1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192 |
- /* ----------------------------------------------------------------------------
- * GTSAM Copyright 2010, Georgia Tech Research Corporation,
- * Atlanta, Georgia 30332-0415
- * All Rights Reserved
- * Authors: Frank Dellaert, et al. (see THANKS for the full author list)
- * See LICENSE for the license information
- * -------------------------------------------------------------------------- */
- /**
- * @file SFMExample.cpp
- * @brief Solve a structure-from-motion problem from a "Bundle Adjustment in the Large" file
- * @author Frank Dellaert
- */
- // For an explanation of headers, see SFMExample.cpp
- #include <gtsam/inference/Symbol.h>
- #include <gtsam/nonlinear/NonlinearFactorGraph.h>
- #include <gtsam/nonlinear/LevenbergMarquardtOptimizer.h>
- #include <gtsam/slam/GeneralSFMFactor.h>
- #include <gtsam/slam/dataset.h> // for loading BAL datasets !
- #include <vector>
- using namespace std;
- using namespace gtsam;
- using symbol_shorthand::C;
- using symbol_shorthand::P;
- // We will be using a projection factor that ties a SFM_Camera to a 3D point.
- // An SFM_Camera is defined in datase.h as a camera with unknown Cal3Bundler calibration
- // and has a total of 9 free parameters
- typedef GeneralSFMFactor<SfmCamera,Point3> MyFactor;
- /* ************************************************************************* */
- int main (int argc, char* argv[]) {
- // Find default file, but if an argument is given, try loading a file
- string filename = findExampleDataFile("dubrovnik-3-7-pre");
- if (argc>1) filename = string(argv[1]);
- // Load the SfM data from file
- SfmData mydata;
- readBAL(filename, mydata);
- cout << boost::format("read %1% tracks on %2% cameras\n") % mydata.number_tracks() % mydata.number_cameras();
- // Create a factor graph
- NonlinearFactorGraph graph;
- // We share *one* noiseModel between all projection factors
- auto noise =
- noiseModel::Isotropic::Sigma(2, 1.0); // one pixel in u and v
- // Add measurements to the factor graph
- size_t j = 0;
- for(const SfmTrack& track: mydata.tracks) {
- for(const SfmMeasurement& m: track.measurements) {
- size_t i = m.first;
- Point2 uv = m.second;
- graph.emplace_shared<MyFactor>(uv, noise, C(i), P(j)); // note use of shorthand symbols C and P
- }
- j += 1;
- }
- // Add a prior on pose x1. This indirectly specifies where the origin is.
- // and a prior on the position of the first landmark to fix the scale
- graph.addPrior(C(0), mydata.cameras[0], noiseModel::Isotropic::Sigma(9, 0.1));
- graph.addPrior(P(0), mydata.tracks[0].p, noiseModel::Isotropic::Sigma(3, 0.1));
- // Create initial estimate
- Values initial;
- size_t i = 0; j = 0;
- for(const SfmCamera& camera: mydata.cameras) initial.insert(C(i++), camera);
- for(const SfmTrack& track: mydata.tracks) initial.insert(P(j++), track.p);
- /* Optimize the graph and print results */
- Values result;
- try {
- LevenbergMarquardtParams params;
- params.setVerbosity("ERROR");
- LevenbergMarquardtOptimizer lm(graph, initial, params);
- result = lm.optimize();
- } catch (exception& e) {
- cout << e.what();
- }
- cout << "final error: " << graph.error(result) << endl;
- return 0;
- }
- /* ************************************************************************* */
|