123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388 |
- // Ceres Solver - A fast non-linear least squares minimizer
- // Copyright 2017 Google Inc. All rights reserved.
- // http://ceres-solver.org/
- //
- // Redistribution and use in source and binary forms, with or without
- // modification, are permitted provided that the following conditions are met:
- //
- // * Redistributions of source code must retain the above copyright notice,
- // this list of conditions and the following disclaimer.
- // * Redistributions in binary form must reproduce the above copyright notice,
- // this list of conditions and the following disclaimer in the documentation
- // and/or other materials provided with the distribution.
- // * Neither the name of Google Inc. nor the names of its contributors may be
- // used to endorse or promote products derived from this software without
- // specific prior written permission.
- //
- // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
- // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
- // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
- // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
- // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
- // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
- // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
- // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
- // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
- // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
- // POSSIBILITY OF SUCH DAMAGE.
- //
- // Author: sameeragarwal@google.com (Sameer Agarwal)
- #include "ceres/sparse_cholesky.h"
- #include <memory>
- #include <numeric>
- #include <random>
- #include <vector>
- #include "Eigen/Dense"
- #include "Eigen/SparseCore"
- #include "ceres/block_sparse_matrix.h"
- #include "ceres/compressed_row_sparse_matrix.h"
- #include "ceres/inner_product_computer.h"
- #include "ceres/internal/config.h"
- #include "ceres/internal/eigen.h"
- #include "ceres/iterative_refiner.h"
- #include "glog/logging.h"
- #include "gmock/gmock.h"
- #include "gtest/gtest.h"
- namespace ceres::internal {
- namespace {
- std::unique_ptr<BlockSparseMatrix> CreateRandomFullRankMatrix(
- const int num_col_blocks,
- const int min_col_block_size,
- const int max_col_block_size,
- const double block_density,
- std::mt19937& prng) {
- // Create a random matrix
- BlockSparseMatrix::RandomMatrixOptions options;
- options.num_col_blocks = num_col_blocks;
- options.min_col_block_size = min_col_block_size;
- options.max_col_block_size = max_col_block_size;
- options.num_row_blocks = 2 * num_col_blocks;
- options.min_row_block_size = 1;
- options.max_row_block_size = max_col_block_size;
- options.block_density = block_density;
- auto random_matrix = BlockSparseMatrix::CreateRandomMatrix(options, prng);
- // Add a diagonal block sparse matrix to make it full rank.
- Vector diagonal = Vector::Ones(random_matrix->num_cols());
- auto block_diagonal = BlockSparseMatrix::CreateDiagonalMatrix(
- diagonal.data(), random_matrix->block_structure()->cols);
- random_matrix->AppendRows(*block_diagonal);
- return random_matrix;
- }
- bool ComputeExpectedSolution(const CompressedRowSparseMatrix& lhs,
- const Vector& rhs,
- Vector* solution) {
- Matrix eigen_lhs;
- lhs.ToDenseMatrix(&eigen_lhs);
- if (lhs.storage_type() ==
- CompressedRowSparseMatrix::StorageType::UPPER_TRIANGULAR) {
- Matrix full_lhs = eigen_lhs.selfadjointView<Eigen::Upper>();
- Eigen::LLT<Matrix, Eigen::Upper> llt =
- eigen_lhs.selfadjointView<Eigen::Upper>().llt();
- if (llt.info() != Eigen::Success) {
- return false;
- }
- *solution = llt.solve(rhs);
- return (llt.info() == Eigen::Success);
- }
- Matrix full_lhs = eigen_lhs.selfadjointView<Eigen::Lower>();
- Eigen::LLT<Matrix, Eigen::Lower> llt =
- eigen_lhs.selfadjointView<Eigen::Lower>().llt();
- if (llt.info() != Eigen::Success) {
- return false;
- }
- *solution = llt.solve(rhs);
- return (llt.info() == Eigen::Success);
- }
- void SparseCholeskySolverUnitTest(
- const SparseLinearAlgebraLibraryType sparse_linear_algebra_library_type,
- const OrderingType ordering_type,
- const bool use_block_structure,
- const int num_blocks,
- const int min_block_size,
- const int max_block_size,
- const double block_density,
- std::mt19937& prng) {
- LinearSolver::Options sparse_cholesky_options;
- sparse_cholesky_options.sparse_linear_algebra_library_type =
- sparse_linear_algebra_library_type;
- sparse_cholesky_options.ordering_type = ordering_type;
- auto sparse_cholesky = SparseCholesky::Create(sparse_cholesky_options);
- const CompressedRowSparseMatrix::StorageType storage_type =
- sparse_cholesky->StorageType();
- auto m = CreateRandomFullRankMatrix(
- num_blocks, min_block_size, max_block_size, block_density, prng);
- auto inner_product_computer = InnerProductComputer::Create(*m, storage_type);
- inner_product_computer->Compute();
- CompressedRowSparseMatrix* lhs = inner_product_computer->mutable_result();
- if (!use_block_structure) {
- lhs->mutable_row_blocks()->clear();
- lhs->mutable_col_blocks()->clear();
- }
- Vector rhs = Vector::Random(lhs->num_rows());
- Vector expected(lhs->num_rows());
- Vector actual(lhs->num_rows());
- EXPECT_TRUE(ComputeExpectedSolution(*lhs, rhs, &expected));
- std::string message;
- EXPECT_EQ(
- sparse_cholesky->FactorAndSolve(lhs, rhs.data(), actual.data(), &message),
- LinearSolverTerminationType::SUCCESS);
- Matrix eigen_lhs;
- lhs->ToDenseMatrix(&eigen_lhs);
- EXPECT_NEAR((actual - expected).norm() / actual.norm(),
- 0.0,
- std::numeric_limits<double>::epsilon() * 20)
- << "\n"
- << eigen_lhs;
- }
- using Param =
- ::testing::tuple<SparseLinearAlgebraLibraryType, OrderingType, bool>;
- std::string ParamInfoToString(testing::TestParamInfo<Param> info) {
- Param param = info.param;
- std::stringstream ss;
- ss << SparseLinearAlgebraLibraryTypeToString(::testing::get<0>(param)) << "_"
- << ::testing::get<1>(param) << "_"
- << (::testing::get<2>(param) ? "UseBlockStructure" : "NoBlockStructure");
- return ss.str();
- }
- } // namespace
- class SparseCholeskyTest : public ::testing::TestWithParam<Param> {};
- TEST_P(SparseCholeskyTest, FactorAndSolve) {
- constexpr int kMinNumBlocks = 1;
- constexpr int kMaxNumBlocks = 10;
- constexpr int kNumTrials = 10;
- constexpr int kMinBlockSize = 1;
- constexpr int kMaxBlockSize = 5;
- Param param = GetParam();
- std::mt19937 prng;
- std::uniform_real_distribution<double> distribution(0.1, 1.0);
- for (int num_blocks = kMinNumBlocks; num_blocks < kMaxNumBlocks;
- ++num_blocks) {
- for (int trial = 0; trial < kNumTrials; ++trial) {
- const double block_density = distribution(prng);
- SparseCholeskySolverUnitTest(::testing::get<0>(param),
- ::testing::get<1>(param),
- ::testing::get<2>(param),
- num_blocks,
- kMinBlockSize,
- kMaxBlockSize,
- block_density,
- prng);
- }
- }
- }
- namespace {
- #ifndef CERES_NO_SUITESPARSE
- INSTANTIATE_TEST_SUITE_P(
- SuiteSparseCholesky,
- SparseCholeskyTest,
- ::testing::Combine(::testing::Values(SUITE_SPARSE),
- ::testing::Values(OrderingType::AMD,
- OrderingType::NATURAL),
- ::testing::Values(true, false)),
- ParamInfoToString);
- #endif
- #if !defined(CERES_NO_SUITESPARSE) && !defined(CERES_NO_CHOLMOD_PARTITION)
- INSTANTIATE_TEST_SUITE_P(
- SuiteSparseCholeskyMETIS,
- SparseCholeskyTest,
- ::testing::Combine(::testing::Values(SUITE_SPARSE),
- ::testing::Values(OrderingType::NESDIS),
- ::testing::Values(true, false)),
- ParamInfoToString);
- #endif // !defined(CERES_NO_SUITESPARSE) &&
- // !defined(CERES_NO_CHOLMOD_PARTITION)
- #ifndef CERES_NO_ACCELERATE_SPARSE
- INSTANTIATE_TEST_SUITE_P(
- AccelerateSparseCholesky,
- SparseCholeskyTest,
- ::testing::Combine(::testing::Values(ACCELERATE_SPARSE),
- ::testing::Values(OrderingType::AMD,
- OrderingType::NESDIS,
- OrderingType::NATURAL),
- ::testing::Values(true, false)),
- ParamInfoToString);
- INSTANTIATE_TEST_SUITE_P(
- AccelerateSparseCholeskySingle,
- SparseCholeskyTest,
- ::testing::Combine(::testing::Values(ACCELERATE_SPARSE),
- ::testing::Values(OrderingType::AMD,
- OrderingType::NESDIS,
- OrderingType::NATURAL),
- ::testing::Values(true, false)),
- ParamInfoToString);
- #endif
- #ifdef CERES_USE_EIGEN_SPARSE
- INSTANTIATE_TEST_SUITE_P(
- EigenSparseCholesky,
- SparseCholeskyTest,
- ::testing::Combine(::testing::Values(EIGEN_SPARSE),
- ::testing::Values(OrderingType::AMD,
- OrderingType::NATURAL),
- ::testing::Values(true, false)),
- ParamInfoToString);
- INSTANTIATE_TEST_SUITE_P(
- EigenSparseCholeskySingle,
- SparseCholeskyTest,
- ::testing::Combine(::testing::Values(EIGEN_SPARSE),
- ::testing::Values(OrderingType::AMD,
- OrderingType::NATURAL),
- ::testing::Values(true, false)),
- ParamInfoToString);
- #endif // CERES_USE_EIGEN_SPARSE
- #if defined(CERES_USE_EIGEN_SPARSE) && !defined(CERES_NO_EIGEN_METIS)
- INSTANTIATE_TEST_SUITE_P(
- EigenSparseCholeskyMETIS,
- SparseCholeskyTest,
- ::testing::Combine(::testing::Values(EIGEN_SPARSE),
- ::testing::Values(OrderingType::NESDIS),
- ::testing::Values(true, false)),
- ParamInfoToString);
- INSTANTIATE_TEST_SUITE_P(
- EigenSparseCholeskySingleMETIS,
- SparseCholeskyTest,
- ::testing::Combine(::testing::Values(EIGEN_SPARSE),
- ::testing::Values(OrderingType::NESDIS),
- ::testing::Values(true, false)),
- ParamInfoToString);
- #endif // defined(CERES_USE_EIGEN_SPARSE) && !defined(CERES_NO_EIGEN_METIS)
- class MockSparseCholesky : public SparseCholesky {
- public:
- MOCK_CONST_METHOD0(StorageType, CompressedRowSparseMatrix::StorageType());
- MOCK_METHOD2(Factorize,
- LinearSolverTerminationType(CompressedRowSparseMatrix* lhs,
- std::string* message));
- MOCK_METHOD3(Solve,
- LinearSolverTerminationType(const double* rhs,
- double* solution,
- std::string* message));
- };
- class MockSparseIterativeRefiner : public SparseIterativeRefiner {
- public:
- MockSparseIterativeRefiner() : SparseIterativeRefiner(1) {}
- MOCK_METHOD4(Refine,
- void(const SparseMatrix& lhs,
- const double* rhs,
- SparseCholesky* sparse_cholesky,
- double* solution));
- };
- using testing::_;
- using testing::Return;
- TEST(RefinedSparseCholesky, StorageType) {
- auto sparse_cholesky = std::make_unique<MockSparseCholesky>();
- auto iterative_refiner = std::make_unique<MockSparseIterativeRefiner>();
- EXPECT_CALL(*sparse_cholesky, StorageType())
- .Times(1)
- .WillRepeatedly(
- Return(CompressedRowSparseMatrix::StorageType::UPPER_TRIANGULAR));
- EXPECT_CALL(*iterative_refiner, Refine(_, _, _, _)).Times(0);
- RefinedSparseCholesky refined_sparse_cholesky(std::move(sparse_cholesky),
- std::move(iterative_refiner));
- EXPECT_EQ(refined_sparse_cholesky.StorageType(),
- CompressedRowSparseMatrix::StorageType::UPPER_TRIANGULAR);
- };
- TEST(RefinedSparseCholesky, Factorize) {
- auto* mock_sparse_cholesky = new MockSparseCholesky;
- auto* mock_iterative_refiner = new MockSparseIterativeRefiner;
- EXPECT_CALL(*mock_sparse_cholesky, Factorize(_, _))
- .Times(1)
- .WillRepeatedly(Return(LinearSolverTerminationType::SUCCESS));
- EXPECT_CALL(*mock_iterative_refiner, Refine(_, _, _, _)).Times(0);
- std::unique_ptr<SparseCholesky> sparse_cholesky(mock_sparse_cholesky);
- std::unique_ptr<SparseIterativeRefiner> iterative_refiner(
- mock_iterative_refiner);
- RefinedSparseCholesky refined_sparse_cholesky(std::move(sparse_cholesky),
- std::move(iterative_refiner));
- CompressedRowSparseMatrix m(1, 1, 1);
- std::string message;
- EXPECT_EQ(refined_sparse_cholesky.Factorize(&m, &message),
- LinearSolverTerminationType::SUCCESS);
- };
- TEST(RefinedSparseCholesky, FactorAndSolveWithUnsuccessfulFactorization) {
- auto* mock_sparse_cholesky = new MockSparseCholesky;
- auto* mock_iterative_refiner = new MockSparseIterativeRefiner;
- EXPECT_CALL(*mock_sparse_cholesky, Factorize(_, _))
- .Times(1)
- .WillRepeatedly(Return(LinearSolverTerminationType::FAILURE));
- EXPECT_CALL(*mock_sparse_cholesky, Solve(_, _, _)).Times(0);
- EXPECT_CALL(*mock_iterative_refiner, Refine(_, _, _, _)).Times(0);
- std::unique_ptr<SparseCholesky> sparse_cholesky(mock_sparse_cholesky);
- std::unique_ptr<SparseIterativeRefiner> iterative_refiner(
- mock_iterative_refiner);
- RefinedSparseCholesky refined_sparse_cholesky(std::move(sparse_cholesky),
- std::move(iterative_refiner));
- CompressedRowSparseMatrix m(1, 1, 1);
- std::string message;
- double rhs;
- double solution;
- EXPECT_EQ(
- refined_sparse_cholesky.FactorAndSolve(&m, &rhs, &solution, &message),
- LinearSolverTerminationType::FAILURE);
- };
- TEST(RefinedSparseCholesky, FactorAndSolveWithSuccess) {
- auto* mock_sparse_cholesky = new MockSparseCholesky;
- std::unique_ptr<MockSparseIterativeRefiner> mock_iterative_refiner(
- new MockSparseIterativeRefiner);
- EXPECT_CALL(*mock_sparse_cholesky, Factorize(_, _))
- .Times(1)
- .WillRepeatedly(Return(LinearSolverTerminationType::SUCCESS));
- EXPECT_CALL(*mock_sparse_cholesky, Solve(_, _, _))
- .Times(1)
- .WillRepeatedly(Return(LinearSolverTerminationType::SUCCESS));
- EXPECT_CALL(*mock_iterative_refiner, Refine(_, _, _, _)).Times(1);
- std::unique_ptr<SparseCholesky> sparse_cholesky(mock_sparse_cholesky);
- std::unique_ptr<SparseIterativeRefiner> iterative_refiner(
- std::move(mock_iterative_refiner));
- RefinedSparseCholesky refined_sparse_cholesky(std::move(sparse_cholesky),
- std::move(iterative_refiner));
- CompressedRowSparseMatrix m(1, 1, 1);
- std::string message;
- double rhs;
- double solution;
- EXPECT_EQ(
- refined_sparse_cholesky.FactorAndSolve(&m, &rhs, &solution, &message),
- LinearSolverTerminationType::SUCCESS);
- };
- } // namespace
- } // namespace ceres::internal
|