123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513 |
- // Ceres Solver - A fast non-linear least squares minimizer
- // Copyright 2015 Google Inc. All rights reserved.
- // http://ceres-solver.org/
- //
- // Redistribution and use in source and binary forms, with or without
- // modification, are permitted provided that the following conditions are met:
- //
- // * Redistributions of source code must retain the above copyright notice,
- // this list of conditions and the following disclaimer.
- // * Redistributions in binary form must reproduce the above copyright notice,
- // this list of conditions and the following disclaimer in the documentation
- // and/or other materials provided with the distribution.
- // * Neither the name of Google Inc. nor the names of its contributors may be
- // used to endorse or promote products derived from this software without
- // specific prior written permission.
- //
- // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
- // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
- // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
- // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
- // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
- // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
- // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
- // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
- // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
- // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
- // POSSIBILITY OF SUCH DAMAGE.
- //
- // Author: moll.markus@arcor.de (Markus Moll)
- // sameeragarwal@google.com (Sameer Agarwal)
- #include "ceres/polynomial.h"
- #include <algorithm>
- #include <cmath>
- #include <cstddef>
- #include <limits>
- #include <vector>
- #include "ceres/function_sample.h"
- #include "ceres/test_util.h"
- #include "gtest/gtest.h"
- namespace ceres::internal {
- namespace {
- // For IEEE-754 doubles, machine precision is about 2e-16.
- const double kEpsilon = 1e-13;
- const double kEpsilonLoose = 1e-9;
- // Return the constant polynomial p(x) = 1.23.
- Vector ConstantPolynomial(double value) {
- Vector poly(1);
- poly(0) = value;
- return poly;
- }
- // Return the polynomial p(x) = poly(x) * (x - root).
- Vector AddRealRoot(const Vector& poly, double root) {
- Vector poly2(poly.size() + 1);
- poly2.setZero();
- poly2.head(poly.size()) += poly;
- poly2.tail(poly.size()) -= root * poly;
- return poly2;
- }
- // Return the polynomial
- // p(x) = poly(x) * (x - real - imag*i) * (x - real + imag*i).
- Vector AddComplexRootPair(const Vector& poly, double real, double imag) {
- Vector poly2(poly.size() + 2);
- poly2.setZero();
- // Multiply poly by x^2 - 2real + abs(real,imag)^2
- poly2.head(poly.size()) += poly;
- poly2.segment(1, poly.size()) -= 2 * real * poly;
- poly2.tail(poly.size()) += (real * real + imag * imag) * poly;
- return poly2;
- }
- // Sort the entries in a vector.
- // Needed because the roots are not returned in sorted order.
- Vector SortVector(const Vector& in) {
- Vector out(in);
- std::sort(out.data(), out.data() + out.size());
- return out;
- }
- // Run a test with the polynomial defined by the N real roots in roots_real.
- // If use_real is false, nullptr is passed as the real argument to
- // FindPolynomialRoots. If use_imaginary is false, nullptr is passed as the
- // imaginary argument to FindPolynomialRoots.
- template <int N>
- void RunPolynomialTestRealRoots(const double (&real_roots)[N],
- bool use_real,
- bool use_imaginary,
- double epsilon) {
- Vector real;
- Vector imaginary;
- Vector poly = ConstantPolynomial(1.23);
- for (int i = 0; i < N; ++i) {
- poly = AddRealRoot(poly, real_roots[i]);
- }
- Vector* const real_ptr = use_real ? &real : nullptr;
- Vector* const imaginary_ptr = use_imaginary ? &imaginary : nullptr;
- bool success = FindPolynomialRoots(poly, real_ptr, imaginary_ptr);
- EXPECT_EQ(success, true);
- if (use_real) {
- EXPECT_EQ(real.size(), N);
- real = SortVector(real);
- ExpectArraysClose(N, real.data(), real_roots, epsilon);
- }
- if (use_imaginary) {
- EXPECT_EQ(imaginary.size(), N);
- const Vector zeros = Vector::Zero(N);
- ExpectArraysClose(N, imaginary.data(), zeros.data(), epsilon);
- }
- }
- } // namespace
- TEST(Polynomial, InvalidPolynomialOfZeroLengthIsRejected) {
- // Vector poly(0) is an ambiguous constructor call, so
- // use the constructor with explicit column count.
- Vector poly(0, 1);
- Vector real;
- Vector imag;
- bool success = FindPolynomialRoots(poly, &real, &imag);
- EXPECT_EQ(success, false);
- }
- TEST(Polynomial, ConstantPolynomialReturnsNoRoots) {
- Vector poly = ConstantPolynomial(1.23);
- Vector real;
- Vector imag;
- bool success = FindPolynomialRoots(poly, &real, &imag);
- EXPECT_EQ(success, true);
- EXPECT_EQ(real.size(), 0);
- EXPECT_EQ(imag.size(), 0);
- }
- TEST(Polynomial, LinearPolynomialWithPositiveRootWorks) {
- const double roots[1] = {42.42};
- RunPolynomialTestRealRoots(roots, true, true, kEpsilon);
- }
- TEST(Polynomial, LinearPolynomialWithNegativeRootWorks) {
- const double roots[1] = {-42.42};
- RunPolynomialTestRealRoots(roots, true, true, kEpsilon);
- }
- TEST(Polynomial, QuadraticPolynomialWithPositiveRootsWorks) {
- const double roots[2] = {1.0, 42.42};
- RunPolynomialTestRealRoots(roots, true, true, kEpsilon);
- }
- TEST(Polynomial, QuadraticPolynomialWithOneNegativeRootWorks) {
- const double roots[2] = {-42.42, 1.0};
- RunPolynomialTestRealRoots(roots, true, true, kEpsilon);
- }
- TEST(Polynomial, QuadraticPolynomialWithTwoNegativeRootsWorks) {
- const double roots[2] = {-42.42, -1.0};
- RunPolynomialTestRealRoots(roots, true, true, kEpsilon);
- }
- TEST(Polynomial, QuadraticPolynomialWithCloseRootsWorks) {
- const double roots[2] = {42.42, 42.43};
- RunPolynomialTestRealRoots(roots, true, false, kEpsilonLoose);
- }
- TEST(Polynomial, QuadraticPolynomialWithComplexRootsWorks) {
- Vector real;
- Vector imag;
- Vector poly = ConstantPolynomial(1.23);
- poly = AddComplexRootPair(poly, 42.42, 4.2);
- bool success = FindPolynomialRoots(poly, &real, &imag);
- EXPECT_EQ(success, true);
- EXPECT_EQ(real.size(), 2);
- EXPECT_EQ(imag.size(), 2);
- ExpectClose(real(0), 42.42, kEpsilon);
- ExpectClose(real(1), 42.42, kEpsilon);
- ExpectClose(std::abs(imag(0)), 4.2, kEpsilon);
- ExpectClose(std::abs(imag(1)), 4.2, kEpsilon);
- ExpectClose(std::abs(imag(0) + imag(1)), 0.0, kEpsilon);
- }
- TEST(Polynomial, QuarticPolynomialWorks) {
- const double roots[4] = {1.23e-4, 1.23e-1, 1.23e+2, 1.23e+5};
- RunPolynomialTestRealRoots(roots, true, true, kEpsilon);
- }
- TEST(Polynomial, QuarticPolynomialWithTwoClustersOfCloseRootsWorks) {
- const double roots[4] = {1.23e-1, 2.46e-1, 1.23e+5, 2.46e+5};
- RunPolynomialTestRealRoots(roots, true, true, kEpsilonLoose);
- }
- TEST(Polynomial, QuarticPolynomialWithTwoZeroRootsWorks) {
- const double roots[4] = {-42.42, 0.0, 0.0, 42.42};
- RunPolynomialTestRealRoots(roots, true, true, 2 * kEpsilonLoose);
- }
- TEST(Polynomial, QuarticMonomialWorks) {
- const double roots[4] = {0.0, 0.0, 0.0, 0.0};
- RunPolynomialTestRealRoots(roots, true, true, kEpsilon);
- }
- TEST(Polynomial, NullPointerAsImaginaryPartWorks) {
- const double roots[4] = {1.23e-4, 1.23e-1, 1.23e+2, 1.23e+5};
- RunPolynomialTestRealRoots(roots, true, false, kEpsilon);
- }
- TEST(Polynomial, NullPointerAsRealPartWorks) {
- const double roots[4] = {1.23e-4, 1.23e-1, 1.23e+2, 1.23e+5};
- RunPolynomialTestRealRoots(roots, false, true, kEpsilon);
- }
- TEST(Polynomial, BothOutputArgumentsNullWorks) {
- const double roots[4] = {1.23e-4, 1.23e-1, 1.23e+2, 1.23e+5};
- RunPolynomialTestRealRoots(roots, false, false, kEpsilon);
- }
- TEST(Polynomial, DifferentiateConstantPolynomial) {
- // p(x) = 1;
- Vector polynomial(1);
- polynomial(0) = 1.0;
- const Vector derivative = DifferentiatePolynomial(polynomial);
- EXPECT_EQ(derivative.rows(), 1);
- EXPECT_EQ(derivative(0), 0);
- }
- TEST(Polynomial, DifferentiateQuadraticPolynomial) {
- // p(x) = x^2 + 2x + 3;
- Vector polynomial(3);
- polynomial(0) = 1.0;
- polynomial(1) = 2.0;
- polynomial(2) = 3.0;
- const Vector derivative = DifferentiatePolynomial(polynomial);
- EXPECT_EQ(derivative.rows(), 2);
- EXPECT_EQ(derivative(0), 2.0);
- EXPECT_EQ(derivative(1), 2.0);
- }
- TEST(Polynomial, MinimizeConstantPolynomial) {
- // p(x) = 1;
- Vector polynomial(1);
- polynomial(0) = 1.0;
- double optimal_x = 0.0;
- double optimal_value = 0.0;
- double min_x = 0.0;
- double max_x = 1.0;
- MinimizePolynomial(polynomial, min_x, max_x, &optimal_x, &optimal_value);
- EXPECT_EQ(optimal_value, 1.0);
- EXPECT_LE(optimal_x, max_x);
- EXPECT_GE(optimal_x, min_x);
- }
- TEST(Polynomial, MinimizeLinearPolynomial) {
- // p(x) = x - 2
- Vector polynomial(2);
- polynomial(0) = 1.0;
- polynomial(1) = 2.0;
- double optimal_x = 0.0;
- double optimal_value = 0.0;
- double min_x = 0.0;
- double max_x = 1.0;
- MinimizePolynomial(polynomial, min_x, max_x, &optimal_x, &optimal_value);
- EXPECT_EQ(optimal_x, 0.0);
- EXPECT_EQ(optimal_value, 2.0);
- }
- TEST(Polynomial, MinimizeQuadraticPolynomial) {
- // p(x) = x^2 - 3 x + 2
- // min_x = 3/2
- // min_value = -1/4;
- Vector polynomial(3);
- polynomial(0) = 1.0;
- polynomial(1) = -3.0;
- polynomial(2) = 2.0;
- double optimal_x = 0.0;
- double optimal_value = 0.0;
- double min_x = -2.0;
- double max_x = 2.0;
- MinimizePolynomial(polynomial, min_x, max_x, &optimal_x, &optimal_value);
- EXPECT_EQ(optimal_x, 3.0 / 2.0);
- EXPECT_EQ(optimal_value, -1.0 / 4.0);
- min_x = -2.0;
- max_x = 1.0;
- MinimizePolynomial(polynomial, min_x, max_x, &optimal_x, &optimal_value);
- EXPECT_EQ(optimal_x, 1.0);
- EXPECT_EQ(optimal_value, 0.0);
- min_x = 2.0;
- max_x = 3.0;
- MinimizePolynomial(polynomial, min_x, max_x, &optimal_x, &optimal_value);
- EXPECT_EQ(optimal_x, 2.0);
- EXPECT_EQ(optimal_value, 0.0);
- }
- TEST(Polymomial, ConstantInterpolatingPolynomial) {
- // p(x) = 1.0
- Vector true_polynomial(1);
- true_polynomial << 1.0;
- std::vector<FunctionSample> samples;
- FunctionSample sample;
- sample.x = 1.0;
- sample.value = 1.0;
- sample.value_is_valid = true;
- samples.push_back(sample);
- const Vector polynomial = FindInterpolatingPolynomial(samples);
- EXPECT_NEAR((true_polynomial - polynomial).norm(), 0.0, 1e-15);
- }
- TEST(Polynomial, LinearInterpolatingPolynomial) {
- // p(x) = 2x - 1
- Vector true_polynomial(2);
- true_polynomial << 2.0, -1.0;
- std::vector<FunctionSample> samples;
- FunctionSample sample;
- sample.x = 1.0;
- sample.value = 1.0;
- sample.value_is_valid = true;
- sample.gradient = 2.0;
- sample.gradient_is_valid = true;
- samples.push_back(sample);
- const Vector polynomial = FindInterpolatingPolynomial(samples);
- EXPECT_NEAR((true_polynomial - polynomial).norm(), 0.0, 1e-15);
- }
- TEST(Polynomial, QuadraticInterpolatingPolynomial) {
- // p(x) = 2x^2 + 3x + 2
- Vector true_polynomial(3);
- true_polynomial << 2.0, 3.0, 2.0;
- std::vector<FunctionSample> samples;
- {
- FunctionSample sample;
- sample.x = 1.0;
- sample.value = 7.0;
- sample.value_is_valid = true;
- sample.gradient = 7.0;
- sample.gradient_is_valid = true;
- samples.push_back(sample);
- }
- {
- FunctionSample sample;
- sample.x = -3.0;
- sample.value = 11.0;
- sample.value_is_valid = true;
- samples.push_back(sample);
- }
- Vector polynomial = FindInterpolatingPolynomial(samples);
- EXPECT_NEAR((true_polynomial - polynomial).norm(), 0.0, 1e-15);
- }
- TEST(Polynomial, DeficientCubicInterpolatingPolynomial) {
- // p(x) = 2x^2 + 3x + 2
- Vector true_polynomial(4);
- true_polynomial << 0.0, 2.0, 3.0, 2.0;
- std::vector<FunctionSample> samples;
- {
- FunctionSample sample;
- sample.x = 1.0;
- sample.value = 7.0;
- sample.value_is_valid = true;
- sample.gradient = 7.0;
- sample.gradient_is_valid = true;
- samples.push_back(sample);
- }
- {
- FunctionSample sample;
- sample.x = -3.0;
- sample.value = 11.0;
- sample.value_is_valid = true;
- sample.gradient = -9;
- sample.gradient_is_valid = true;
- samples.push_back(sample);
- }
- const Vector polynomial = FindInterpolatingPolynomial(samples);
- EXPECT_NEAR((true_polynomial - polynomial).norm(), 0.0, 1e-14);
- }
- TEST(Polynomial, CubicInterpolatingPolynomialFromValues) {
- // p(x) = x^3 + 2x^2 + 3x + 2
- Vector true_polynomial(4);
- true_polynomial << 1.0, 2.0, 3.0, 2.0;
- std::vector<FunctionSample> samples;
- {
- FunctionSample sample;
- sample.x = 1.0;
- sample.value = EvaluatePolynomial(true_polynomial, sample.x);
- sample.value_is_valid = true;
- samples.push_back(sample);
- }
- {
- FunctionSample sample;
- sample.x = -3.0;
- sample.value = EvaluatePolynomial(true_polynomial, sample.x);
- sample.value_is_valid = true;
- samples.push_back(sample);
- }
- {
- FunctionSample sample;
- sample.x = 2.0;
- sample.value = EvaluatePolynomial(true_polynomial, sample.x);
- sample.value_is_valid = true;
- samples.push_back(sample);
- }
- {
- FunctionSample sample;
- sample.x = 0.0;
- sample.value = EvaluatePolynomial(true_polynomial, sample.x);
- sample.value_is_valid = true;
- samples.push_back(sample);
- }
- const Vector polynomial = FindInterpolatingPolynomial(samples);
- EXPECT_NEAR((true_polynomial - polynomial).norm(), 0.0, 1e-14);
- }
- TEST(Polynomial, CubicInterpolatingPolynomialFromValuesAndOneGradient) {
- // p(x) = x^3 + 2x^2 + 3x + 2
- Vector true_polynomial(4);
- true_polynomial << 1.0, 2.0, 3.0, 2.0;
- Vector true_gradient_polynomial = DifferentiatePolynomial(true_polynomial);
- std::vector<FunctionSample> samples;
- {
- FunctionSample sample;
- sample.x = 1.0;
- sample.value = EvaluatePolynomial(true_polynomial, sample.x);
- sample.value_is_valid = true;
- samples.push_back(sample);
- }
- {
- FunctionSample sample;
- sample.x = -3.0;
- sample.value = EvaluatePolynomial(true_polynomial, sample.x);
- sample.value_is_valid = true;
- samples.push_back(sample);
- }
- {
- FunctionSample sample;
- sample.x = 2.0;
- sample.value = EvaluatePolynomial(true_polynomial, sample.x);
- sample.value_is_valid = true;
- sample.gradient = EvaluatePolynomial(true_gradient_polynomial, sample.x);
- sample.gradient_is_valid = true;
- samples.push_back(sample);
- }
- const Vector polynomial = FindInterpolatingPolynomial(samples);
- EXPECT_NEAR((true_polynomial - polynomial).norm(), 0.0, 1e-14);
- }
- TEST(Polynomial, CubicInterpolatingPolynomialFromValuesAndGradients) {
- // p(x) = x^3 + 2x^2 + 3x + 2
- Vector true_polynomial(4);
- true_polynomial << 1.0, 2.0, 3.0, 2.0;
- Vector true_gradient_polynomial = DifferentiatePolynomial(true_polynomial);
- std::vector<FunctionSample> samples;
- {
- FunctionSample sample;
- sample.x = -3.0;
- sample.value = EvaluatePolynomial(true_polynomial, sample.x);
- sample.value_is_valid = true;
- sample.gradient = EvaluatePolynomial(true_gradient_polynomial, sample.x);
- sample.gradient_is_valid = true;
- samples.push_back(sample);
- }
- {
- FunctionSample sample;
- sample.x = 2.0;
- sample.value = EvaluatePolynomial(true_polynomial, sample.x);
- sample.value_is_valid = true;
- sample.gradient = EvaluatePolynomial(true_gradient_polynomial, sample.x);
- sample.gradient_is_valid = true;
- samples.push_back(sample);
- }
- const Vector polynomial = FindInterpolatingPolynomial(samples);
- EXPECT_NEAR((true_polynomial - polynomial).norm(), 0.0, 1e-14);
- }
- } // namespace ceres::internal
|