123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241 |
- /**
- * @file PoseRTV.cpp
- * @author Alex Cunningham
- */
- #include <gtsam_unstable/dynamics/PoseRTV.h>
- #include <gtsam/geometry/Pose2.h>
- #include <gtsam/base/Vector.h>
- namespace gtsam {
- using namespace std;
- static const Vector kGravity = Vector::Unit(3,2)*9.81;
- /* ************************************************************************* */
- double bound(double a, double min, double max) {
- if (a < min) return min;
- else if (a > max) return max;
- else return a;
- }
- /* ************************************************************************* */
- PoseRTV::PoseRTV(double roll, double pitch, double yaw, double x, double y,
- double z, double vx, double vy, double vz) :
- Base(Pose3(Rot3::RzRyRx(roll, pitch, yaw), Point3(x, y, z)),
- Velocity3(vx, vy, vz)) {
- }
- /* ************************************************************************* */
- PoseRTV::PoseRTV(const Vector& rtv) :
- Base(Pose3(Rot3::RzRyRx(rtv.head(3)), Point3(rtv.segment(3, 3))),
- Velocity3(rtv.tail(3))) {
- }
- /* ************************************************************************* */
- Vector PoseRTV::vector() const {
- Vector rtv(9);
- rtv.head(3) = rotation().xyz();
- rtv.segment(3,3) = translation();
- rtv.tail(3) = velocity();
- return rtv;
- }
- /* ************************************************************************* */
- bool PoseRTV::equals(const PoseRTV& other, double tol) const {
- return pose().equals(other.pose(), tol)
- && equal_with_abs_tol(velocity(), other.velocity(), tol);
- }
- /* ************************************************************************* */
- void PoseRTV::print(const string& s) const {
- cout << s << ":" << endl;
- gtsam::print((Vector)R().xyz(), " R:rpy");
- cout << " T" << t().transpose() << endl;
- gtsam::print((Vector)velocity(), " V");
- }
- /* ************************************************************************* */
- PoseRTV PoseRTV::planarDynamics(double vel_rate, double heading_rate,
- double max_accel, double dt) const {
- // split out initial state
- const Rot3& r1 = R();
- const Velocity3& v1 = v();
- // Update vehicle heading
- Rot3 r2 = r1.retract((Vector(3) << 0.0, 0.0, heading_rate * dt).finished());
- const double yaw2 = r2.ypr()(0);
- // Update vehicle position
- const double mag_v1 = v1.norm();
- // FIXME: this doesn't account for direction in velocity bounds
- double dv = bound(vel_rate - mag_v1, - (max_accel * dt), max_accel * dt);
- double mag_v2 = mag_v1 + dv;
- Velocity3 v2 = mag_v2 * Velocity3(cos(yaw2), sin(yaw2), 0.0);
- Point3 t2 = translationIntegration(r2, v2, dt);
- return PoseRTV(r2, t2, v2);
- }
- /* ************************************************************************* */
- PoseRTV PoseRTV::flyingDynamics(
- double pitch_rate, double heading_rate, double lift_control, double dt) const {
- // split out initial state
- const Rot3& r1 = R();
- const Velocity3& v1 = v();
- // Update vehicle heading (and normalise yaw)
- Vector rot_rates = (Vector(3) << 0.0, pitch_rate, heading_rate).finished();
- Rot3 r2 = r1.retract(rot_rates*dt);
- // Work out dynamics on platform
- const double thrust = 50.0;
- const double lift = 50.0;
- const double drag = 0.1;
- double yaw2 = r2.yaw();
- double pitch2 = r2.pitch();
- double forward_accel = -thrust * sin(pitch2); // r2, pitch (in global frame?) controls forward force
- double loss_lift = lift*std::abs(sin(pitch2));
- Rot3 yaw_correction_bn = Rot3::Yaw(yaw2);
- Point3 forward(forward_accel, 0.0, 0.0);
- Vector Acc_n =
- yaw_correction_bn.rotate(forward) // applies locally forward force in the global frame
- - drag * (Vector(3) << v1.x(), v1.y(), 0.0).finished() // drag term dependent on v1
- + Vector::Unit(3,2)*(loss_lift - lift_control); // falling due to lift lost from pitch
- // Update Vehicle Position and Velocity
- Velocity3 v2 = v1 + Velocity3(Acc_n * dt);
- Point3 t2 = translationIntegration(r2, v2, dt);
- return PoseRTV(r2, t2, v2);
- }
- /* ************************************************************************* */
- PoseRTV PoseRTV::generalDynamics(
- const Vector& accel, const Vector& gyro, double dt) const {
- // Integrate Attitude Equations
- Rot3 r2 = rotation().retract(gyro * dt);
- // Integrate Velocity Equations
- Velocity3 v2 = velocity() + Velocity3(dt * (r2.matrix() * accel + kGravity));
- // Integrate Position Equations
- Point3 t2 = translationIntegration(r2, v2, dt);
- return PoseRTV(t2, r2, v2);
- }
- /* ************************************************************************* */
- Vector6 PoseRTV::imuPrediction(const PoseRTV& x2, double dt) const {
- // split out states
- const Rot3 &r1 = R(), &r2 = x2.R();
- const Velocity3 &v1 = v(), &v2 = x2.v();
- Vector6 imu;
- // acceleration
- Vector3 accel = (v2-v1) / dt;
- imu.head<3>() = r2.transpose() * (accel - kGravity);
- // rotation rates
- // just using euler angles based on matlab code
- // FIXME: this is silly - we shouldn't use differences in Euler angles
- Matrix Enb = RRTMnb(r1);
- Vector3 euler1 = r1.xyz(), euler2 = r2.xyz();
- Vector3 dR = euler2 - euler1;
- // normalize yaw in difference (as per Mitch's code)
- dR(2) = Rot2::fromAngle(dR(2)).theta();
- dR /= dt;
- imu.tail<3>() = Enb * dR;
- // imu.tail(3) = r1.transpose() * dR;
- return imu;
- }
- /* ************************************************************************* */
- Point3 PoseRTV::translationIntegration(const Rot3& r2, const Velocity3& v2, double dt) const {
- // predict point for constraint
- // NOTE: uses simple Euler approach for prediction
- Point3 pred_t2 = t() + Point3(v2 * dt);
- return pred_t2;
- }
- /* ************************************************************************* */
- double PoseRTV::range(const PoseRTV& other,
- OptionalJacobian<1,9> H1, OptionalJacobian<1,9> H2) const {
- Matrix36 D_t1_pose, D_t2_other;
- const Point3 t1 = pose().translation(H1 ? &D_t1_pose : 0);
- const Point3 t2 = other.pose().translation(H2 ? &D_t2_other : 0);
- Matrix13 D_d_t1, D_d_t2;
- double d = distance3(t1, t2, H1 ? &D_d_t1 : 0, H2 ? &D_d_t2 : 0);
- if (H1) *H1 << D_d_t1 * D_t1_pose, 0,0,0;
- if (H2) *H2 << D_d_t2 * D_t2_other, 0,0,0;
- return d;
- }
- /* ************************************************************************* */
- PoseRTV PoseRTV::transformed_from(const Pose3& trans, ChartJacobian Dglobal,
- OptionalJacobian<9, 6> Dtrans) const {
- // Pose3 transform is just compose
- Matrix6 D_newpose_trans, D_newpose_pose;
- Pose3 newpose = trans.compose(pose(), D_newpose_trans, D_newpose_pose);
- // Note that we rotate the velocity
- Matrix3 D_newvel_R, D_newvel_v;
- Velocity3 newvel = trans.rotation().rotate(Point3(velocity()), D_newvel_R, D_newvel_v);
- if (Dglobal) {
- Dglobal->setZero();
- Dglobal->topLeftCorner<6,6>() = D_newpose_pose;
- Dglobal->bottomRightCorner<3,3>() = D_newvel_v;
- }
- if (Dtrans) {
- Dtrans->setZero();
- Dtrans->topLeftCorner<6,6>() = D_newpose_trans;
- Dtrans->bottomLeftCorner<3,3>() = D_newvel_R;
- }
- return PoseRTV(newpose, newvel);
- }
- /* ************************************************************************* */
- Matrix PoseRTV::RRTMbn(const Vector3& euler) {
- assert(euler.size() == 3);
- const double s1 = sin(euler.x()), c1 = cos(euler.x());
- const double t2 = tan(euler.y()), c2 = cos(euler.y());
- Matrix Ebn(3,3);
- Ebn << 1.0, s1 * t2, c1 * t2,
- 0.0, c1, -s1,
- 0.0, s1 / c2, c1 / c2;
- return Ebn;
- }
- /* ************************************************************************* */
- Matrix PoseRTV::RRTMbn(const Rot3& att) {
- return PoseRTV::RRTMbn(att.rpy());
- }
- /* ************************************************************************* */
- Matrix PoseRTV::RRTMnb(const Vector3& euler) {
- Matrix Enb(3,3);
- const double s1 = sin(euler.x()), c1 = cos(euler.x());
- const double s2 = sin(euler.y()), c2 = cos(euler.y());
- Enb << 1.0, 0.0, -s2,
- 0.0, c1, s1*c2,
- 0.0, -s1, c1*c2;
- return Enb;
- }
- /* ************************************************************************* */
- Matrix PoseRTV::RRTMnb(const Rot3& att) {
- return PoseRTV::RRTMnb(att.rpy());
- }
- /* ************************************************************************* */
- } // \namespace gtsam
|