123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102 |
- /**
- * @file Pose3SLAMExampleExpressions_BearingRangeWithTransform.cpp
- * @brief A simultaneous optimization of trajectory, landmarks and sensor-pose with respect to body-pose using bearing-range measurements done with Expressions
- * @author Thomas Horstink
- * @date January 4th, 2019
- */
- #include <gtsam/inference/Symbol.h>
- #include <gtsam/geometry/BearingRange.h>
- #include <gtsam/slam/expressions.h>
- #include <gtsam/nonlinear/ExpressionFactorGraph.h>
- #include <gtsam/nonlinear/LevenbergMarquardtOptimizer.h>
- #include <gtsam/nonlinear/Values.h>
- #include <examples/SFMdata.h>
- using namespace gtsam;
- typedef BearingRange<Pose3, Point3> BearingRange3D;
- /* ************************************************************************* */
- int main(int argc, char* argv[]) {
- // Move around so the whole state (including the sensor tf) is observable
- Pose3 init_pose = Pose3();
- Pose3 delta_pose1 = Pose3(Rot3().Yaw(2*M_PI/8).Pitch(M_PI/8), Point3(1, 0, 0));
- Pose3 delta_pose2 = Pose3(Rot3().Pitch(-M_PI/8), Point3(1, 0, 0));
- Pose3 delta_pose3 = Pose3(Rot3().Yaw(-2*M_PI/8), Point3(1, 0, 0));
- int steps = 4;
- auto poses = createPoses(init_pose, delta_pose1, steps);
- auto poses2 = createPoses(init_pose, delta_pose2, steps);
- auto poses3 = createPoses(init_pose, delta_pose3, steps);
- // Concatenate poses to create trajectory
- poses.insert( poses.end(), poses2.begin(), poses2.end() );
- poses.insert( poses.end(), poses3.begin(), poses3.end() ); // std::vector of Pose3
- auto points = createPoints(); // std::vector of Point3
- // (ground-truth) sensor pose in body frame, further an unknown variable
- Pose3 body_T_sensor_gt(Rot3::RzRyRx(-M_PI_2, 0.0, -M_PI_2), Point3(0.25, -0.10, 1.0));
- // The graph
- ExpressionFactorGraph graph;
- // Specify uncertainty on first pose prior and also for between factor (simplicity reasons)
- auto poseNoise = noiseModel::Diagonal::Sigmas((Vector(6)<<0.3,0.3,0.3,0.1,0.1,0.1).finished());
- // Uncertainty bearing range measurement;
- auto bearingRangeNoise = noiseModel::Diagonal::Sigmas((Vector(3)<<0.01,0.03,0.05).finished());
- // Expressions for body-frame at key 0 and sensor-tf
- Pose3_ x_('x', 0);
- Pose3_ body_T_sensor_('T', 0);
- // Add a prior on the body-pose
- graph.addExpressionFactor(x_, poses[0], poseNoise);
- // Simulated measurements from pose
- for (size_t i = 0; i < poses.size(); ++i) {
- auto world_T_sensor = poses[i].compose(body_T_sensor_gt);
- for (size_t j = 0; j < points.size(); ++j) {
- // This expression is the key feature of this example: it creates a differentiable expression of the measurement after being displaced by sensor transform.
- auto prediction_ = Expression<BearingRange3D>( BearingRange3D::Measure, Pose3_('x',i)*body_T_sensor_, Point3_('l',j));
- // Create a *perfect* measurement
- auto measurement = BearingRange3D(world_T_sensor.bearing(points[j]), world_T_sensor.range(points[j]));
- // Add factor
- graph.addExpressionFactor(prediction_, measurement, bearingRangeNoise);
- }
- // and add a between factor to the graph
- if (i > 0)
- {
- // And also we have a *perfect* measurement for the between factor.
- graph.addExpressionFactor(between(Pose3_('x', i-1),Pose3_('x', i)), poses[i-1].between(poses[i]), poseNoise);
- }
- }
- // Create perturbed initial
- Values initial;
- Pose3 delta(Rot3::Rodrigues(-0.1, 0.2, 0.25), Point3(0.05, -0.10, 0.20));
- for (size_t i = 0; i < poses.size(); ++i)
- initial.insert(Symbol('x', i), poses[i].compose(delta));
- for (size_t j = 0; j < points.size(); ++j)
- initial.insert<Point3>(Symbol('l', j), points[j] + Point3(-0.25, 0.20, 0.15));
- // Initialize body_T_sensor wrongly (because we do not know!)
- initial.insert<Pose3>(Symbol('T',0), Pose3());
- std::cout << "initial error: " << graph.error(initial) << std::endl;
- Values result = LevenbergMarquardtOptimizer(graph, initial).optimize();
- std::cout << "final error: " << graph.error(result) << std::endl;
- initial.at<Pose3>(Symbol('T',0)).print("\nInitial estimate body_T_sensor\n"); /* initial sensor_P_body estimate */
- result.at<Pose3>(Symbol('T',0)).print("\nFinal estimate body_T_sensor\n"); /* optimized sensor_P_body estimate */
- body_T_sensor_gt.print("\nGround truth body_T_sensor\n"); /* sensor_P_body ground truth */
- return 0;
- }
- /* ************************************************************************* */
|