123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257 |
- // Ceres Solver - A fast non-linear least squares minimizer
- // Copyright 2022 Google Inc. All rights reserved.
- // http://ceres-solver.org/
- //
- // Redistribution and use in source and binary forms, with or without
- // modification, are permitted provided that the following conditions are met:
- //
- // * Redistributions of source code must retain the above copyright notice,
- // this list of conditions and the following disclaimer.
- // * Redistributions in binary form must reproduce the above copyright notice,
- // this list of conditions and the following disclaimer in the documentation
- // and/or other materials provided with the distribution.
- // * Neither the name of Google Inc. nor the names of its contributors may be
- // used to endorse or promote products derived from this software without
- // specific prior written permission.
- //
- // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
- // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
- // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
- // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
- // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
- // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
- // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
- // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
- // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
- // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
- // POSSIBILITY OF SUCH DAMAGE.
- //
- // Author: sameeragarwal@google.com (Sameer Agarwal)
- // tbennun@gmail.com (Tal Ben-Nun)
- #include "ceres/numeric_diff_test_utils.h"
- #include <algorithm>
- #include <cmath>
- #include "ceres/cost_function.h"
- #include "ceres/test_util.h"
- #include "ceres/types.h"
- #include "gtest/gtest.h"
- namespace ceres::internal {
- bool EasyFunctor::operator()(const double* x1,
- const double* x2,
- double* residuals) const {
- residuals[0] = residuals[1] = residuals[2] = 0;
- for (int i = 0; i < 5; ++i) {
- residuals[0] += x1[i] * x2[i];
- residuals[2] += x2[i] * x2[i];
- }
- residuals[1] = residuals[0] * residuals[0];
- return true;
- }
- void EasyFunctor::ExpectCostFunctionEvaluationIsNearlyCorrect(
- const CostFunction& cost_function, NumericDiffMethodType method) const {
- // The x1[0] is made deliberately small to test the performance near zero.
- // clang-format off
- double x1[] = { 1e-64, 2.0, 3.0, 4.0, 5.0 };
- double x2[] = { 9.0, 9.0, 5.0, 5.0, 1.0 };
- double *parameters[] = { &x1[0], &x2[0] };
- // clang-format on
- double dydx1[15]; // 3 x 5, row major.
- double dydx2[15]; // 3 x 5, row major.
- double* jacobians[2] = {&dydx1[0], &dydx2[0]};
- double residuals[3] = {-1e-100, -2e-100, -3e-100};
- ASSERT_TRUE(
- cost_function.Evaluate(¶meters[0], &residuals[0], &jacobians[0]));
- double expected_residuals[3];
- EasyFunctor functor;
- functor(x1, x2, expected_residuals);
- EXPECT_EQ(expected_residuals[0], residuals[0]);
- EXPECT_EQ(expected_residuals[1], residuals[1]);
- EXPECT_EQ(expected_residuals[2], residuals[2]);
- double tolerance = 0.0;
- switch (method) {
- default:
- case CENTRAL:
- tolerance = 3e-9;
- break;
- case FORWARD:
- tolerance = 2e-5;
- break;
- case RIDDERS:
- tolerance = 1e-13;
- break;
- }
- for (int i = 0; i < 5; ++i) {
- // clang-format off
- ExpectClose(x2[i], dydx1[5 * 0 + i], tolerance); // y1
- ExpectClose(x1[i], dydx2[5 * 0 + i], tolerance);
- ExpectClose(2 * x2[i] * residuals[0], dydx1[5 * 1 + i], tolerance); // y2
- ExpectClose(2 * x1[i] * residuals[0], dydx2[5 * 1 + i], tolerance);
- ExpectClose(0.0, dydx1[5 * 2 + i], tolerance); // y3
- ExpectClose(2 * x2[i], dydx2[5 * 2 + i], tolerance);
- // clang-format on
- }
- }
- bool TranscendentalFunctor::operator()(const double* x1,
- const double* x2,
- double* residuals) const {
- double x1x2 = 0;
- for (int i = 0; i < 5; ++i) {
- x1x2 += x1[i] * x2[i];
- }
- residuals[0] = sin(x1x2);
- residuals[1] = exp(-x1x2 / 10);
- return true;
- }
- void TranscendentalFunctor::ExpectCostFunctionEvaluationIsNearlyCorrect(
- const CostFunction& cost_function, NumericDiffMethodType method) const {
- struct TestParameterBlocks {
- double x1[5];
- double x2[5];
- };
- // clang-format off
- std::vector<TestParameterBlocks> kTests = {
- { { 1.0, 2.0, 3.0, 4.0, 5.0 }, // No zeros.
- { 9.0, 9.0, 5.0, 5.0, 1.0 },
- },
- { { 0.0, 2.0, 3.0, 0.0, 5.0 }, // Some zeros x1.
- { 9.0, 9.0, 5.0, 5.0, 1.0 },
- },
- { { 1.0, 2.0, 3.0, 1.0, 5.0 }, // Some zeros x2.
- { 0.0, 9.0, 0.0, 5.0, 0.0 },
- },
- { { 0.0, 0.0, 0.0, 0.0, 0.0 }, // All zeros x1.
- { 9.0, 9.0, 5.0, 5.0, 1.0 },
- },
- { { 1.0, 2.0, 3.0, 4.0, 5.0 }, // All zeros x2.
- { 0.0, 0.0, 0.0, 0.0, 0.0 },
- },
- { { 0.0, 0.0, 0.0, 0.0, 0.0 }, // All zeros.
- { 0.0, 0.0, 0.0, 0.0, 0.0 },
- },
- };
- // clang-format on
- for (auto& test : kTests) {
- double* x1 = &(test.x1[0]);
- double* x2 = &(test.x2[0]);
- double* parameters[] = {x1, x2};
- double dydx1[10];
- double dydx2[10];
- double* jacobians[2] = {&dydx1[0], &dydx2[0]};
- double residuals[2];
- ASSERT_TRUE(
- cost_function.Evaluate(¶meters[0], &residuals[0], &jacobians[0]));
- double x1x2 = 0;
- for (int i = 0; i < 5; ++i) {
- x1x2 += x1[i] * x2[i];
- }
- double tolerance = 0.0;
- switch (method) {
- default:
- case CENTRAL:
- tolerance = 2e-7;
- break;
- case FORWARD:
- tolerance = 2e-5;
- break;
- case RIDDERS:
- tolerance = 3e-12;
- break;
- }
- for (int i = 0; i < 5; ++i) {
- // clang-format off
- ExpectClose( x2[i] * cos(x1x2), dydx1[5 * 0 + i], tolerance);
- ExpectClose( x1[i] * cos(x1x2), dydx2[5 * 0 + i], tolerance);
- ExpectClose(-x2[i] * exp(-x1x2 / 10.) / 10., dydx1[5 * 1 + i], tolerance);
- ExpectClose(-x1[i] * exp(-x1x2 / 10.) / 10., dydx2[5 * 1 + i], tolerance);
- // clang-format on
- }
- }
- }
- bool ExponentialFunctor::operator()(const double* x1, double* residuals) const {
- residuals[0] = exp(x1[0]);
- return true;
- }
- void ExponentialFunctor::ExpectCostFunctionEvaluationIsNearlyCorrect(
- const CostFunction& cost_function) const {
- // Evaluating the functor at specific points for testing.
- std::vector<double> kTests = {1.0, 2.0, 3.0, 4.0, 5.0};
- // Minimal tolerance w.r.t. the cost function and the tests.
- const double kTolerance = 2e-14;
- for (double& test : kTests) {
- double* parameters[] = {&test};
- double dydx;
- double* jacobians[1] = {&dydx};
- double residual;
- ASSERT_TRUE(
- cost_function.Evaluate(¶meters[0], &residual, &jacobians[0]));
- double expected_result = exp(test);
- // Expect residual to be close to exp(x).
- ExpectClose(residual, expected_result, kTolerance);
- // Check evaluated differences. dydx should also be close to exp(x).
- ExpectClose(dydx, expected_result, kTolerance);
- }
- }
- bool RandomizedFunctor::operator()(const double* x1, double* residuals) const {
- double random_value = uniform_distribution_(*prng_);
- residuals[0] = x1[0] * x1[0] + random_value;
- return true;
- }
- void RandomizedFunctor::ExpectCostFunctionEvaluationIsNearlyCorrect(
- const CostFunction& cost_function) const {
- std::vector<double> kTests = {0.0, 1.0, 3.0, 4.0, 50.0};
- const double kTolerance = 2e-4;
- for (double& test : kTests) {
- double* parameters[] = {&test};
- double dydx;
- double* jacobians[1] = {&dydx};
- double residual;
- ASSERT_TRUE(
- cost_function.Evaluate(¶meters[0], &residual, &jacobians[0]));
- // Expect residual to be close to x^2 w.r.t. noise factor.
- ExpectClose(residual, test * test, noise_factor_);
- // Check evaluated differences. (dy/dx = ~2x)
- ExpectClose(dydx, 2 * test, kTolerance);
- }
- }
- } // namespace ceres::internal
|