAL(Delta1, actual1.vector().norm(), 1e-5);
- double Delta2 = 1.5; // Between steepest descent and Newton's method
- VectorValues expected2 = DoglegOptimizerImpl::ComputeBlend(Delta2, gbn.optimizeGradientSearch(), gbn.optimize());
- VectorValues actual2 = DoglegOptimizerImpl::ComputeDoglegPoint(Delta2, gbn.optimizeGradientSearch(), gbn.optimize());
- DOUBLES_EQUAL(Delta2, actual2.vector().norm(), 1e-5);
- EXPECT(assert_equal(expected2, actual2));
- double Delta3 = 5.0; // Larger than Newton's method point
- VectorValues expected3 = gbn.optimize();
- VectorValues actual3 = DoglegOptimizerImpl::ComputeDoglegPoint(Delta3, gbn.optimizeGradientSearch(), gbn.optimize());
- EXPECT(assert_equal(expected3, actual3));
- }
- /* ************************************************************************* */
- TEST(DoglegOptimizer, Iterate) {
- // really non-linear factor graph
- NonlinearFactorGraph fg = example::createReallyNonlinearFactorGraph();
- // config far from minimum
- Point2 x0(3,0);
- Values config;
- config.insert(X(1), x0);
- double Delta = 1.0;
- for(size_t it=0; it<10; ++it) {
- GaussianBayesNet gbn = *fg.linearize(config)->eliminateSequential();
- // Iterate assumes that linear error = nonlinear error at the linearization point, and this should be true
- double nonlinearError = fg.error(config);
- double linearError = GaussianFactorGraph(gbn).error(config.zeroVectors());
- DOUBLES_EQUAL(nonlinearError, linearError, 1e-5);
- // cout << "it " << it << ", Delta = " << Delta << ", error = " << fg->error(*config) << endl;
- VectorValues dx_u = gbn.optimizeGradientSearch();
- VectorValues dx_n = gbn.optimize();
- DoglegOptimizerImpl::IterationResult result = DoglegOptimizerImpl::Iterate(Delta, DoglegOptimizerImpl::SEARCH_EACH_ITERATION, dx_u, dx_n, gbn, fg, config, fg.error(config));
- Delta = result.delta;
- EXPECT(result.f_error < fg.error(config)); // Check that error decreases
- Values newConfig(config.retract(result.dx_d));
- config = newConfig;
- DOUBLES_EQUAL(fg.error(config), result.f_error, 1e-5); // Check that error is correctly filled in
- }
- }
- /* ************************************************************************* */
- TEST(DoglegOptimizer, Constraint) {
- // Create a pose-graph graph with a constraint on the first pose
- NonlinearFactorGraph graph;
- const Pose2 origin(0, 0, 0), pose2(2, 0, 0);
- graph.emplace_shared<NonlinearEquality<Pose2> >(1, origin);
- auto model = noiseModel::Diagonal::Sigmas(Vector3(0.2, 0.2, 0.1));
- graph.emplace_shared<BetweenFactor<Pose2> >(1, 2, pose2, model);
- // Create feasible initial estimate
- Values initial;
- initial.insert(1, origin); // feasible !
- initial.insert(2, Pose2(2.3, 0.1, -0.2));
- // Optimize the initial values using DoglegOptimizer
- DoglegParams params;
- params.setVerbosityDL("VERBOSITY");
- DoglegOptimizer optimizer(graph, initial, params);
- Values result = optimizer.optimize();
- // Check result
- EXPECT(assert_equal(pose2, result.at<Pose2>(2)));
- // Create infeasible initial estimate
- Values infeasible;
- infeasible.insert(1, Pose2(0.1, 0, 0)); // infeasible !
- infeasible.insert(2, Pose2(2.3, 0.1, -0.2));
- // Try optimizing with infeasible initial estimate
- DoglegOptimizer optimizer2(graph, infeasible, params);
- #ifdef GTSAM_USE_TBB
- CHECK_EXCEPTION(optimizer2.optimize(), std::exception);
- #else
- CHECK_EXCEPTION(optimizer2.optimize(), std::invalid_argument);
- #endif
- }
- /* ************************************************************************* */
- int main() { TestResult tr; return TestRegistry::runAllTests(tr); }
- /* ************************************************************************* */
|