123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433 |
- /* ----------------------------------------------------------------------------
- * GTSAM Copyright 2010, Georgia Tech Research Corporation,
- * Atlanta, Georgia 30332-0415
- * All Rights Reserved
- * Authors: Frank Dellaert, et al. (see THANKS for the full author list)
- * See LICENSE for the license information
- * -------------------------------------------------------------------------- */
- /**
- * @file InertialNavFactor_GlobalVelocity.h
- * @author Vadim Indelman, Stephen Williams
- * @brief Inertial navigation factor (velocity in the global frame)
- * @date Sept 13, 2012
- **/
- #pragma once
- #include <gtsam/nonlinear/NonlinearFactor.h>
- #include <gtsam/linear/NoiseModel.h>
- #include <gtsam/geometry/Rot3.h>
- #include <gtsam/base/Matrix.h>
- // Using numerical derivative to calculate d(Pose3::Expmap)/dw
- #include <gtsam/base/numericalDerivative.h>
- #include <boost/bind/bind.hpp>
- #include <boost/optional.hpp>
- #include <ostream>
- namespace gtsam {
- /*
- * NOTES:
- * =====
- * - The global frame (NED or ENU) is defined by the user by specifying the gravity vector in this frame.
- * - The IMU frame is implicitly defined by the user via the rotation matrix between global and imu frames.
- * - Camera and IMU frames are identical
- * - The user should specify a continuous equivalent noise covariance, which can be calculated using
- * the static function CalcEquivalentNoiseCov based on the IMU gyro and acc measurement noise covariance
- * matrices and the process\modeling covariance matrix. The IneritalNavFactor converts this into a
- * discrete form using the supplied delta_t between sub-sequential measurements.
- * - Earth-rate correction:
- * + Currently the user should supply R_ECEF_to_G, which is the rotation from ECEF to the global
- * frame (Local-Level system: ENU or NED, see above).
- * + R_ECEF_to_G can be calculated by approximated values of latitude and longitude of the system.
- * + Currently it is assumed that a relatively small distance is traveled w.r.t. to initial pose, since R_ECEF_to_G is constant.
- * Otherwise, R_ECEF_to_G should be updated each time using the current lat-lon.
- *
- * - Frame Notation:
- * Quantities are written as {Frame of Representation/Destination Frame}_{Quantity Type}_{Quatity Description/Origination Frame}
- * So, the rotational velocity of the sensor written in the body frame is: body_omega_sensor
- * And the transformation from the body frame to the world frame would be: world_P_body
- * This allows visual chaining. For example, converting the sensed angular velocity of the IMU
- * (angular velocity of the sensor in the sensor frame) into the world frame can be performed as:
- * world_R_body * body_R_sensor * sensor_omega_sensor = world_omega_sensor
- *
- *
- * - Common Quantity Types
- * P : pose/3d transformation
- * R : rotation
- * omega : angular velocity
- * t : translation
- * v : velocity
- * a : acceleration
- *
- * - Common Frames
- * sensor : the coordinate system attached to the sensor origin
- * body : the coordinate system attached to body/inertial frame.
- * Unless an optional frame transformation is provided, the
- * sensor frame and the body frame will be identical
- * world : the global/world coordinate frame. This is assumed to be
- * a tangent plane to the earth's surface somewhere near the
- * vehicle
- */
- template<class POSE, class VELOCITY, class IMUBIAS>
- class InertialNavFactor_GlobalVelocity : public NoiseModelFactor5<POSE, VELOCITY, IMUBIAS, POSE, VELOCITY> {
- private:
- typedef InertialNavFactor_GlobalVelocity<POSE, VELOCITY, IMUBIAS> This;
- typedef NoiseModelFactor5<POSE, VELOCITY, IMUBIAS, POSE, VELOCITY> Base;
- Vector measurement_acc_;
- Vector measurement_gyro_;
- double dt_;
- Vector world_g_;
- Vector world_rho_;
- Vector world_omega_earth_;
- boost::optional<POSE> body_P_sensor_; // The pose of the sensor in the body frame
- public:
- // shorthand for a smart pointer to a factor
- typedef typename boost::shared_ptr<InertialNavFactor_GlobalVelocity> shared_ptr;
- /** default constructor - only use for serialization */
- InertialNavFactor_GlobalVelocity() {}
- /** Constructor */
- InertialNavFactor_GlobalVelocity(const Key& Pose1, const Key& Vel1, const Key& IMUBias1, const Key& Pose2, const Key& Vel2,
- const Vector& measurement_acc, const Vector& measurement_gyro, const double measurement_dt, const Vector world_g, const Vector world_rho,
- const Vector& world_omega_earth, const noiseModel::Gaussian::shared_ptr& model_continuous, boost::optional<POSE> body_P_sensor = boost::none) :
- Base(calc_descrete_noise_model(model_continuous, measurement_dt ),
- Pose1, Vel1, IMUBias1, Pose2, Vel2), measurement_acc_(measurement_acc), measurement_gyro_(measurement_gyro),
- dt_(measurement_dt), world_g_(world_g), world_rho_(world_rho), world_omega_earth_(world_omega_earth), body_P_sensor_(body_P_sensor) { }
- ~InertialNavFactor_GlobalVelocity() override {}
- /** implement functions needed for Testable */
- /** print */
- void print(const std::string& s = "InertialNavFactor_GlobalVelocity", const KeyFormatter& keyFormatter = DefaultKeyFormatter) const override {
- std::cout << s << "("
- << keyFormatter(this->key1()) << ","
- << keyFormatter(this->key2()) << ","
- << keyFormatter(this->key3()) << ","
- << keyFormatter(this->key4()) << ","
- << keyFormatter(this->key5()) << "\n";
- std::cout << "acc measurement: " << this->measurement_acc_.transpose() << std::endl;
- std::cout << "gyro measurement: " << this->measurement_gyro_.transpose() << std::endl;
- std::cout << "dt: " << this->dt_ << std::endl;
- std::cout << "gravity (in world frame): " << this->world_g_.transpose() << std::endl;
- std::cout << "craft rate (in world frame): " << this->world_rho_.transpose() << std::endl;
- std::cout << "earth's rotation (in world frame): " << this->world_omega_earth_.transpose() << std::endl;
- if(this->body_P_sensor_)
- this->body_P_sensor_->print(" sensor pose in body frame: ");
- this->noiseModel_->print(" noise model");
- }
- /** equals */
- bool equals(const NonlinearFactor& expected, double tol=1e-9) const override {
- const This *e = dynamic_cast<const This*> (&expected);
- return e != nullptr && Base::equals(*e, tol)
- && (measurement_acc_ - e->measurement_acc_).norm() < tol
- && (measurement_gyro_ - e->measurement_gyro_).norm() < tol
- && (dt_ - e->dt_) < tol
- && (world_g_ - e->world_g_).norm() < tol
- && (world_rho_ - e->world_rho_).norm() < tol
- && (world_omega_earth_ - e->world_omega_earth_).norm() < tol
- && ((!body_P_sensor_ && !e->body_P_sensor_) || (body_P_sensor_ && e->body_P_sensor_ && body_P_sensor_->equals(*e->body_P_sensor_)));
- }
- POSE predictPose(const POSE& Pose1, const VELOCITY& Vel1, const IMUBIAS& Bias1) const {
- // Calculate the corrected measurements using the Bias object
- Vector GyroCorrected(Bias1.correctGyroscope(measurement_gyro_));
- const POSE& world_P1_body = Pose1;
- const VELOCITY& world_V1_body = Vel1;
- // Calculate the acceleration and angular velocity of the body in the body frame (including earth-related rotations)
- Vector body_omega_body;
- if(body_P_sensor_) {
- body_omega_body = body_P_sensor_->rotation().matrix() * GyroCorrected;
- } else {
- body_omega_body = GyroCorrected;
- }
- // Convert earth-related terms into the body frame
- Matrix body_R_world(world_P1_body.rotation().inverse().matrix());
- Vector body_rho = body_R_world * world_rho_;
- Vector body_omega_earth = body_R_world * world_omega_earth_;
- // Correct for earth-related terms
- body_omega_body -= body_rho + body_omega_earth;
- // The velocity is in the global frame, so composing Pose1 with v*dt is incorrect
- return POSE(Pose1.rotation() * POSE::Rotation::Expmap(body_omega_body*dt_), Pose1.translation() + typename POSE::Translation(world_V1_body*dt_));
- }
- VELOCITY predictVelocity(const POSE& Pose1, const VELOCITY& Vel1, const IMUBIAS& Bias1) const {
- // Calculate the corrected measurements using the Bias object
- Vector AccCorrected(Bias1.correctAccelerometer(measurement_acc_));
- const POSE& world_P1_body = Pose1;
- const VELOCITY& world_V1_body = Vel1;
- // Calculate the acceleration and angular velocity of the body in the body frame (including earth-related rotations)
- Vector body_a_body, body_omega_body;
- if(body_P_sensor_) {
- Matrix body_R_sensor = body_P_sensor_->rotation().matrix();
- Vector GyroCorrected(Bias1.correctGyroscope(measurement_gyro_));
- body_omega_body = body_R_sensor * GyroCorrected;
- Matrix body_omega_body__cross = skewSymmetric(body_omega_body);
- body_a_body = body_R_sensor * AccCorrected - body_omega_body__cross * body_omega_body__cross * body_P_sensor_->translation();
- } else {
- body_a_body = AccCorrected;
- }
- // Correct for earth-related terms
- Vector world_a_body = world_P1_body.rotation().matrix() * body_a_body + world_g_ - 2*skewSymmetric(world_rho_ + world_omega_earth_)*world_V1_body;
- // Calculate delta in the body frame
- VELOCITY VelDelta(world_a_body*dt_);
- // Predict
- return Vel1 + VelDelta;
- }
- void predict(const POSE& Pose1, const VELOCITY& Vel1, const IMUBIAS& Bias1, POSE& Pose2, VELOCITY& Vel2) const {
- Pose2 = predictPose(Pose1, Vel1, Bias1);
- Vel2 = predictVelocity(Pose1, Vel1, Bias1);
- }
- POSE evaluatePoseError(const POSE& Pose1, const VELOCITY& Vel1, const IMUBIAS& Bias1, const POSE& Pose2, const VELOCITY& Vel2) const {
- // Predict
- POSE Pose2Pred = predictPose(Pose1, Vel1, Bias1);
- // Calculate error
- return Pose2.between(Pose2Pred);
- }
- VELOCITY evaluateVelocityError(const POSE& Pose1, const VELOCITY& Vel1, const IMUBIAS& Bias1, const POSE& Pose2, const VELOCITY& Vel2) const {
- // Predict
- VELOCITY Vel2Pred = predictVelocity(Pose1, Vel1, Bias1);
- // Calculate error
- return Vel2Pred - Vel2;
- }
- /** implement functions needed to derive from Factor */
- Vector evaluateError(const POSE& Pose1, const VELOCITY& Vel1, const IMUBIAS& Bias1, const POSE& Pose2, const VELOCITY& Vel2,
- boost::optional<Matrix&> H1 = boost::none,
- boost::optional<Matrix&> H2 = boost::none,
- boost::optional<Matrix&> H3 = boost::none,
- boost::optional<Matrix&> H4 = boost::none,
- boost::optional<Matrix&> H5 = boost::none) const override {
- // TODO: Write analytical derivative calculations
- // Jacobian w.r.t. Pose1
- if (H1){
- Matrix H1_Pose = gtsam::numericalDerivative11<POSE, POSE>(
- std::bind(&InertialNavFactor_GlobalVelocity::evaluatePoseError,
- this, std::placeholders::_1, Vel1, Bias1, Pose2, Vel2),
- Pose1);
- Matrix H1_Vel = gtsam::numericalDerivative11<VELOCITY, POSE>(
- std::bind(&InertialNavFactor_GlobalVelocity::evaluateVelocityError,
- this, std::placeholders::_1, Vel1, Bias1, Pose2, Vel2),
- Pose1);
- *H1 = stack(2, &H1_Pose, &H1_Vel);
- }
- // Jacobian w.r.t. Vel1
- if (H2){
- if (Vel1.size()!=3) throw std::runtime_error("Frank's hack to make this compile will not work if size != 3");
- Matrix H2_Pose = gtsam::numericalDerivative11<POSE, Vector3>(
- std::bind(&InertialNavFactor_GlobalVelocity::evaluatePoseError,
- this, Pose1, std::placeholders::_1, Bias1, Pose2, Vel2),
- Vel1);
- Matrix H2_Vel = gtsam::numericalDerivative11<Vector3, Vector3>(
- std::bind(&InertialNavFactor_GlobalVelocity::evaluateVelocityError,
- this, Pose1, std::placeholders::_1, Bias1, Pose2, Vel2),
- Vel1);
- *H2 = stack(2, &H2_Pose, &H2_Vel);
- }
- // Jacobian w.r.t. IMUBias1
- if (H3){
- Matrix H3_Pose = gtsam::numericalDerivative11<POSE, IMUBIAS>(
- std::bind(&InertialNavFactor_GlobalVelocity::evaluatePoseError,
- this, Pose1, Vel1, std::placeholders::_1, Pose2, Vel2),
- Bias1);
- Matrix H3_Vel = gtsam::numericalDerivative11<VELOCITY, IMUBIAS>(
- std::bind(&InertialNavFactor_GlobalVelocity::evaluateVelocityError,
- this, Pose1, Vel1, std::placeholders::_1, Pose2, Vel2),
- Bias1);
- *H3 = stack(2, &H3_Pose, &H3_Vel);
- }
- // Jacobian w.r.t. Pose2
- if (H4){
- Matrix H4_Pose = gtsam::numericalDerivative11<POSE, POSE>(
- std::bind(&InertialNavFactor_GlobalVelocity::evaluatePoseError,
- this, Pose1, Vel1, Bias1, std::placeholders::_1, Vel2),
- Pose2);
- Matrix H4_Vel = gtsam::numericalDerivative11<VELOCITY, POSE>(
- std::bind(&InertialNavFactor_GlobalVelocity::evaluateVelocityError,
- this, Pose1, Vel1, Bias1, std::placeholders::_1, Vel2),
- Pose2);
- *H4 = stack(2, &H4_Pose, &H4_Vel);
- }
- // Jacobian w.r.t. Vel2
- if (H5){
- if (Vel2.size()!=3) throw std::runtime_error("Frank's hack to make this compile will not work if size != 3");
- Matrix H5_Pose = gtsam::numericalDerivative11<POSE, Vector3>(
- std::bind(&InertialNavFactor_GlobalVelocity::evaluatePoseError,
- this, Pose1, Vel1, Bias1, Pose2, std::placeholders::_1),
- Vel2);
- Matrix H5_Vel = gtsam::numericalDerivative11<Vector3, Vector3>(
- std::bind(&InertialNavFactor_GlobalVelocity::evaluateVelocityError,
- this, Pose1, Vel1, Bias1, Pose2, std::placeholders::_1),
- Vel2);
- *H5 = stack(2, &H5_Pose, &H5_Vel);
- }
- Vector ErrPoseVector(POSE::Logmap(evaluatePoseError(Pose1, Vel1, Bias1, Pose2, Vel2)));
- Vector ErrVelVector(evaluateVelocityError(Pose1, Vel1, Bias1, Pose2, Vel2));
- return concatVectors(2, &ErrPoseVector, &ErrVelVector);
- }
- static inline noiseModel::Gaussian::shared_ptr CalcEquivalentNoiseCov(const noiseModel::Gaussian::shared_ptr& gaussian_acc, const noiseModel::Gaussian::shared_ptr& gaussian_gyro,
- const noiseModel::Gaussian::shared_ptr& gaussian_process){
- Matrix cov_acc = ( gaussian_acc->R().transpose() * gaussian_acc->R() ).inverse();
- Matrix cov_gyro = ( gaussian_gyro->R().transpose() * gaussian_gyro->R() ).inverse();
- Matrix cov_process = ( gaussian_process->R().transpose() * gaussian_process->R() ).inverse();
- cov_process.block(0,0, 3,3) += cov_gyro;
- cov_process.block(6,6, 3,3) += cov_acc;
- return noiseModel::Gaussian::Covariance(cov_process);
- }
- static inline void Calc_g_rho_omega_earth_NED(const Vector& Pos_NED, const Vector& Vel_NED, const Vector& LatLonHeight_IC, const Vector& Pos_NED_Initial,
- Vector& g_NED, Vector& rho_NED, Vector& omega_earth_NED) {
- Matrix ENU_to_NED = (Matrix(3, 3) <<
- 0.0, 1.0, 0.0,
- 1.0, 0.0, 0.0,
- 0.0, 0.0, -1.0).finished();
- Matrix NED_to_ENU = (Matrix(3, 3) <<
- 0.0, 1.0, 0.0,
- 1.0, 0.0, 0.0,
- 0.0, 0.0, -1.0).finished();
- // Convert incoming parameters to ENU
- Vector Pos_ENU = NED_to_ENU * Pos_NED;
- Vector Vel_ENU = NED_to_ENU * Vel_NED;
- Vector Pos_ENU_Initial = NED_to_ENU * Pos_NED_Initial;
- // Call ENU version
- Vector g_ENU;
- Vector rho_ENU;
- Vector omega_earth_ENU;
- Calc_g_rho_omega_earth_ENU(Pos_ENU, Vel_ENU, LatLonHeight_IC, Pos_ENU_Initial, g_ENU, rho_ENU, omega_earth_ENU);
- // Convert output to NED
- g_NED = ENU_to_NED * g_ENU;
- rho_NED = ENU_to_NED * rho_ENU;
- omega_earth_NED = ENU_to_NED * omega_earth_ENU;
- }
- static inline void Calc_g_rho_omega_earth_ENU(const Vector& Pos_ENU, const Vector& Vel_ENU, const Vector& LatLonHeight_IC, const Vector& Pos_ENU_Initial,
- Vector& g_ENU, Vector& rho_ENU, Vector& omega_earth_ENU){
- double R0 = 6.378388e6;
- double e = 1/297;
- double Re( R0*( 1-e*(sin( LatLonHeight_IC(0) ))*(sin( LatLonHeight_IC(0) )) ) );
- // Calculate current lat, lon
- Vector delta_Pos_ENU(Pos_ENU - Pos_ENU_Initial);
- double delta_lat(delta_Pos_ENU(1)/Re);
- double delta_lon(delta_Pos_ENU(0)/(Re*cos(LatLonHeight_IC(0))));
- double lat_new(LatLonHeight_IC(0) + delta_lat);
- double lon_new(LatLonHeight_IC(1) + delta_lon);
- // Rotation of lon about z axis
- Rot3 C1(cos(lon_new), sin(lon_new), 0.0,
- -sin(lon_new), cos(lon_new), 0.0,
- 0.0, 0.0, 1.0);
- // Rotation of lat about y axis
- Rot3 C2(cos(lat_new), 0.0, sin(lat_new),
- 0.0, 1.0, 0.0,
- -sin(lat_new), 0.0, cos(lat_new));
- Rot3 UEN_to_ENU(0, 1, 0,
- 0, 0, 1,
- 1, 0, 0);
- Rot3 R_ECEF_to_ENU( UEN_to_ENU * C2 * C1 );
- Vector omega_earth_ECEF(Vector3(0.0, 0.0, 7.292115e-5));
- omega_earth_ENU = R_ECEF_to_ENU.matrix() * omega_earth_ECEF;
- // Calculating g
- double height(LatLonHeight_IC(2));
- double EQUA_RADIUS = 6378137.0; // equatorial radius of the earth; WGS-84
- double ECCENTRICITY = 0.0818191908426; // eccentricity of the earth ellipsoid
- double e2( pow(ECCENTRICITY,2) );
- double den( 1-e2*pow(sin(lat_new),2) );
- double Rm( (EQUA_RADIUS*(1-e2))/( pow(den,(3/2)) ) );
- double Rp( EQUA_RADIUS/( sqrt(den) ) );
- double Ro( sqrt(Rp*Rm) ); // mean earth radius of curvature
- double g0( 9.780318*( 1 + 5.3024e-3 * pow(sin(lat_new),2) - 5.9e-6 * pow(sin(2*lat_new),2) ) );
- double g_calc( g0/( pow(1 + height/Ro, 2) ) );
- g_ENU = (Vector(3) << 0.0, 0.0, -g_calc).finished();
- // Calculate rho
- double Ve( Vel_ENU(0) );
- double Vn( Vel_ENU(1) );
- double rho_E = -Vn/(Rm + height);
- double rho_N = Ve/(Rp + height);
- double rho_U = Ve*tan(lat_new)/(Rp + height);
- rho_ENU = (Vector(3) << rho_E, rho_N, rho_U).finished();
- }
- static inline noiseModel::Gaussian::shared_ptr calc_descrete_noise_model(const noiseModel::Gaussian::shared_ptr& model, double delta_t){
- /* Q_d (approx)= Q * delta_t */
- /* In practice, square root of the information matrix is represented, so that:
- * R_d (approx)= R / sqrt(delta_t)
- * */
- return noiseModel::Gaussian::SqrtInformation(model->R()/std::sqrt(delta_t));
- }
- private:
- /** Serialization function */
- friend class boost::serialization::access;
- template<class ARCHIVE>
- void serialize(ARCHIVE & ar, const unsigned int /*version*/) {
- ar & boost::serialization::make_nvp("NonlinearFactor2",
- boost::serialization::base_object<Base>(*this));
- }
- }; // \class InertialNavFactor_GlobalVelocity
- /// traits
- template<class POSE, class VELOCITY, class IMUBIAS>
- struct traits<InertialNavFactor_GlobalVelocity<POSE, VELOCITY, IMUBIAS> > :
- public Testable<InertialNavFactor_GlobalVelocity<POSE, VELOCITY, IMUBIAS> > {
- };
- } /// namespace aspn
|