123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141 |
- /* ----------------------------------------------------------------------------
- * GTSAM Copyright 2010, Georgia Tech Research Corporation,
- * Atlanta, Georgia 30332-0415
- * All Rights Reserved
- * Authors: Frank Dellaert, et al. (see THANKS for the full author list)
- * See LICENSE for the license information
- * -------------------------------------------------------------------------- */
- /**
- * @file PlanarSLAMExample.cpp
- * @brief Simple robotics example using odometry measurements and bearing-range (laser) measurements
- * @author Alex Cunningham
- */
- /**
- * A simple 2D planar slam example with landmarks
- * - The robot and landmarks are on a 2 meter grid
- * - Robot poses are facing along the X axis (horizontal, to the right in 2D)
- * - The robot moves 2 meters each step
- * - We have full odometry between poses
- * - We have bearing and range information for measurements
- * - Landmarks are 2 meters away from the robot trajectory
- */
- // As this is a planar SLAM example, we will use Pose2 variables (x, y, theta) to represent
- // the robot positions and Point2 variables (x, y) to represent the landmark coordinates.
- #include <gtsam/geometry/Pose2.h>
- #include <gtsam/geometry/Point2.h>
- // Each variable in the system (poses and landmarks) must be identified with a unique key.
- // We can either use simple integer keys (1, 2, 3, ...) or symbols (X1, X2, L1).
- // Here we will use Symbols
- #include <gtsam/inference/Symbol.h>
- // In GTSAM, measurement functions are represented as 'factors'. Several common factors
- // have been provided with the library for solving robotics/SLAM/Bundle Adjustment problems.
- // Here we will use a RangeBearing factor for the range-bearing measurements to identified
- // landmarks, and Between factors for the relative motion described by odometry measurements.
- // Also, we will initialize the robot at the origin using a Prior factor.
- #include <gtsam/slam/BetweenFactor.h>
- #include <gtsam/sam/BearingRangeFactor.h>
- // When the factors are created, we will add them to a Factor Graph. As the factors we are using
- // are nonlinear factors, we will need a Nonlinear Factor Graph.
- #include <gtsam/nonlinear/NonlinearFactorGraph.h>
- // Finally, once all of the factors have been added to our factor graph, we will want to
- // solve/optimize to graph to find the best (Maximum A Posteriori) set of variable values.
- // GTSAM includes several nonlinear optimizers to perform this step. Here we will use the
- // common Levenberg-Marquardt solver
- #include <gtsam/nonlinear/LevenbergMarquardtOptimizer.h>
- // Once the optimized values have been calculated, we can also calculate the marginal covariance
- // of desired variables
- #include <gtsam/nonlinear/Marginals.h>
- // The nonlinear solvers within GTSAM are iterative solvers, meaning they linearize the
- // nonlinear functions around an initial linearization point, then solve the linear system
- // to update the linearization point. This happens repeatedly until the solver converges
- // to a consistent set of variable values. This requires us to specify an initial guess
- // for each variable, held in a Values container.
- #include <gtsam/nonlinear/Values.h>
- using namespace std;
- using namespace gtsam;
- int main(int argc, char** argv) {
- // Create a factor graph
- NonlinearFactorGraph graph;
- // Create the keys we need for this simple example
- static Symbol x1('x', 1), x2('x', 2), x3('x', 3);
- static Symbol l1('l', 1), l2('l', 2);
- // Add a prior on pose x1 at the origin. A prior factor consists of a mean and
- // a noise model (covariance matrix)
- Pose2 prior(0.0, 0.0, 0.0); // prior mean is at origin
- auto priorNoise = noiseModel::Diagonal::Sigmas(
- Vector3(0.3, 0.3, 0.1)); // 30cm std on x,y, 0.1 rad on theta
- graph.addPrior(x1, prior, priorNoise); // add directly to graph
- // Add two odometry factors
- Pose2 odometry(2.0, 0.0, 0.0);
- // create a measurement for both factors (the same in this case)
- auto odometryNoise = noiseModel::Diagonal::Sigmas(
- Vector3(0.2, 0.2, 0.1)); // 20cm std on x,y, 0.1 rad on theta
- graph.emplace_shared<BetweenFactor<Pose2> >(x1, x2, odometry, odometryNoise);
- graph.emplace_shared<BetweenFactor<Pose2> >(x2, x3, odometry, odometryNoise);
- // Add Range-Bearing measurements to two different landmarks
- // create a noise model for the landmark measurements
- auto measurementNoise = noiseModel::Diagonal::Sigmas(
- Vector2(0.1, 0.2)); // 0.1 rad std on bearing, 20cm on range
- // create the measurement values - indices are (pose id, landmark id)
- Rot2 bearing11 = Rot2::fromDegrees(45), bearing21 = Rot2::fromDegrees(90),
- bearing32 = Rot2::fromDegrees(90);
- double range11 = std::sqrt(4.0 + 4.0), range21 = 2.0, range32 = 2.0;
- // Add Bearing-Range factors
- graph.emplace_shared<BearingRangeFactor<Pose2, Point2> >(x1, l1, bearing11, range11, measurementNoise);
- graph.emplace_shared<BearingRangeFactor<Pose2, Point2> >(x2, l1, bearing21, range21, measurementNoise);
- graph.emplace_shared<BearingRangeFactor<Pose2, Point2> >(x3, l2, bearing32, range32, measurementNoise);
- // Print
- graph.print("Factor Graph:\n");
- // Create (deliberately inaccurate) initial estimate
- Values initialEstimate;
- initialEstimate.insert(x1, Pose2(0.5, 0.0, 0.2));
- initialEstimate.insert(x2, Pose2(2.3, 0.1, -0.2));
- initialEstimate.insert(x3, Pose2(4.1, 0.1, 0.1));
- initialEstimate.insert(l1, Point2(1.8, 2.1));
- initialEstimate.insert(l2, Point2(4.1, 1.8));
- // Print
- initialEstimate.print("Initial Estimate:\n");
- // Optimize using Levenberg-Marquardt optimization. The optimizer
- // accepts an optional set of configuration parameters, controlling
- // things like convergence criteria, the type of linear system solver
- // to use, and the amount of information displayed during optimization.
- // Here we will use the default set of parameters. See the
- // documentation for the full set of parameters.
- LevenbergMarquardtOptimizer optimizer(graph, initialEstimate);
- Values result = optimizer.optimize();
- result.print("Final Result:\n");
- // Calculate and print marginal covariances for all variables
- Marginals marginals(graph, result);
- print(marginals.marginalCovariance(x1), "x1 covariance");
- print(marginals.marginalCovariance(x2), "x2 covariance");
- print(marginals.marginalCovariance(x3), "x3 covariance");
- print(marginals.marginalCovariance(l1), "l1 covariance");
- print(marginals.marginalCovariance(l2), "l2 covariance");
- return 0;
- }
|