123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120 |
- /* ----------------------------------------------------------------------------
- * GTSAM Copyright 2010, Georgia Tech Research Corporation,
- * Atlanta, Georgia 30332-0415
- * All Rights Reserved
- * Authors: Frank Dellaert, et al. (see THANKS for the full author list)
- * See LICENSE for the license information
- * -------------------------------------------------------------------------- */
- /**
- * @file DiscreteBayesNet_FG.cpp
- * @brief Discrete Bayes Net example using Factor Graphs
- * @author Abhijit
- * @date Jun 4, 2012
- *
- * We use the famous Rain/Cloudy/Sprinkler Example of [Russell & Norvig, 2009,
- * p529] You may be familiar with other graphical model packages like BNT
- * (available at http://bnt.googlecode.com/svn/trunk/docs/usage.html) where this
- * is used as an example. The following demo is same as that in the above link,
- * except that everything is using GTSAM.
- */
- #include <gtsam/discrete/DiscreteFactorGraph.h>
- #include <gtsam/discrete/DiscreteMarginals.h>
- #include <iomanip>
- using namespace std;
- using namespace gtsam;
- int main(int argc, char **argv) {
- // Define keys and a print function
- Key C(1), S(2), R(3), W(4);
- auto print = [=](DiscreteFactor::sharedValues values) {
- cout << boolalpha << "Cloudy = " << static_cast<bool>((*values)[C])
- << " Sprinkler = " << static_cast<bool>((*values)[S])
- << " Rain = " << boolalpha << static_cast<bool>((*values)[R])
- << " WetGrass = " << static_cast<bool>((*values)[W]) << endl;
- };
- // We assume binary state variables
- // we have 0 == "False" and 1 == "True"
- const size_t nrStates = 2;
- // define variables
- DiscreteKey Cloudy(C, nrStates), Sprinkler(S, nrStates), Rain(R, nrStates),
- WetGrass(W, nrStates);
- // create Factor Graph of the bayes net
- DiscreteFactorGraph graph;
- // add factors
- graph.add(Cloudy, "0.5 0.5"); // P(Cloudy)
- graph.add(Cloudy & Sprinkler, "0.5 0.5 0.9 0.1"); // P(Sprinkler | Cloudy)
- graph.add(Cloudy & Rain, "0.8 0.2 0.2 0.8"); // P(Rain | Cloudy)
- graph.add(Sprinkler & Rain & WetGrass,
- "1 0 0.1 0.9 0.1 0.9 0.001 0.99"); // P(WetGrass | Sprinkler, Rain)
- // Alternatively we can also create a DiscreteBayesNet, add
- // DiscreteConditional factors and create a FactorGraph from it. (See
- // testDiscreteBayesNet.cpp)
- // Since this is a relatively small distribution, we can as well print
- // the whole distribution..
- cout << "Distribution of Example: " << endl;
- cout << setw(11) << "Cloudy(C)" << setw(14) << "Sprinkler(S)" << setw(10)
- << "Rain(R)" << setw(14) << "WetGrass(W)" << setw(15) << "P(C,S,R,W)"
- << endl;
- for (size_t a = 0; a < nrStates; a++)
- for (size_t m = 0; m < nrStates; m++)
- for (size_t h = 0; h < nrStates; h++)
- for (size_t c = 0; c < nrStates; c++) {
- DiscreteFactor::Values values;
- values[C] = c;
- values[S] = h;
- values[R] = m;
- values[W] = a;
- double prodPot = graph(values);
- cout << setw(8) << static_cast<bool>(c) << setw(14)
- << static_cast<bool>(h) << setw(12) << static_cast<bool>(m)
- << setw(13) << static_cast<bool>(a) << setw(16) << prodPot
- << endl;
- }
- // "Most Probable Explanation", i.e., configuration with largest value
- DiscreteFactor::sharedValues mpe = graph.eliminateSequential()->optimize();
- cout << "\nMost Probable Explanation (MPE):" << endl;
- print(mpe);
- // "Inference" We show an inference query like: probability that the Sprinkler
- // was on; given that the grass is wet i.e. P( S | C=0) = ?
- // add evidence that it is not Cloudy
- graph.add(Cloudy, "1 0");
- // solve again, now with evidence
- DiscreteBayesNet::shared_ptr chordal = graph.eliminateSequential();
- DiscreteFactor::sharedValues mpe_with_evidence = chordal->optimize();
- cout << "\nMPE given C=0:" << endl;
- print(mpe_with_evidence);
- // we can also calculate arbitrary marginals:
- DiscreteMarginals marginals(graph);
- cout << "\nP(S=1|C=0):" << marginals.marginalProbabilities(Sprinkler)[1]
- << endl;
- cout << "\nP(R=0|C=0):" << marginals.marginalProbabilities(Rain)[0] << endl;
- cout << "\nP(W=1|C=0):" << marginals.marginalProbabilities(WetGrass)[1]
- << endl;
- // We can also sample from it
- cout << "\n10 samples:" << endl;
- for (size_t i = 0; i < 10; i++) {
- DiscreteFactor::sharedValues sample = chordal->sample();
- print(sample);
- }
- return 0;
- }
|