123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718 |
- // Ceres Solver - A fast non-linear least squares minimizer
- // Copyright 2022 Google Inc. All rights reserved.
- // http://ceres-solver.org/
- //
- // Redistribution and use in source and binary forms, with or without
- // modification, are permitted provided that the following conditions are met:
- //
- // * Redistributions of source code must retain the above copyright notice,
- // this list of conditions and the following disclaimer.
- // * Redistributions in binary form must reproduce the above copyright notice,
- // this list of conditions and the following disclaimer in the documentation
- // and/or other materials provided with the distribution.
- // * Neither the name of Google Inc. nor the names of its contributors may be
- // used to endorse or promote products derived from this software without
- // specific prior written permission.
- //
- // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
- // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
- // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
- // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
- // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
- // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
- // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
- // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
- // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
- // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
- // POSSIBILITY OF SUCH DAMAGE.
- //
- // Author: sameeragarwal@google.com (Sameer Agarwal)
- //
- // TODO(sameeragarwal): row_block_counter can perhaps be replaced by
- // Chunk::start ?
- #ifndef CERES_INTERNAL_SCHUR_ELIMINATOR_IMPL_H_
- #define CERES_INTERNAL_SCHUR_ELIMINATOR_IMPL_H_
- // Eigen has an internal threshold switching between different matrix
- // multiplication algorithms. In particular for matrices larger than
- // EIGEN_CACHEFRIENDLY_PRODUCT_THRESHOLD it uses a cache friendly
- // matrix matrix product algorithm that has a higher setup cost. For
- // matrix sizes close to this threshold, especially when the matrices
- // are thin and long, the default choice may not be optimal. This is
- // the case for us, as the default choice causes a 30% performance
- // regression when we moved from Eigen2 to Eigen3.
- #define EIGEN_CACHEFRIENDLY_PRODUCT_THRESHOLD 10
- // This include must come before any #ifndef check on Ceres compile options.
- // clang-format off
- #include "ceres/internal/config.h"
- // clang-format on
- #include <algorithm>
- #include <map>
- #include "Eigen/Dense"
- #include "ceres/block_random_access_matrix.h"
- #include "ceres/block_sparse_matrix.h"
- #include "ceres/block_structure.h"
- #include "ceres/internal/eigen.h"
- #include "ceres/internal/fixed_array.h"
- #include "ceres/invert_psd_matrix.h"
- #include "ceres/map_util.h"
- #include "ceres/parallel_for.h"
- #include "ceres/schur_eliminator.h"
- #include "ceres/scoped_thread_token.h"
- #include "ceres/small_blas.h"
- #include "ceres/stl_util.h"
- #include "ceres/thread_token_provider.h"
- #include "glog/logging.h"
- namespace ceres::internal {
- template <int kRowBlockSize, int kEBlockSize, int kFBlockSize>
- SchurEliminator<kRowBlockSize, kEBlockSize, kFBlockSize>::~SchurEliminator() {
- STLDeleteElements(&rhs_locks_);
- }
- template <int kRowBlockSize, int kEBlockSize, int kFBlockSize>
- void SchurEliminator<kRowBlockSize, kEBlockSize, kFBlockSize>::Init(
- int num_eliminate_blocks,
- bool assume_full_rank_ete,
- const CompressedRowBlockStructure* bs) {
- CHECK_GT(num_eliminate_blocks, 0)
- << "SchurComplementSolver cannot be initialized with "
- << "num_eliminate_blocks = 0.";
- num_eliminate_blocks_ = num_eliminate_blocks;
- assume_full_rank_ete_ = assume_full_rank_ete;
- const int num_col_blocks = bs->cols.size();
- const int num_row_blocks = bs->rows.size();
- buffer_size_ = 1;
- chunks_.clear();
- lhs_row_layout_.clear();
- int lhs_num_rows = 0;
- // Add a map object for each block in the reduced linear system
- // and build the row/column block structure of the reduced linear
- // system.
- lhs_row_layout_.resize(num_col_blocks - num_eliminate_blocks_);
- for (int i = num_eliminate_blocks_; i < num_col_blocks; ++i) {
- lhs_row_layout_[i - num_eliminate_blocks_] = lhs_num_rows;
- lhs_num_rows += bs->cols[i].size;
- }
- // TODO(sameeragarwal): Now that we may have subset block structure,
- // we need to make sure that we account for the fact that some
- // point blocks only have a "diagonal" row and nothing more.
- //
- // This likely requires a slightly different algorithm, which works
- // off of the number of elimination blocks.
- int r = 0;
- // Iterate over the row blocks of A, and detect the chunks. The
- // matrix should already have been ordered so that all rows
- // containing the same y block are vertically contiguous. Along
- // the way also compute the amount of space each chunk will need
- // to perform the elimination.
- while (r < num_row_blocks) {
- const int chunk_block_id = bs->rows[r].cells.front().block_id;
- if (chunk_block_id >= num_eliminate_blocks_) {
- break;
- }
- chunks_.push_back(Chunk(r));
- Chunk& chunk = chunks_.back();
- int buffer_size = 0;
- const int e_block_size = bs->cols[chunk_block_id].size;
- // Add to the chunk until the first block in the row is
- // different than the one in the first row for the chunk.
- while (r + chunk.size < num_row_blocks) {
- const CompressedRow& row = bs->rows[r + chunk.size];
- if (row.cells.front().block_id != chunk_block_id) {
- break;
- }
- // Iterate over the blocks in the row, ignoring the first
- // block since it is the one to be eliminated.
- for (int c = 1; c < row.cells.size(); ++c) {
- const Cell& cell = row.cells[c];
- if (InsertIfNotPresent(
- &(chunk.buffer_layout), cell.block_id, buffer_size)) {
- buffer_size += e_block_size * bs->cols[cell.block_id].size;
- }
- }
- buffer_size_ = std::max(buffer_size, buffer_size_);
- ++chunk.size;
- }
- CHECK_GT(chunk.size, 0); // This check will need to be resolved.
- r += chunk.size;
- }
- const Chunk& chunk = chunks_.back();
- uneliminated_row_begins_ = chunk.start + chunk.size;
- buffer_ = std::make_unique<double[]>(buffer_size_ * num_threads_);
- // chunk_outer_product_buffer_ only needs to store e_block_size *
- // f_block_size, which is always less than buffer_size_, so we just
- // allocate buffer_size_ per thread.
- chunk_outer_product_buffer_ =
- std::make_unique<double[]>(buffer_size_ * num_threads_);
- STLDeleteElements(&rhs_locks_);
- rhs_locks_.resize(num_col_blocks - num_eliminate_blocks_);
- for (int i = 0; i < num_col_blocks - num_eliminate_blocks_; ++i) {
- rhs_locks_[i] = new std::mutex;
- }
- }
- template <int kRowBlockSize, int kEBlockSize, int kFBlockSize>
- void SchurEliminator<kRowBlockSize, kEBlockSize, kFBlockSize>::Eliminate(
- const BlockSparseMatrixData& A,
- const double* b,
- const double* D,
- BlockRandomAccessMatrix* lhs,
- double* rhs) {
- if (lhs->num_rows() > 0) {
- lhs->SetZero();
- if (rhs) {
- VectorRef(rhs, lhs->num_rows()).setZero();
- }
- }
- const CompressedRowBlockStructure* bs = A.block_structure();
- const int num_col_blocks = bs->cols.size();
- // Add the diagonal to the schur complement.
- if (D != nullptr) {
- ParallelFor(context_,
- num_eliminate_blocks_,
- num_col_blocks,
- num_threads_,
- [&](int i) {
- const int block_id = i - num_eliminate_blocks_;
- int r, c, row_stride, col_stride;
- CellInfo* cell_info = lhs->GetCell(
- block_id, block_id, &r, &c, &row_stride, &col_stride);
- if (cell_info != nullptr) {
- const int block_size = bs->cols[i].size;
- typename EigenTypes<Eigen::Dynamic>::ConstVectorRef diag(
- D + bs->cols[i].position, block_size);
- MatrixRef m(cell_info->values, row_stride, col_stride);
- m.block(r, c, block_size, block_size).diagonal() +=
- diag.array().square().matrix();
- }
- });
- }
- // Eliminate y blocks one chunk at a time. For each chunk, compute
- // the entries of the normal equations and the gradient vector block
- // corresponding to the y block and then apply Gaussian elimination
- // to them. The matrix ete stores the normal matrix corresponding to
- // the block being eliminated and array buffer_ contains the
- // non-zero blocks in the row corresponding to this y block in the
- // normal equations. This computation is done in
- // ChunkDiagonalBlockAndGradient. UpdateRhs then applies gaussian
- // elimination to the rhs of the normal equations, updating the rhs
- // of the reduced linear system by modifying rhs blocks for all the
- // z blocks that share a row block/residual term with the y
- // block. EliminateRowOuterProduct does the corresponding operation
- // for the lhs of the reduced linear system.
- ParallelFor(
- context_,
- 0,
- int(chunks_.size()),
- num_threads_,
- [&](int thread_id, int i) {
- double* buffer = buffer_.get() + thread_id * buffer_size_;
- const Chunk& chunk = chunks_[i];
- const int e_block_id = bs->rows[chunk.start].cells.front().block_id;
- const int e_block_size = bs->cols[e_block_id].size;
- VectorRef(buffer, buffer_size_).setZero();
- typename EigenTypes<kEBlockSize, kEBlockSize>::Matrix ete(e_block_size,
- e_block_size);
- if (D != nullptr) {
- const typename EigenTypes<kEBlockSize>::ConstVectorRef diag(
- D + bs->cols[e_block_id].position, e_block_size);
- ete = diag.array().square().matrix().asDiagonal();
- } else {
- ete.setZero();
- }
- FixedArray<double, 8> g(e_block_size);
- typename EigenTypes<kEBlockSize>::VectorRef gref(g.data(),
- e_block_size);
- gref.setZero();
- // We are going to be computing
- //
- // S += F'F - F'E(E'E)^{-1}E'F
- //
- // for each Chunk. The computation is broken down into a number of
- // function calls as below.
- // Compute the outer product of the e_blocks with themselves (ete
- // = E'E). Compute the product of the e_blocks with the
- // corresponding f_blocks (buffer = E'F), the gradient of the terms
- // in this chunk (g) and add the outer product of the f_blocks to
- // Schur complement (S += F'F).
- ChunkDiagonalBlockAndGradient(
- chunk, A, b, chunk.start, &ete, g.data(), buffer, lhs);
- // Normally one wouldn't compute the inverse explicitly, but
- // e_block_size will typically be a small number like 3, in
- // which case its much faster to compute the inverse once and
- // use it to multiply other matrices/vectors instead of doing a
- // Solve call over and over again.
- typename EigenTypes<kEBlockSize, kEBlockSize>::Matrix inverse_ete =
- InvertPSDMatrix<kEBlockSize>(assume_full_rank_ete_, ete);
- // For the current chunk compute and update the rhs of the reduced
- // linear system.
- //
- // rhs = F'b - F'E(E'E)^(-1) E'b
- if (rhs) {
- FixedArray<double, 8> inverse_ete_g(e_block_size);
- MatrixVectorMultiply<kEBlockSize, kEBlockSize, 0>(
- inverse_ete.data(),
- e_block_size,
- e_block_size,
- g.data(),
- inverse_ete_g.data());
- UpdateRhs(chunk, A, b, chunk.start, inverse_ete_g.data(), rhs);
- }
- // S -= F'E(E'E)^{-1}E'F
- ChunkOuterProduct(
- thread_id, bs, inverse_ete, buffer, chunk.buffer_layout, lhs);
- });
- // For rows with no e_blocks, the Schur complement update reduces to
- // S += F'F.
- NoEBlockRowsUpdate(A, b, uneliminated_row_begins_, lhs, rhs);
- }
- template <int kRowBlockSize, int kEBlockSize, int kFBlockSize>
- void SchurEliminator<kRowBlockSize, kEBlockSize, kFBlockSize>::BackSubstitute(
- const BlockSparseMatrixData& A,
- const double* b,
- const double* D,
- const double* z,
- double* y) {
- const CompressedRowBlockStructure* bs = A.block_structure();
- const double* values = A.values();
- ParallelFor(context_, 0, int(chunks_.size()), num_threads_, [&](int i) {
- const Chunk& chunk = chunks_[i];
- const int e_block_id = bs->rows[chunk.start].cells.front().block_id;
- const int e_block_size = bs->cols[e_block_id].size;
- double* y_ptr = y + bs->cols[e_block_id].position;
- typename EigenTypes<kEBlockSize>::VectorRef y_block(y_ptr, e_block_size);
- typename EigenTypes<kEBlockSize, kEBlockSize>::Matrix ete(e_block_size,
- e_block_size);
- if (D != nullptr) {
- const typename EigenTypes<kEBlockSize>::ConstVectorRef diag(
- D + bs->cols[e_block_id].position, e_block_size);
- ete = diag.array().square().matrix().asDiagonal();
- } else {
- ete.setZero();
- }
- for (int j = 0; j < chunk.size; ++j) {
- const CompressedRow& row = bs->rows[chunk.start + j];
- const Cell& e_cell = row.cells.front();
- DCHECK_EQ(e_block_id, e_cell.block_id);
- FixedArray<double, 8> sj(row.block.size);
- typename EigenTypes<kRowBlockSize>::VectorRef(sj.data(), row.block.size) =
- typename EigenTypes<kRowBlockSize>::ConstVectorRef(
- b + bs->rows[chunk.start + j].block.position, row.block.size);
- for (int c = 1; c < row.cells.size(); ++c) {
- const int f_block_id = row.cells[c].block_id;
- const int f_block_size = bs->cols[f_block_id].size;
- const int r_block = f_block_id - num_eliminate_blocks_;
- // clang-format off
- MatrixVectorMultiply<kRowBlockSize, kFBlockSize, -1>(
- values + row.cells[c].position, row.block.size, f_block_size,
- z + lhs_row_layout_[r_block],
- sj.data());
- }
- MatrixTransposeVectorMultiply<kRowBlockSize, kEBlockSize, 1>(
- values + e_cell.position, row.block.size, e_block_size,
- sj.data(),
- y_ptr);
- MatrixTransposeMatrixMultiply
- <kRowBlockSize, kEBlockSize, kRowBlockSize, kEBlockSize, 1>(
- values + e_cell.position, row.block.size, e_block_size,
- values + e_cell.position, row.block.size, e_block_size,
- ete.data(), 0, 0, e_block_size, e_block_size);
- // clang-format on
- }
- y_block =
- InvertPSDMatrix<kEBlockSize>(assume_full_rank_ete_, ete) * y_block;
- });
- }
- // Update the rhs of the reduced linear system. Compute
- //
- // F'b - F'E(E'E)^(-1) E'b
- template <int kRowBlockSize, int kEBlockSize, int kFBlockSize>
- void SchurEliminator<kRowBlockSize, kEBlockSize, kFBlockSize>::UpdateRhs(
- const Chunk& chunk,
- const BlockSparseMatrixData& A,
- const double* b,
- int row_block_counter,
- const double* inverse_ete_g,
- double* rhs) {
- const CompressedRowBlockStructure* bs = A.block_structure();
- const double* values = A.values();
- const int e_block_id = bs->rows[chunk.start].cells.front().block_id;
- const int e_block_size = bs->cols[e_block_id].size;
- int b_pos = bs->rows[row_block_counter].block.position;
- for (int j = 0; j < chunk.size; ++j) {
- const CompressedRow& row = bs->rows[row_block_counter + j];
- const Cell& e_cell = row.cells.front();
- typename EigenTypes<kRowBlockSize>::Vector sj =
- typename EigenTypes<kRowBlockSize>::ConstVectorRef(b + b_pos,
- row.block.size);
- // clang-format off
- MatrixVectorMultiply<kRowBlockSize, kEBlockSize, -1>(
- values + e_cell.position, row.block.size, e_block_size,
- inverse_ete_g, sj.data());
- // clang-format on
- for (int c = 1; c < row.cells.size(); ++c) {
- const int block_id = row.cells[c].block_id;
- const int block_size = bs->cols[block_id].size;
- const int block = block_id - num_eliminate_blocks_;
- auto lock = MakeConditionalLock(num_threads_, *rhs_locks_[block]);
- // clang-format off
- MatrixTransposeVectorMultiply<kRowBlockSize, kFBlockSize, 1>(
- values + row.cells[c].position,
- row.block.size, block_size,
- sj.data(), rhs + lhs_row_layout_[block]);
- // clang-format on
- }
- b_pos += row.block.size;
- }
- }
- // Given a Chunk - set of rows with the same e_block, e.g. in the
- // following Chunk with two rows.
- //
- // E F
- // [ y11 0 0 0 | z11 0 0 0 z51]
- // [ y12 0 0 0 | z12 z22 0 0 0]
- //
- // this function computes twp matrices. The diagonal block matrix
- //
- // ete = y11 * y11' + y12 * y12'
- //
- // and the off diagonal blocks in the Gauss Newton Hessian.
- //
- // buffer = [y11'(z11 + z12), y12' * z22, y11' * z51]
- //
- // which are zero compressed versions of the block sparse matrices E'E
- // and E'F.
- //
- // and the gradient of the e_block, E'b.
- template <int kRowBlockSize, int kEBlockSize, int kFBlockSize>
- void SchurEliminator<kRowBlockSize, kEBlockSize, kFBlockSize>::
- ChunkDiagonalBlockAndGradient(
- const Chunk& chunk,
- const BlockSparseMatrixData& A,
- const double* b,
- int row_block_counter,
- typename EigenTypes<kEBlockSize, kEBlockSize>::Matrix* ete,
- double* g,
- double* buffer,
- BlockRandomAccessMatrix* lhs) {
- const CompressedRowBlockStructure* bs = A.block_structure();
- const double* values = A.values();
- int b_pos = bs->rows[row_block_counter].block.position;
- const int e_block_size = ete->rows();
- // Iterate over the rows in this chunk, for each row, compute the
- // contribution of its F blocks to the Schur complement, the
- // contribution of its E block to the matrix EE' (ete), and the
- // corresponding block in the gradient vector.
- for (int j = 0; j < chunk.size; ++j) {
- const CompressedRow& row = bs->rows[row_block_counter + j];
- if (row.cells.size() > 1) {
- EBlockRowOuterProduct(A, row_block_counter + j, lhs);
- }
- // Extract the e_block, ETE += E_i' E_i
- const Cell& e_cell = row.cells.front();
- // clang-format off
- MatrixTransposeMatrixMultiply
- <kRowBlockSize, kEBlockSize, kRowBlockSize, kEBlockSize, 1>(
- values + e_cell.position, row.block.size, e_block_size,
- values + e_cell.position, row.block.size, e_block_size,
- ete->data(), 0, 0, e_block_size, e_block_size);
- // clang-format on
- if (b) {
- // g += E_i' b_i
- // clang-format off
- MatrixTransposeVectorMultiply<kRowBlockSize, kEBlockSize, 1>(
- values + e_cell.position, row.block.size, e_block_size,
- b + b_pos,
- g);
- // clang-format on
- }
- // buffer = E'F. This computation is done by iterating over the
- // f_blocks for each row in the chunk.
- for (int c = 1; c < row.cells.size(); ++c) {
- const int f_block_id = row.cells[c].block_id;
- const int f_block_size = bs->cols[f_block_id].size;
- double* buffer_ptr = buffer + FindOrDie(chunk.buffer_layout, f_block_id);
- // clang-format off
- MatrixTransposeMatrixMultiply
- <kRowBlockSize, kEBlockSize, kRowBlockSize, kFBlockSize, 1>(
- values + e_cell.position, row.block.size, e_block_size,
- values + row.cells[c].position, row.block.size, f_block_size,
- buffer_ptr, 0, 0, e_block_size, f_block_size);
- // clang-format on
- }
- b_pos += row.block.size;
- }
- }
- // Compute the outer product F'E(E'E)^{-1}E'F and subtract it from the
- // Schur complement matrix, i.e
- //
- // S -= F'E(E'E)^{-1}E'F.
- template <int kRowBlockSize, int kEBlockSize, int kFBlockSize>
- void SchurEliminator<kRowBlockSize, kEBlockSize, kFBlockSize>::
- ChunkOuterProduct(int thread_id,
- const CompressedRowBlockStructure* bs,
- const Matrix& inverse_ete,
- const double* buffer,
- const BufferLayoutType& buffer_layout,
- BlockRandomAccessMatrix* lhs) {
- // This is the most computationally expensive part of this
- // code. Profiling experiments reveal that the bottleneck is not the
- // computation of the right-hand matrix product, but memory
- // references to the left hand side.
- const int e_block_size = inverse_ete.rows();
- auto it1 = buffer_layout.begin();
- double* b1_transpose_inverse_ete =
- chunk_outer_product_buffer_.get() + thread_id * buffer_size_;
- // S(i,j) -= bi' * ete^{-1} b_j
- for (; it1 != buffer_layout.end(); ++it1) {
- const int block1 = it1->first - num_eliminate_blocks_;
- const int block1_size = bs->cols[it1->first].size;
- // clang-format off
- MatrixTransposeMatrixMultiply
- <kEBlockSize, kFBlockSize, kEBlockSize, kEBlockSize, 0>(
- buffer + it1->second, e_block_size, block1_size,
- inverse_ete.data(), e_block_size, e_block_size,
- b1_transpose_inverse_ete, 0, 0, block1_size, e_block_size);
- // clang-format on
- auto it2 = it1;
- for (; it2 != buffer_layout.end(); ++it2) {
- const int block2 = it2->first - num_eliminate_blocks_;
- int r, c, row_stride, col_stride;
- CellInfo* cell_info =
- lhs->GetCell(block1, block2, &r, &c, &row_stride, &col_stride);
- if (cell_info != nullptr) {
- const int block2_size = bs->cols[it2->first].size;
- auto lock = MakeConditionalLock(num_threads_, cell_info->m);
- // clang-format off
- MatrixMatrixMultiply
- <kFBlockSize, kEBlockSize, kEBlockSize, kFBlockSize, -1>(
- b1_transpose_inverse_ete, block1_size, e_block_size,
- buffer + it2->second, e_block_size, block2_size,
- cell_info->values, r, c, row_stride, col_stride);
- // clang-format on
- }
- }
- }
- }
- // For rows with no e_blocks, the Schur complement update reduces to S
- // += F'F. This function iterates over the rows of A with no e_block,
- // and calls NoEBlockRowOuterProduct on each row.
- template <int kRowBlockSize, int kEBlockSize, int kFBlockSize>
- void SchurEliminator<kRowBlockSize, kEBlockSize, kFBlockSize>::
- NoEBlockRowsUpdate(const BlockSparseMatrixData& A,
- const double* b,
- int row_block_counter,
- BlockRandomAccessMatrix* lhs,
- double* rhs) {
- const CompressedRowBlockStructure* bs = A.block_structure();
- const double* values = A.values();
- for (; row_block_counter < bs->rows.size(); ++row_block_counter) {
- NoEBlockRowOuterProduct(A, row_block_counter, lhs);
- if (!rhs) {
- continue;
- }
- const CompressedRow& row = bs->rows[row_block_counter];
- for (int c = 0; c < row.cells.size(); ++c) {
- const int block_id = row.cells[c].block_id;
- const int block_size = bs->cols[block_id].size;
- const int block = block_id - num_eliminate_blocks_;
- // clang-format off
- MatrixTransposeVectorMultiply<Eigen::Dynamic, Eigen::Dynamic, 1>(
- values + row.cells[c].position, row.block.size, block_size,
- b + row.block.position,
- rhs + lhs_row_layout_[block]);
- // clang-format on
- }
- }
- }
- // A row r of A, which has no e_blocks gets added to the Schur
- // complement as S += r r'. This function is responsible for computing
- // the contribution of a single row r to the Schur complement. It is
- // very similar in structure to EBlockRowOuterProduct except for
- // one difference. It does not use any of the template
- // parameters. This is because the algorithm used for detecting the
- // static structure of the matrix A only pays attention to rows with
- // e_blocks. This is because rows without e_blocks are rare and
- // typically arise from regularization terms in the original
- // optimization problem, and have a very different structure than the
- // rows with e_blocks. Including them in the static structure
- // detection will lead to most template parameters being set to
- // dynamic. Since the number of rows without e_blocks is small, the
- // lack of templating is not an issue.
- template <int kRowBlockSize, int kEBlockSize, int kFBlockSize>
- void SchurEliminator<kRowBlockSize, kEBlockSize, kFBlockSize>::
- NoEBlockRowOuterProduct(const BlockSparseMatrixData& A,
- int row_block_index,
- BlockRandomAccessMatrix* lhs) {
- const CompressedRowBlockStructure* bs = A.block_structure();
- const double* values = A.values();
- const CompressedRow& row = bs->rows[row_block_index];
- for (int i = 0; i < row.cells.size(); ++i) {
- const int block1 = row.cells[i].block_id - num_eliminate_blocks_;
- DCHECK_GE(block1, 0);
- const int block1_size = bs->cols[row.cells[i].block_id].size;
- int r, c, row_stride, col_stride;
- CellInfo* cell_info =
- lhs->GetCell(block1, block1, &r, &c, &row_stride, &col_stride);
- if (cell_info != nullptr) {
- auto lock = MakeConditionalLock(num_threads_, cell_info->m);
- // This multiply currently ignores the fact that this is a
- // symmetric outer product.
- // clang-format off
- MatrixTransposeMatrixMultiply
- <Eigen::Dynamic, Eigen::Dynamic, Eigen::Dynamic, Eigen::Dynamic, 1>(
- values + row.cells[i].position, row.block.size, block1_size,
- values + row.cells[i].position, row.block.size, block1_size,
- cell_info->values, r, c, row_stride, col_stride);
- // clang-format on
- }
- for (int j = i + 1; j < row.cells.size(); ++j) {
- const int block2 = row.cells[j].block_id - num_eliminate_blocks_;
- DCHECK_GE(block2, 0);
- DCHECK_LT(block1, block2);
- int r, c, row_stride, col_stride;
- CellInfo* cell_info =
- lhs->GetCell(block1, block2, &r, &c, &row_stride, &col_stride);
- if (cell_info != nullptr) {
- const int block2_size = bs->cols[row.cells[j].block_id].size;
- auto lock = MakeConditionalLock(num_threads_, cell_info->m);
- // clang-format off
- MatrixTransposeMatrixMultiply
- <Eigen::Dynamic, Eigen::Dynamic, Eigen::Dynamic, Eigen::Dynamic, 1>(
- values + row.cells[i].position, row.block.size, block1_size,
- values + row.cells[j].position, row.block.size, block2_size,
- cell_info->values, r, c, row_stride, col_stride);
- // clang-format on
- }
- }
- }
- }
- // For a row with an e_block, compute the contribution S += F'F. This
- // function has the same structure as NoEBlockRowOuterProduct, except
- // that this function uses the template parameters.
- template <int kRowBlockSize, int kEBlockSize, int kFBlockSize>
- void SchurEliminator<kRowBlockSize, kEBlockSize, kFBlockSize>::
- EBlockRowOuterProduct(const BlockSparseMatrixData& A,
- int row_block_index,
- BlockRandomAccessMatrix* lhs) {
- const CompressedRowBlockStructure* bs = A.block_structure();
- const double* values = A.values();
- const CompressedRow& row = bs->rows[row_block_index];
- for (int i = 1; i < row.cells.size(); ++i) {
- const int block1 = row.cells[i].block_id - num_eliminate_blocks_;
- DCHECK_GE(block1, 0);
- const int block1_size = bs->cols[row.cells[i].block_id].size;
- int r, c, row_stride, col_stride;
- CellInfo* cell_info =
- lhs->GetCell(block1, block1, &r, &c, &row_stride, &col_stride);
- if (cell_info != nullptr) {
- auto lock = MakeConditionalLock(num_threads_, cell_info->m);
- // block += b1.transpose() * b1;
- // clang-format off
- MatrixTransposeMatrixMultiply
- <kRowBlockSize, kFBlockSize, kRowBlockSize, kFBlockSize, 1>(
- values + row.cells[i].position, row.block.size, block1_size,
- values + row.cells[i].position, row.block.size, block1_size,
- cell_info->values, r, c, row_stride, col_stride);
- // clang-format on
- }
- for (int j = i + 1; j < row.cells.size(); ++j) {
- const int block2 = row.cells[j].block_id - num_eliminate_blocks_;
- DCHECK_GE(block2, 0);
- DCHECK_LT(block1, block2);
- const int block2_size = bs->cols[row.cells[j].block_id].size;
- int r, c, row_stride, col_stride;
- CellInfo* cell_info =
- lhs->GetCell(block1, block2, &r, &c, &row_stride, &col_stride);
- if (cell_info != nullptr) {
- // block += b1.transpose() * b2;
- auto lock = MakeConditionalLock(num_threads_, cell_info->m);
- // clang-format off
- MatrixTransposeMatrixMultiply
- <kRowBlockSize, kFBlockSize, kRowBlockSize, kFBlockSize, 1>(
- values + row.cells[i].position, row.block.size, block1_size,
- values + row.cells[j].position, row.block.size, block2_size,
- cell_info->values, r, c, row_stride, col_stride);
- // clang-format on
- }
- }
- }
- }
- } // namespace ceres::internal
- #endif // CERES_INTERNAL_SCHUR_ELIMINATOR_IMPL_H_
|