123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126 |
- /* ----------------------------------------------------------------------------
- * GTSAM Copyright 2010, Georgia Tech Research Corporation,
- * Atlanta, Georgia 30332-0415
- * All Rights Reserved
- * Authors: Frank Dellaert, et al. (see THANKS for the full author list)
- * See LICENSE for the license information
- * -------------------------------------------------------------------------- */
- /**
- * @file SFMExample.cpp
- * @brief A structure-from-motion problem on a simulated dataset
- * @author Duy-Nguyen Ta
- */
- // For loading the data, see the comments therein for scenario (camera rotates around cube)
- #include "SFMdata.h"
- // Camera observations of landmarks (i.e. pixel coordinates) will be stored as Point2 (x, y).
- #include <gtsam/geometry/Point2.h>
- // Each variable in the system (poses and landmarks) must be identified with a unique key.
- // We can either use simple integer keys (1, 2, 3, ...) or symbols (X1, X2, L1).
- // Here we will use Symbols
- #include <gtsam/inference/Symbol.h>
- // In GTSAM, measurement functions are represented as 'factors'. Several common factors
- // have been provided with the library for solving robotics/SLAM/Bundle Adjustment problems.
- // Here we will use Projection factors to model the camera's landmark observations.
- // Also, we will initialize the robot at some location using a Prior factor.
- #include <gtsam/slam/ProjectionFactor.h>
- // When the factors are created, we will add them to a Factor Graph. As the factors we are using
- // are nonlinear factors, we will need a Nonlinear Factor Graph.
- #include <gtsam/nonlinear/NonlinearFactorGraph.h>
- // Finally, once all of the factors have been added to our factor graph, we will want to
- // solve/optimize to graph to find the best (Maximum A Posteriori) set of variable values.
- // GTSAM includes several nonlinear optimizers to perform this step. Here we will use a
- // trust-region method known as Powell's Degleg
- #include <gtsam/nonlinear/DoglegOptimizer.h>
- // The nonlinear solvers within GTSAM are iterative solvers, meaning they linearize the
- // nonlinear functions around an initial linearization point, then solve the linear system
- // to update the linearization point. This happens repeatedly until the solver converges
- // to a consistent set of variable values. This requires us to specify an initial guess
- // for each variable, held in a Values container.
- #include <gtsam/nonlinear/Values.h>
- #include <vector>
- using namespace std;
- using namespace gtsam;
- /* ************************************************************************* */
- int main(int argc, char* argv[]) {
- // Define the camera calibration parameters
- Cal3_S2::shared_ptr K(new Cal3_S2(50.0, 50.0, 0.0, 50.0, 50.0));
- // Define the camera observation noise model
- auto measurementNoise =
- noiseModel::Isotropic::Sigma(2, 1.0); // one pixel in u and v
- // Create the set of ground-truth landmarks
- vector<Point3> points = createPoints();
- // Create the set of ground-truth poses
- vector<Pose3> poses = createPoses();
- // Create a factor graph
- NonlinearFactorGraph graph;
- // Add a prior on pose x1. This indirectly specifies where the origin is.
- auto poseNoise = noiseModel::Diagonal::Sigmas(
- (Vector(6) << Vector3::Constant(0.1), Vector3::Constant(0.3))
- .finished()); // 30cm std on x,y,z 0.1 rad on roll,pitch,yaw
- graph.addPrior(Symbol('x', 0), poses[0], poseNoise); // add directly to graph
- // Simulated measurements from each camera pose, adding them to the factor
- // graph
- for (size_t i = 0; i < poses.size(); ++i) {
- PinholeCamera<Cal3_S2> camera(poses[i], *K);
- for (size_t j = 0; j < points.size(); ++j) {
- Point2 measurement = camera.project(points[j]);
- graph.emplace_shared<GenericProjectionFactor<Pose3, Point3, Cal3_S2> >(
- measurement, measurementNoise, Symbol('x', i), Symbol('l', j), K);
- }
- }
- // Because the structure-from-motion problem has a scale ambiguity, the
- // problem is still under-constrained Here we add a prior on the position of
- // the first landmark. This fixes the scale by indicating the distance between
- // the first camera and the first landmark. All other landmark positions are
- // interpreted using this scale.
- auto pointNoise = noiseModel::Isotropic::Sigma(3, 0.1);
- graph.addPrior(Symbol('l', 0), points[0],
- pointNoise); // add directly to graph
- graph.print("Factor Graph:\n");
- // Create the data structure to hold the initial estimate to the solution
- // Intentionally initialize the variables off from the ground truth
- Values initialEstimate;
- for (size_t i = 0; i < poses.size(); ++i) {
- auto corrupted_pose = poses[i].compose(
- Pose3(Rot3::Rodrigues(-0.1, 0.2, 0.25), Point3(0.05, -0.10, 0.20)));
- initialEstimate.insert(
- Symbol('x', i), corrupted_pose);
- }
- for (size_t j = 0; j < points.size(); ++j) {
- Point3 corrupted_point = points[j] + Point3(-0.25, 0.20, 0.15);
- initialEstimate.insert<Point3>(Symbol('l', j), corrupted_point);
- }
- initialEstimate.print("Initial Estimates:\n");
- /* Optimize the graph and print results */
- Values result = DoglegOptimizer(graph, initialEstimate).optimize();
- result.print("Final results:\n");
- cout << "initial error = " << graph.error(initialEstimate) << endl;
- cout << "final error = " << graph.error(result) << endl;
- return 0;
- }
- /* ************************************************************************* */
|