123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442 |
- // Ceres Solver - A fast non-linear least squares minimizer
- // Copyright 2022 Google Inc. All rights reserved.
- // http://ceres-solver.org/
- //
- // Redistribution and use in source and binary forms, with or without
- // modification, are permitted provided that the following conditions are met:
- //
- // * Redistributions of source code must retain the above copyright notice,
- // this list of conditions and the following disclaimer.
- // * Redistributions in binary form must reproduce the above copyright notice,
- // this list of conditions and the following disclaimer in the documentation
- // and/or other materials provided with the distribution.
- // * Neither the name of Google Inc. nor the names of its contributors may be
- // used to endorse or promote products derived from this software without
- // specific prior written permission.
- //
- // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
- // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
- // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
- // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
- // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
- // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
- // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
- // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
- // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
- // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
- // POSSIBILITY OF SUCH DAMAGE.
- //
- // Author: keir@google.com (Keir Mierle)
- // tbennun@gmail.com (Tal Ben-Nun)
- #include "ceres/numeric_diff_cost_function.h"
- #include <algorithm>
- #include <array>
- #include <cmath>
- #include <memory>
- #include <random>
- #include <string>
- #include <vector>
- #include "ceres/array_utils.h"
- #include "ceres/numeric_diff_test_utils.h"
- #include "ceres/test_util.h"
- #include "ceres/types.h"
- #include "glog/logging.h"
- #include "gtest/gtest.h"
- namespace ceres {
- namespace internal {
- TEST(NumericDiffCostFunction, EasyCaseFunctorCentralDifferences) {
- auto cost_function =
- std::make_unique<NumericDiffCostFunction<EasyFunctor,
- CENTRAL,
- 3, // number of residuals
- 5, // size of x1
- 5 // size of x2
- >>(new EasyFunctor);
- EasyFunctor functor;
- functor.ExpectCostFunctionEvaluationIsNearlyCorrect(*cost_function, CENTRAL);
- }
- TEST(NumericDiffCostFunction, EasyCaseFunctorForwardDifferences) {
- auto cost_function =
- std::make_unique<NumericDiffCostFunction<EasyFunctor,
- FORWARD,
- 3, // number of residuals
- 5, // size of x1
- 5 // size of x2
- >>(new EasyFunctor);
- EasyFunctor functor;
- functor.ExpectCostFunctionEvaluationIsNearlyCorrect(*cost_function, FORWARD);
- }
- TEST(NumericDiffCostFunction, EasyCaseFunctorRidders) {
- auto cost_function =
- std::make_unique<NumericDiffCostFunction<EasyFunctor,
- RIDDERS,
- 3, // number of residuals
- 5, // size of x1
- 5 // size of x2
- >>(new EasyFunctor);
- EasyFunctor functor;
- functor.ExpectCostFunctionEvaluationIsNearlyCorrect(*cost_function, RIDDERS);
- }
- TEST(NumericDiffCostFunction, EasyCaseCostFunctionCentralDifferences) {
- auto cost_function =
- std::make_unique<NumericDiffCostFunction<EasyCostFunction,
- CENTRAL,
- 3, // number of residuals
- 5, // size of x1
- 5 // size of x2
- >>(new EasyCostFunction,
- TAKE_OWNERSHIP);
- EasyFunctor functor;
- functor.ExpectCostFunctionEvaluationIsNearlyCorrect(*cost_function, CENTRAL);
- }
- TEST(NumericDiffCostFunction, EasyCaseCostFunctionForwardDifferences) {
- auto cost_function =
- std::make_unique<NumericDiffCostFunction<EasyCostFunction,
- FORWARD,
- 3, // number of residuals
- 5, // size of x1
- 5 // size of x2
- >>(new EasyCostFunction,
- TAKE_OWNERSHIP);
- EasyFunctor functor;
- functor.ExpectCostFunctionEvaluationIsNearlyCorrect(*cost_function, FORWARD);
- }
- TEST(NumericDiffCostFunction, EasyCaseCostFunctionRidders) {
- auto cost_function =
- std::make_unique<NumericDiffCostFunction<EasyCostFunction,
- RIDDERS,
- 3, // number of residuals
- 5, // size of x1
- 5 // size of x2
- >>(new EasyCostFunction,
- TAKE_OWNERSHIP);
- EasyFunctor functor;
- functor.ExpectCostFunctionEvaluationIsNearlyCorrect(*cost_function, RIDDERS);
- }
- TEST(NumericDiffCostFunction, TranscendentalCaseFunctorCentralDifferences) {
- auto cost_function =
- std::make_unique<NumericDiffCostFunction<TranscendentalFunctor,
- CENTRAL,
- 2, // number of residuals
- 5, // size of x1
- 5 // size of x2
- >>(new TranscendentalFunctor);
- TranscendentalFunctor functor;
- functor.ExpectCostFunctionEvaluationIsNearlyCorrect(*cost_function, CENTRAL);
- }
- TEST(NumericDiffCostFunction, TranscendentalCaseFunctorForwardDifferences) {
- auto cost_function =
- std::make_unique<NumericDiffCostFunction<TranscendentalFunctor,
- FORWARD,
- 2, // number of residuals
- 5, // size of x1
- 5 // size of x2
- >>(new TranscendentalFunctor);
- TranscendentalFunctor functor;
- functor.ExpectCostFunctionEvaluationIsNearlyCorrect(*cost_function, FORWARD);
- }
- TEST(NumericDiffCostFunction, TranscendentalCaseFunctorRidders) {
- NumericDiffOptions options;
- // Using a smaller initial step size to overcome oscillatory function
- // behavior.
- options.ridders_relative_initial_step_size = 1e-3;
- auto cost_function =
- std::make_unique<NumericDiffCostFunction<TranscendentalFunctor,
- RIDDERS,
- 2, // number of residuals
- 5, // size of x1
- 5 // size of x2
- >>(
- new TranscendentalFunctor, TAKE_OWNERSHIP, 2, options);
- TranscendentalFunctor functor;
- functor.ExpectCostFunctionEvaluationIsNearlyCorrect(*cost_function, RIDDERS);
- }
- TEST(NumericDiffCostFunction,
- TranscendentalCaseCostFunctionCentralDifferences) {
- auto cost_function =
- std::make_unique<NumericDiffCostFunction<TranscendentalCostFunction,
- CENTRAL,
- 2, // number of residuals
- 5, // size of x1
- 5 // size of x2
- >>(
- new TranscendentalCostFunction, TAKE_OWNERSHIP);
- TranscendentalFunctor functor;
- functor.ExpectCostFunctionEvaluationIsNearlyCorrect(*cost_function, CENTRAL);
- }
- TEST(NumericDiffCostFunction,
- TranscendentalCaseCostFunctionForwardDifferences) {
- auto cost_function =
- std::make_unique<NumericDiffCostFunction<TranscendentalCostFunction,
- FORWARD,
- 2, // number of residuals
- 5, // size of x1
- 5 // size of x2
- >>(
- new TranscendentalCostFunction, TAKE_OWNERSHIP);
- TranscendentalFunctor functor;
- functor.ExpectCostFunctionEvaluationIsNearlyCorrect(*cost_function, FORWARD);
- }
- TEST(NumericDiffCostFunction, TranscendentalCaseCostFunctionRidders) {
- NumericDiffOptions options;
- // Using a smaller initial step size to overcome oscillatory function
- // behavior.
- options.ridders_relative_initial_step_size = 1e-3;
- auto cost_function =
- std::make_unique<NumericDiffCostFunction<TranscendentalCostFunction,
- RIDDERS,
- 2, // number of residuals
- 5, // size of x1
- 5 // size of x2
- >>(
- new TranscendentalCostFunction, TAKE_OWNERSHIP, 2, options);
- TranscendentalFunctor functor;
- functor.ExpectCostFunctionEvaluationIsNearlyCorrect(*cost_function, RIDDERS);
- }
- template <int num_rows, int num_cols>
- class SizeTestingCostFunction : public SizedCostFunction<num_rows, num_cols> {
- public:
- bool Evaluate(double const* const* parameters,
- double* residuals,
- double** jacobians) const final {
- return true;
- }
- };
- // As described in
- // http://forum.kde.org/viewtopic.php?f=74&t=98536#p210774
- // Eigen3 has restrictions on the Row/Column major storage of vectors,
- // depending on their dimensions. This test ensures that the correct
- // templates are instantiated for various shapes of the Jacobian
- // matrix.
- TEST(NumericDiffCostFunction, EigenRowMajorColMajorTest) {
- std::unique_ptr<CostFunction> cost_function = std::make_unique<
- NumericDiffCostFunction<SizeTestingCostFunction<1, 1>, CENTRAL, 1, 1>>(
- new SizeTestingCostFunction<1, 1>, ceres::TAKE_OWNERSHIP);
- cost_function = std::make_unique<
- NumericDiffCostFunction<SizeTestingCostFunction<2, 1>, CENTRAL, 2, 1>>(
- new SizeTestingCostFunction<2, 1>, ceres::TAKE_OWNERSHIP);
- cost_function = std::make_unique<
- NumericDiffCostFunction<SizeTestingCostFunction<1, 2>, CENTRAL, 1, 2>>(
- new SizeTestingCostFunction<1, 2>, ceres::TAKE_OWNERSHIP);
- cost_function = std::make_unique<
- NumericDiffCostFunction<SizeTestingCostFunction<2, 2>, CENTRAL, 2, 2>>(
- new SizeTestingCostFunction<2, 2>, ceres::TAKE_OWNERSHIP);
- cost_function = std::make_unique<
- NumericDiffCostFunction<EasyFunctor, CENTRAL, ceres::DYNAMIC, 1, 1>>(
- new EasyFunctor, TAKE_OWNERSHIP, 1);
- cost_function = std::make_unique<
- NumericDiffCostFunction<EasyFunctor, CENTRAL, ceres::DYNAMIC, 1, 1>>(
- new EasyFunctor, TAKE_OWNERSHIP, 2);
- cost_function = std::make_unique<
- NumericDiffCostFunction<EasyFunctor, CENTRAL, ceres::DYNAMIC, 1, 2>>(
- new EasyFunctor, TAKE_OWNERSHIP, 1);
- cost_function = std::make_unique<
- NumericDiffCostFunction<EasyFunctor, CENTRAL, ceres::DYNAMIC, 1, 2>>(
- new EasyFunctor, TAKE_OWNERSHIP, 2);
- cost_function = std::make_unique<
- NumericDiffCostFunction<EasyFunctor, CENTRAL, ceres::DYNAMIC, 2, 1>>(
- new EasyFunctor, TAKE_OWNERSHIP, 1);
- cost_function = std::make_unique<
- NumericDiffCostFunction<EasyFunctor, CENTRAL, ceres::DYNAMIC, 2, 1>>(
- new EasyFunctor, TAKE_OWNERSHIP, 2);
- }
- TEST(NumericDiffCostFunction,
- EasyCaseFunctorCentralDifferencesAndDynamicNumResiduals) {
- auto cost_function =
- std::make_unique<NumericDiffCostFunction<EasyFunctor,
- CENTRAL,
- ceres::DYNAMIC,
- 5, // size of x1
- 5 // size of x2
- >>(
- new EasyFunctor, TAKE_OWNERSHIP, 3);
- EasyFunctor functor;
- functor.ExpectCostFunctionEvaluationIsNearlyCorrect(*cost_function, CENTRAL);
- }
- TEST(NumericDiffCostFunction, ExponentialFunctorRidders) {
- auto cost_function =
- std::make_unique<NumericDiffCostFunction<ExponentialFunctor,
- RIDDERS,
- 1, // number of residuals
- 1 // size of x1
- >>(new ExponentialFunctor);
- ExponentialFunctor functor;
- functor.ExpectCostFunctionEvaluationIsNearlyCorrect(*cost_function);
- }
- TEST(NumericDiffCostFunction, ExponentialCostFunctionRidders) {
- auto cost_function =
- std::make_unique<NumericDiffCostFunction<ExponentialCostFunction,
- RIDDERS,
- 1, // number of residuals
- 1 // size of x1
- >>(new ExponentialCostFunction);
- ExponentialFunctor functor;
- functor.ExpectCostFunctionEvaluationIsNearlyCorrect(*cost_function);
- }
- TEST(NumericDiffCostFunction, RandomizedFunctorRidders) {
- std::mt19937 prng;
- NumericDiffOptions options;
- // Larger initial step size is chosen to produce robust results in the
- // presence of random noise.
- options.ridders_relative_initial_step_size = 10.0;
- auto cost_function =
- std::make_unique<NumericDiffCostFunction<RandomizedFunctor,
- RIDDERS,
- 1, // number of residuals
- 1 // size of x1
- >>(
- new RandomizedFunctor(kNoiseFactor, prng),
- TAKE_OWNERSHIP,
- 1,
- options);
- RandomizedFunctor functor(kNoiseFactor, prng);
- functor.ExpectCostFunctionEvaluationIsNearlyCorrect(*cost_function);
- }
- TEST(NumericDiffCostFunction, RandomizedCostFunctionRidders) {
- std::mt19937 prng;
- NumericDiffOptions options;
- // Larger initial step size is chosen to produce robust results in the
- // presence of random noise.
- options.ridders_relative_initial_step_size = 10.0;
- auto cost_function =
- std::make_unique<NumericDiffCostFunction<RandomizedCostFunction,
- RIDDERS,
- 1, // number of residuals
- 1 // size of x1
- >>(
- new RandomizedCostFunction(kNoiseFactor, prng),
- TAKE_OWNERSHIP,
- 1,
- options);
- RandomizedFunctor functor(kNoiseFactor, prng);
- functor.ExpectCostFunctionEvaluationIsNearlyCorrect(*cost_function);
- }
- struct OnlyFillsOneOutputFunctor {
- bool operator()(const double* x, double* output) const {
- output[0] = x[0];
- return true;
- }
- };
- TEST(NumericDiffCostFunction, PartiallyFilledResidualShouldFailEvaluation) {
- double parameter = 1.0;
- double jacobian[2];
- double residuals[2];
- double* parameters[] = {¶meter};
- double* jacobians[] = {jacobian};
- auto cost_function = std::make_unique<
- NumericDiffCostFunction<OnlyFillsOneOutputFunctor, CENTRAL, 2, 1>>(
- new OnlyFillsOneOutputFunctor);
- InvalidateArray(2, jacobian);
- InvalidateArray(2, residuals);
- EXPECT_TRUE(cost_function->Evaluate(parameters, residuals, jacobians));
- EXPECT_FALSE(IsArrayValid(2, residuals));
- InvalidateArray(2, residuals);
- EXPECT_TRUE(cost_function->Evaluate(parameters, residuals, nullptr));
- // We are only testing residuals here, because the Jacobians are
- // computed using finite differencing from the residuals, so unless
- // we introduce a validation step after every evaluation of
- // residuals inside NumericDiffCostFunction, there is no way of
- // ensuring that the Jacobian array is invalid.
- EXPECT_FALSE(IsArrayValid(2, residuals));
- }
- TEST(NumericDiffCostFunction, ParameterBlockConstant) {
- constexpr int kNumResiduals = 3;
- constexpr int kX1 = 5;
- constexpr int kX2 = 5;
- auto cost_function = std::make_unique<
- NumericDiffCostFunction<EasyFunctor, CENTRAL, kNumResiduals, kX1, kX2>>(
- new EasyFunctor);
- // Prepare the parameters and residuals.
- std::array<double, kX1> x1{1e-64, 2.0, 3.0, 4.0, 5.0};
- std::array<double, kX2> x2{9.0, 9.0, 5.0, 5.0, 1.0};
- std::array<double*, 2> parameter_blocks{x1.data(), x2.data()};
- std::vector<double> residuals(kNumResiduals, -100000);
- // Evaluate the full jacobian.
- std::vector<std::vector<double>> jacobian_full_vect(2);
- jacobian_full_vect[0].resize(kNumResiduals * kX1, -100000);
- jacobian_full_vect[1].resize(kNumResiduals * kX2, -100000);
- {
- std::array<double*, 2> jacobian{jacobian_full_vect[0].data(),
- jacobian_full_vect[1].data()};
- ASSERT_TRUE(cost_function->Evaluate(
- parameter_blocks.data(), residuals.data(), jacobian.data()));
- }
- // Evaluate and check jacobian when first parameter block is constant.
- {
- std::vector<double> jacobian_vect(kNumResiduals * kX2, -100000);
- std::array<double*, 2> jacobian{nullptr, jacobian_vect.data()};
- ASSERT_TRUE(cost_function->Evaluate(
- parameter_blocks.data(), residuals.data(), jacobian.data()));
- for (int i = 0; i < kNumResiduals * kX2; ++i) {
- EXPECT_DOUBLE_EQ(jacobian_full_vect[1][i], jacobian_vect[i]);
- }
- }
- // Evaluate and check jacobian when second parameter block is constant.
- {
- std::vector<double> jacobian_vect(kNumResiduals * kX1, -100000);
- std::array<double*, 2> jacobian{jacobian_vect.data(), nullptr};
- ASSERT_TRUE(cost_function->Evaluate(
- parameter_blocks.data(), residuals.data(), jacobian.data()));
- for (int i = 0; i < kNumResiduals * kX1; ++i) {
- EXPECT_DOUBLE_EQ(jacobian_full_vect[0][i], jacobian_vect[i]);
- }
- }
- }
- } // namespace internal
- } // namespace ceres
|