123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129 |
- /* ----------------------------------------------------------------------------
- * GTSAM Copyright 2010, Georgia Tech Research Corporation,
- * Atlanta, Georgia 30332-0415
- * All Rights Reserved
- * Authors: Frank Dellaert, et al. (see THANKS for the full author list)
- * See LICENSE for the license information
- * -------------------------------------------------------------------------- */
- /**
- * @file easyPoint2KalmanFilter.cpp
- *
- * simple linear Kalman filter on a moving 2D point, but done using factor graphs
- * This example uses the templated ExtendedKalmanFilter class to perform the same
- * operations as in elaboratePoint2KalmanFilter
- *
- * @date Aug 19, 2011
- * @author Frank Dellaert
- * @author Stephen Williams
- */
- #include <gtsam/nonlinear/ExtendedKalmanFilter.h>
- #include <gtsam/inference/Symbol.h>
- #include <gtsam/nonlinear/PriorFactor.h>
- #include <gtsam/slam/BetweenFactor.h>
- #include <gtsam/geometry/Point2.h>
- using namespace std;
- using namespace gtsam;
- // Define Types for Linear System Test
- typedef Point2 LinearMeasurement;
- int main() {
- // Create the Kalman Filter initialization point
- Point2 x_initial(0.0, 0.0);
- SharedDiagonal P_initial = noiseModel::Diagonal::Sigmas(Vector2(0.1, 0.1));
- // Create Key for initial pose
- Symbol x0('x',0);
- // Create an ExtendedKalmanFilter object
- ExtendedKalmanFilter<Point2> ekf(x0, x_initial, P_initial);
- // Now predict the state at t=1, i.e. argmax_{x1} P(x1) = P(x1|x0) P(x0)
- // In Kalman Filter notation, this is x_{t+1|t} and P_{t+1|t}
- // For the Kalman Filter, this requires a motion model, f(x_{t}) = x_{t+1|t)
- // Assuming the system is linear, this will be of the form f(x_{t}) = F*x_{t} + B*u_{t} + w
- // where F is the state transition model/matrix, B is the control input model,
- // and w is zero-mean, Gaussian white noise with covariance Q
- // Note, in some models, Q is actually derived as G*w*G^T where w models uncertainty of some
- // physical property, such as velocity or acceleration, and G is derived from physics
- //
- // For the purposes of this example, let us assume we are using a constant-position model and
- // the controls are driving the point to the right at 1 m/s. Then, F = [1 0 ; 0 1], B = [1 0 ; 0 1]
- // and u = [1 ; 0]. Let us also assume that the process noise Q = [0.1 0 ; 0 0.1].
- Vector u = Vector2(1.0, 0.0);
- SharedDiagonal Q = noiseModel::Diagonal::Sigmas(Vector2(0.1, 0.1), true);
- // This simple motion can be modeled with a BetweenFactor
- // Create Key for next pose
- Symbol x1('x',1);
- // Predict delta based on controls
- Point2 difference(1,0);
- // Create Factor
- BetweenFactor<Point2> factor1(x0, x1, difference, Q);
- // Predict the new value with the EKF class
- Point2 x1_predict = ekf.predict(factor1);
- traits<Point2>::Print(x1_predict, "X1 Predict");
- // Now, a measurement, z1, has been received, and the Kalman Filter should be "Updated"/"Corrected"
- // This is equivalent to saying P(x1|z1) ~ P(z1|x1)*P(x1)
- // For the Kalman Filter, this requires a measurement model h(x_{t}) = \hat{z}_{t}
- // Assuming the system is linear, this will be of the form h(x_{t}) = H*x_{t} + v
- // where H is the observation model/matrix, and v is zero-mean, Gaussian white noise with covariance R
- //
- // For the purposes of this example, let us assume we have something like a GPS that returns
- // the current position of the robot. Then H = [1 0 ; 0 1]. Let us also assume that the measurement noise
- // R = [0.25 0 ; 0 0.25].
- SharedDiagonal R = noiseModel::Diagonal::Sigmas(Vector2(0.25, 0.25), true);
- // This simple measurement can be modeled with a PriorFactor
- Point2 z1(1.0, 0.0);
- PriorFactor<Point2> factor2(x1, z1, R);
- // Update the Kalman Filter with the measurement
- Point2 x1_update = ekf.update(factor2);
- traits<Point2>::Print(x1_update, "X1 Update");
- // Do the same thing two more times...
- // Predict
- Symbol x2('x',2);
- difference = Point2(1,0);
- BetweenFactor<Point2> factor3(x1, x2, difference, Q);
- Point2 x2_predict = ekf.predict(factor1);
- traits<Point2>::Print(x2_predict, "X2 Predict");
- // Update
- Point2 z2(2.0, 0.0);
- PriorFactor<Point2> factor4(x2, z2, R);
- Point2 x2_update = ekf.update(factor4);
- traits<Point2>::Print(x2_update, "X2 Update");
- // Do the same thing one more time...
- // Predict
- Symbol x3('x',3);
- difference = Point2(1,0);
- BetweenFactor<Point2> factor5(x2, x3, difference, Q);
- Point2 x3_predict = ekf.predict(factor5);
- traits<Point2>::Print(x3_predict, "X3 Predict");
- // Update
- Point2 z3(3.0, 0.0);
- PriorFactor<Point2> factor6(x3, z3, R);
- Point2 x3_update = ekf.update(factor6);
- traits<Point2>::Print(x3_update, "X3 Update");
- return 0;
- }
|