123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158 |
- /* ----------------------------------------------------------------------------
- * GTSAM Copyright 2010, Georgia Tech Research Corporation,
- * Atlanta, Georgia 30332-0415
- * All Rights Reserved
- * Authors: Frank Dellaert, et al. (see THANKS for the full author list)
- * See LICENSE for the license information
- * -------------------------------------------------------------------------- */
- /**
- * @file LocalizationExample.cpp
- * @brief Simple robot localization example, with three "GPS-like" measurements
- * @author Frank Dellaert
- */
- /**
- * A simple 2D pose slam example with "GPS" measurements
- * - The robot moves forward 2 meter each iteration
- * - The robot initially faces along the X axis (horizontal, to the right in 2D)
- * - We have full odometry between pose
- * - We have "GPS-like" measurements implemented with a custom factor
- */
- // We will use Pose2 variables (x, y, theta) to represent the robot positions
- #include <gtsam/geometry/Pose2.h>
- // We will use simple integer Keys to refer to the robot poses.
- #include <gtsam/inference/Key.h>
- // As in OdometryExample.cpp, we use a BetweenFactor to model odometry measurements.
- #include <gtsam/slam/BetweenFactor.h>
- // We add all facors to a Nonlinear Factor Graph, as our factors are nonlinear.
- #include <gtsam/nonlinear/NonlinearFactorGraph.h>
- // The nonlinear solvers within GTSAM are iterative solvers, meaning they linearize the
- // nonlinear functions around an initial linearization point, then solve the linear system
- // to update the linearization point. This happens repeatedly until the solver converges
- // to a consistent set of variable values. This requires us to specify an initial guess
- // for each variable, held in a Values container.
- #include <gtsam/nonlinear/Values.h>
- // Finally, once all of the factors have been added to our factor graph, we will want to
- // solve/optimize to graph to find the best (Maximum A Posteriori) set of variable values.
- // GTSAM includes several nonlinear optimizers to perform this step. Here we will use the
- // standard Levenberg-Marquardt solver
- #include <gtsam/nonlinear/LevenbergMarquardtOptimizer.h>
- // Once the optimized values have been calculated, we can also calculate the marginal covariance
- // of desired variables
- #include <gtsam/nonlinear/Marginals.h>
- using namespace std;
- using namespace gtsam;
- // Before we begin the example, we must create a custom unary factor to implement a
- // "GPS-like" functionality. Because standard GPS measurements provide information
- // only on the position, and not on the orientation, we cannot use a simple prior to
- // properly model this measurement.
- //
- // The factor will be a unary factor, affect only a single system variable. It will
- // also use a standard Gaussian noise model. Hence, we will derive our new factor from
- // the NoiseModelFactor1.
- #include <gtsam/nonlinear/NonlinearFactor.h>
- class UnaryFactor: public NoiseModelFactor1<Pose2> {
- // The factor will hold a measurement consisting of an (X,Y) location
- // We could this with a Point2 but here we just use two doubles
- double mx_, my_;
- public:
- /// shorthand for a smart pointer to a factor
- typedef boost::shared_ptr<UnaryFactor> shared_ptr;
- // The constructor requires the variable key, the (X, Y) measurement value, and the noise model
- UnaryFactor(Key j, double x, double y, const SharedNoiseModel& model):
- NoiseModelFactor1<Pose2>(model, j), mx_(x), my_(y) {}
- ~UnaryFactor() override {}
- // Using the NoiseModelFactor1 base class there are two functions that must be overridden.
- // The first is the 'evaluateError' function. This function implements the desired measurement
- // function, returning a vector of errors when evaluated at the provided variable value. It
- // must also calculate the Jacobians for this measurement function, if requested.
- Vector evaluateError(const Pose2& q, boost::optional<Matrix&> H = boost::none) const override {
- // The measurement function for a GPS-like measurement h(q) which predicts the measurement (m) is h(q) = q, q = [qx qy qtheta]
- // The error is then simply calculated as E(q) = h(q) - m:
- // error_x = q.x - mx
- // error_y = q.y - my
- // Node's orientation reflects in the Jacobian, in tangent space this is equal to the right-hand rule rotation matrix
- // H = [ cos(q.theta) -sin(q.theta) 0 ]
- // [ sin(q.theta) cos(q.theta) 0 ]
- const Rot2& R = q.rotation();
- if (H) (*H) = (gtsam::Matrix(2, 3) << R.c(), -R.s(), 0.0, R.s(), R.c(), 0.0).finished();
- return (Vector(2) << q.x() - mx_, q.y() - my_).finished();
- }
- // The second is a 'clone' function that allows the factor to be copied. Under most
- // circumstances, the following code that employs the default copy constructor should
- // work fine.
- gtsam::NonlinearFactor::shared_ptr clone() const override {
- return boost::static_pointer_cast<gtsam::NonlinearFactor>(
- gtsam::NonlinearFactor::shared_ptr(new UnaryFactor(*this))); }
- // Additionally, we encourage you the use of unit testing your custom factors,
- // (as all GTSAM factors are), in which you would need an equals and print, to satisfy the
- // GTSAM_CONCEPT_TESTABLE_INST(T) defined in Testable.h, but these are not needed below.
- }; // UnaryFactor
- int main(int argc, char** argv) {
- // 1. Create a factor graph container and add factors to it
- NonlinearFactorGraph graph;
- // 2a. Add odometry factors
- // For simplicity, we will use the same noise model for each odometry factor
- auto odometryNoise = noiseModel::Diagonal::Sigmas(Vector3(0.2, 0.2, 0.1));
- // Create odometry (Between) factors between consecutive poses
- graph.emplace_shared<BetweenFactor<Pose2> >(1, 2, Pose2(2.0, 0.0, 0.0), odometryNoise);
- graph.emplace_shared<BetweenFactor<Pose2> >(2, 3, Pose2(2.0, 0.0, 0.0), odometryNoise);
- // 2b. Add "GPS-like" measurements
- // We will use our custom UnaryFactor for this.
- auto unaryNoise =
- noiseModel::Diagonal::Sigmas(Vector2(0.1, 0.1)); // 10cm std on x,y
- graph.emplace_shared<UnaryFactor>(1, 0.0, 0.0, unaryNoise);
- graph.emplace_shared<UnaryFactor>(2, 2.0, 0.0, unaryNoise);
- graph.emplace_shared<UnaryFactor>(3, 4.0, 0.0, unaryNoise);
- graph.print("\nFactor Graph:\n"); // print
- // 3. Create the data structure to hold the initialEstimate estimate to the solution
- // For illustrative purposes, these have been deliberately set to incorrect values
- Values initialEstimate;
- initialEstimate.insert(1, Pose2(0.5, 0.0, 0.2));
- initialEstimate.insert(2, Pose2(2.3, 0.1, -0.2));
- initialEstimate.insert(3, Pose2(4.1, 0.1, 0.1));
- initialEstimate.print("\nInitial Estimate:\n"); // print
- // 4. Optimize using Levenberg-Marquardt optimization. The optimizer
- // accepts an optional set of configuration parameters, controlling
- // things like convergence criteria, the type of linear system solver
- // to use, and the amount of information displayed during optimization.
- // Here we will use the default set of parameters. See the
- // documentation for the full set of parameters.
- LevenbergMarquardtOptimizer optimizer(graph, initialEstimate);
- Values result = optimizer.optimize();
- result.print("Final Result:\n");
- // 5. Calculate and print marginal covariances for all variables
- Marginals marginals(graph, result);
- cout << "x1 covariance:\n" << marginals.marginalCovariance(1) << endl;
- cout << "x2 covariance:\n" << marginals.marginalCovariance(2) << endl;
- cout << "x3 covariance:\n" << marginals.marginalCovariance(3) << endl;
- return 0;
- }
|