123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199 |
- /*
- * @file SimpleHelicopter.h
- * @brief Implement SimpleHelicopter discrete dynamics model and variational integrator,
- * following [Kobilarov09siggraph]
- * @author Duy-Nguyen Ta
- */
- #pragma once
- #include <gtsam/nonlinear/NonlinearFactor.h>
- #include <gtsam/geometry/Pose3.h>
- #include <gtsam/base/numericalDerivative.h>
- #include <cmath>
- namespace gtsam {
- /**
- * Implement the Reconstruction equation: \f$ g_{k+1} = g_k \exp (h\xi_k) \f$, where
- * \f$ h \f$: timestep (parameter)
- * \f$ g_{k+1}, g_{k} \f$: poses at the current and the next timestep
- * \f$ \xi_k \f$: the body-fixed velocity (Lie algebra)
- * It is somewhat similar to BetweenFactor, but treats the body-fixed velocity
- * \f$ \xi_k \f$ as a variable. So it is a three-way factor.
- * Note: this factor is necessary if one needs to smooth the entire graph. It's not needed
- * in sequential update method.
- */
- class Reconstruction : public NoiseModelFactor3<Pose3, Pose3, Vector6> {
- double h_; // time step
- typedef NoiseModelFactor3<Pose3, Pose3, Vector6> Base;
- public:
- Reconstruction(Key gKey1, Key gKey, Key xiKey, double h, double mu = 1000.0) :
- Base(noiseModel::Constrained::All(6, std::abs(mu)), gKey1, gKey,
- xiKey), h_(h) {
- }
- ~Reconstruction() override {}
- /// @return a deep copy of this factor
- gtsam::NonlinearFactor::shared_ptr clone() const override {
- return boost::static_pointer_cast<gtsam::NonlinearFactor>(
- gtsam::NonlinearFactor::shared_ptr(new Reconstruction(*this))); }
- /** \f$ log((g_k\exp(h\xi_k))^{-1}g_{k+1}) = 0, with optional derivatives */
- Vector evaluateError(const Pose3& gk1, const Pose3& gk, const Vector6& xik,
- boost::optional<Matrix&> H1 = boost::none,
- boost::optional<Matrix&> H2 = boost::none,
- boost::optional<Matrix&> H3 = boost::none) const override {
- Matrix6 D_exphxi_xi;
- Pose3 exphxi = Pose3::Expmap(h_ * xik, H3 ? &D_exphxi_xi : 0);
- Matrix6 D_gkxi_gk, D_gkxi_exphxi;
- Pose3 gkxi = gk.compose(exphxi, D_gkxi_gk, H3 ? &D_gkxi_exphxi : 0);
- Matrix6 D_hx_gk1, D_hx_gkxi;
- Pose3 hx = gkxi.between(gk1, (H2 || H3) ? &D_hx_gkxi : 0, H1 ? &D_hx_gk1 : 0);
- Matrix6 D_log_hx;
- Vector error = Pose3::Logmap(hx, D_log_hx);
- if (H1) *H1 = D_log_hx * D_hx_gk1;
- if (H2 || H3) {
- Matrix6 D_log_gkxi = D_log_hx * D_hx_gkxi;
- if (H2) *H2 = D_log_gkxi * D_gkxi_gk;
- if (H3) *H3 = D_log_gkxi * D_gkxi_exphxi * D_exphxi_xi * h_;
- }
- return error;
- }
- };
- /**
- * Implement the Discrete Euler-Poincare' equation:
- */
- class DiscreteEulerPoincareHelicopter : public NoiseModelFactor3<Vector6, Vector6, Pose3> {
- double h_; /// time step
- Matrix Inertia_; /// Inertia tensors Inertia = [ J 0; 0 M ]
- Vector Fu_; /// F is the 6xc Control matrix, where c is the number of control variables uk, which directly change the vehicle pose (e.g., gas/brake/speed)
- /// F(.) is actually a function of the shape variables, which do not change the pose, but affect the vehicle's shape, e.g. steering wheel.
- /// Fu_ encodes everything we need to know about the vehicle's dynamics.
- double m_; /// mass. For gravity external force f_ext, which has a fixed formula in this case.
- // TODO: Fk_ and f_ext should be generalized as functions (factor nodes) on control signals and poses/velocities.
- // This might be needed in control or system identification problems.
- // We treat them as constant here, since the control inputs are to specify.
- typedef NoiseModelFactor3<Vector6, Vector6, Pose3> Base;
- public:
- DiscreteEulerPoincareHelicopter(Key xiKey1, Key xiKey_1, Key gKey,
- double h, const Matrix& Inertia, const Vector& Fu, double m,
- double mu = 1000.0) :
- Base(noiseModel::Constrained::All(6, std::abs(mu)), xiKey1, xiKey_1, gKey),
- h_(h), Inertia_(Inertia), Fu_(Fu), m_(m) {
- }
- ~DiscreteEulerPoincareHelicopter() override {}
- /// @return a deep copy of this factor
- gtsam::NonlinearFactor::shared_ptr clone() const override {
- return boost::static_pointer_cast<gtsam::NonlinearFactor>(
- gtsam::NonlinearFactor::shared_ptr(new DiscreteEulerPoincareHelicopter(*this))); }
- /** DEP, with optional derivatives
- * pk - pk_1 - h_*Fu_ - h_*f_ext = 0
- * where pk = CT_TLN(h*xi_k)*Inertia*xi_k
- * pk_1 = CT_TLN(-h*xi_k_1)*Inertia*xi_k_1
- * */
- Vector evaluateError(const Vector6& xik, const Vector6& xik_1, const Pose3& gk,
- boost::optional<Matrix&> H1 = boost::none,
- boost::optional<Matrix&> H2 = boost::none,
- boost::optional<Matrix&> H3 = boost::none) const override {
- Vector muk = Inertia_*xik;
- Vector muk_1 = Inertia_*xik_1;
- // Apply the inverse right-trivialized tangent (derivative) map of the exponential map,
- // using the trapezoidal Lie-Newmark (TLN) scheme, to a vector.
- // TLN is just a first order approximation of the dExpInv_exp above, detailed in [Kobilarov09siggraph]
- // C_TLN formula: I6 - 1/2 ad[xi].
- Matrix D_adjThxik_muk, D_adjThxik1_muk1;
- Vector pk = muk - 0.5*Pose3::adjointTranspose(h_*xik, muk, D_adjThxik_muk);
- Vector pk_1 = muk_1 - 0.5*Pose3::adjointTranspose(-h_*xik_1, muk_1, D_adjThxik1_muk1);
- Matrix D_gravityBody_gk;
- Point3 gravityBody = gk.rotation().unrotate(Point3(0.0, 0.0, -9.81*m_), D_gravityBody_gk, boost::none);
- Vector f_ext = (Vector(6) << 0.0, 0.0, 0.0, gravityBody.x(), gravityBody.y(), gravityBody.z()).finished();
- Vector hx = pk - pk_1 - h_*Fu_ - h_*f_ext;
- if (H1) {
- Matrix D_pik_xi = Inertia_-0.5*(h_*D_adjThxik_muk + Pose3::adjointMap(h_*xik).transpose()*Inertia_);
- *H1 = D_pik_xi;
- }
- if (H2) {
- Matrix D_pik1_xik1 = Inertia_-0.5*(-h_*D_adjThxik1_muk1 + Pose3::adjointMap(-h_*xik_1).transpose()*Inertia_);
- *H2 = -D_pik1_xik1;
- }
- if (H3) {
- *H3 = Z_6x6;
- insertSub(*H3, -h_*D_gravityBody_gk, 3, 0);
- }
- return hx;
- }
- #if 0
- Vector computeError(const Vector6& xik, const Vector6& xik_1, const Pose3& gk) const {
- Vector pk = Pose3::dExpInv_exp(h_*xik).transpose()*Inertia_*xik;
- Vector pk_1 = Pose3::dExpInv_exp(-h_*xik_1).transpose()*Inertia_*xik_1;
- Point3 gravityBody = gk.rotation().unrotate(Point3(0.0, 0.0, -9.81*m_));
- Vector f_ext = (Vector(6) << 0.0, 0.0, 0.0, gravityBody.x(), gravityBody.y(), gravityBody.z());
- Vector hx = pk - pk_1 - h_*Fu_ - h_*f_ext;
- return hx;
- }
- Vector evaluateError(const Vector6& xik, const Vector6& xik_1, const Pose3& gk,
- boost::optional<Matrix&> H1 = boost::none,
- boost::optional<Matrix&> H2 = boost::none,
- boost::optional<Matrix&> H3 = boost::none) const {
- if (H1) {
- (*H1) = numericalDerivative31(
- std::function<Vector(const Vector6&, const Vector6&, const Pose3&)>(
- std::bind(&DiscreteEulerPoincareHelicopter::computeError, *this, _1, _2, _3)
- ),
- xik, xik_1, gk, 1e-5
- );
- }
- if (H2) {
- (*H2) = numericalDerivative32(
- std::function<Vector(const Vector6&, const Vector6&, const Pose3&)>(
- std::bind(&DiscreteEulerPoincareHelicopter::computeError, *this, _1, _2, _3)
- ),
- xik, xik_1, gk, 1e-5
- );
- }
- if (H3) {
- (*H3) = numericalDerivative33(
- std::function<Vector(const Vector6&, const Vector6&, const Pose3&)>(
- std::bind(&DiscreteEulerPoincareHelicopter::computeError, *this, _1, _2, _3)
- ),
- xik, xik_1, gk, 1e-5
- );
- }
- return computeError(xik, xik_1, gk);
- }
- #endif
- };
- } /* namespace gtsam */
|