123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113 |
- /* ----------------------------------------------------------------------------
- * GTSAM Copyright 2010, Georgia Tech Research Corporation,
- * Atlanta, Georgia 30332-0415
- * All Rights Reserved
- * Authors: Frank Dellaert, et al. (see THANKS for the full author list)
- * See LICENSE for the license information
- * -------------------------------------------------------------------------- */
- /**
- * @file SFMExampleExpressions_bal.cpp
- * @brief A structure-from-motion example done with Expressions
- * @author Frank Dellaert
- * @date January 2015
- */
- /**
- * This is the Expression version of SFMExample
- * See detailed description of headers there, this focuses on explaining the AD part
- */
- // The two new headers that allow using our Automatic Differentiation Expression framework
- #include <gtsam/slam/expressions.h>
- #include <gtsam/nonlinear/ExpressionFactorGraph.h>
- // Header order is close to far
- #include <gtsam/inference/Symbol.h>
- #include <gtsam/nonlinear/LevenbergMarquardtOptimizer.h>
- #include <gtsam/slam/dataset.h> // for loading BAL datasets !
- #include <vector>
- using namespace std;
- using namespace gtsam;
- using namespace noiseModel;
- using symbol_shorthand::C;
- using symbol_shorthand::P;
- // An SfmCamera is defined in datase.h as a camera with unknown Cal3Bundler calibration
- // and has a total of 9 free parameters
- int main(int argc, char* argv[]) {
- // Find default file, but if an argument is given, try loading a file
- string filename = findExampleDataFile("dubrovnik-3-7-pre");
- if (argc > 1) filename = string(argv[1]);
- // Load the SfM data from file
- SfmData mydata;
- readBAL(filename, mydata);
- cout << boost::format("read %1% tracks on %2% cameras\n") %
- mydata.number_tracks() % mydata.number_cameras();
- // Create a factor graph
- ExpressionFactorGraph graph;
- // Here we don't use a PriorFactor but directly the ExpressionFactor class
- // First, we create an expression to the pose from the first camera
- Expression<SfmCamera> camera0_(C(0));
- // Then, to get its pose:
- Pose3_ pose0_(&SfmCamera::getPose, camera0_);
- // Finally, we say it should be equal to first guess
- graph.addExpressionFactor(pose0_, mydata.cameras[0].pose(),
- noiseModel::Isotropic::Sigma(6, 0.1));
- // similarly, we create a prior on the first point
- Point3_ point0_(P(0));
- graph.addExpressionFactor(point0_, mydata.tracks[0].p,
- noiseModel::Isotropic::Sigma(3, 0.1));
- // We share *one* noiseModel between all projection factors
- auto noise = noiseModel::Isotropic::Sigma(2, 1.0); // one pixel in u and v
- // Simulated measurements from each camera pose, adding them to the factor
- // graph
- size_t j = 0;
- for (const SfmTrack& track : mydata.tracks) {
- // Leaf expression for j^th point
- Point3_ point_('p', j);
- for (const SfmMeasurement& m : track.measurements) {
- size_t i = m.first;
- Point2 uv = m.second;
- // Leaf expression for i^th camera
- Expression<SfmCamera> camera_(C(i));
- // Below an expression for the prediction of the measurement:
- Point2_ predict_ = project2<SfmCamera>(camera_, point_);
- // Again, here we use an ExpressionFactor
- graph.addExpressionFactor(predict_, uv, noise);
- }
- j += 1;
- }
- // Create initial estimate
- Values initial;
- size_t i = 0;
- j = 0;
- for (const SfmCamera& camera : mydata.cameras) initial.insert(C(i++), camera);
- for (const SfmTrack& track : mydata.tracks) initial.insert(P(j++), track.p);
- /* Optimize the graph and print results */
- Values result;
- try {
- LevenbergMarquardtParams params;
- params.setVerbosity("ERROR");
- LevenbergMarquardtOptimizer lm(graph, initial, params);
- result = lm.optimize();
- } catch (exception& e) {
- cout << e.what();
- }
- cout << "final error: " << graph.error(result) << endl;
- return 0;
- }
|