123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287 |
- // Ceres Solver - A fast non-linear least squares minimizer
- // Copyright 2015 Google Inc. All rights reserved.
- // http://ceres-solver.org/
- //
- // Redistribution and use in source and binary forms, with or without
- // modification, are permitted provided that the following conditions are met:
- //
- // * Redistributions of source code must retain the above copyright notice,
- // this list of conditions and the following disclaimer.
- // * Redistributions in binary form must reproduce the above copyright notice,
- // this list of conditions and the following disclaimer in the documentation
- // and/or other materials provided with the distribution.
- // * Neither the name of Google Inc. nor the names of its contributors may be
- // used to endorse or promote products derived from this software without
- // specific prior written permission.
- //
- // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
- // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
- // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
- // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
- // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
- // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
- // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
- // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
- // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
- // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
- // POSSIBILITY OF SUCH DAMAGE.
- //
- // Author: sameeragarwal@google.com (Sameer Agarwal)
- #include "ceres/loss_function.h"
- #include <cstddef>
- #include "glog/logging.h"
- #include "gtest/gtest.h"
- namespace ceres {
- namespace internal {
- namespace {
- // Helper function for testing a LossFunction callback.
- //
- // Compares the values of rho'(s) and rho''(s) computed by the
- // callback with estimates obtained by symmetric finite differencing
- // of rho(s).
- void AssertLossFunctionIsValid(const LossFunction& loss, double s) {
- CHECK_GT(s, 0);
- // Evaluate rho(s), rho'(s) and rho''(s).
- double rho[3];
- loss.Evaluate(s, rho);
- // Use symmetric finite differencing to estimate rho'(s) and
- // rho''(s).
- const double kH = 1e-4;
- // Values at s + kH.
- double fwd[3];
- // Values at s - kH.
- double bwd[3];
- loss.Evaluate(s + kH, fwd);
- loss.Evaluate(s - kH, bwd);
- // First derivative.
- const double fd_1 = (fwd[0] - bwd[0]) / (2 * kH);
- ASSERT_NEAR(fd_1, rho[1], 1e-6);
- // Second derivative.
- const double fd_2 = (fwd[0] - 2 * rho[0] + bwd[0]) / (kH * kH);
- ASSERT_NEAR(fd_2, rho[2], 1e-6);
- }
- } // namespace
- // Try two values of the scaling a = 0.7 and 1.3
- // (where scaling makes sense) and of the squared norm
- // s = 0.357 and 1.792
- //
- // Note that for the Huber loss the test exercises both code paths
- // (i.e. both small and large values of s).
- TEST(LossFunction, TrivialLoss) {
- AssertLossFunctionIsValid(TrivialLoss(), 0.357);
- AssertLossFunctionIsValid(TrivialLoss(), 1.792);
- // Check that at s = 0: rho = [0, 1, 0].
- double rho[3];
- TrivialLoss().Evaluate(0.0, rho);
- ASSERT_NEAR(rho[0], 0.0, 1e-6);
- ASSERT_NEAR(rho[1], 1.0, 1e-6);
- ASSERT_NEAR(rho[2], 0.0, 1e-6);
- }
- TEST(LossFunction, HuberLoss) {
- AssertLossFunctionIsValid(HuberLoss(0.7), 0.357);
- AssertLossFunctionIsValid(HuberLoss(0.7), 1.792);
- AssertLossFunctionIsValid(HuberLoss(1.3), 0.357);
- AssertLossFunctionIsValid(HuberLoss(1.3), 1.792);
- // Check that at s = 0: rho = [0, 1, 0].
- double rho[3];
- HuberLoss(0.7).Evaluate(0.0, rho);
- ASSERT_NEAR(rho[0], 0.0, 1e-6);
- ASSERT_NEAR(rho[1], 1.0, 1e-6);
- ASSERT_NEAR(rho[2], 0.0, 1e-6);
- }
- TEST(LossFunction, SoftLOneLoss) {
- AssertLossFunctionIsValid(SoftLOneLoss(0.7), 0.357);
- AssertLossFunctionIsValid(SoftLOneLoss(0.7), 1.792);
- AssertLossFunctionIsValid(SoftLOneLoss(1.3), 0.357);
- AssertLossFunctionIsValid(SoftLOneLoss(1.3), 1.792);
- // Check that at s = 0: rho = [0, 1, -1 / (2 * a^2)].
- double rho[3];
- SoftLOneLoss(0.7).Evaluate(0.0, rho);
- ASSERT_NEAR(rho[0], 0.0, 1e-6);
- ASSERT_NEAR(rho[1], 1.0, 1e-6);
- ASSERT_NEAR(rho[2], -0.5 / (0.7 * 0.7), 1e-6);
- }
- TEST(LossFunction, CauchyLoss) {
- AssertLossFunctionIsValid(CauchyLoss(0.7), 0.357);
- AssertLossFunctionIsValid(CauchyLoss(0.7), 1.792);
- AssertLossFunctionIsValid(CauchyLoss(1.3), 0.357);
- AssertLossFunctionIsValid(CauchyLoss(1.3), 1.792);
- // Check that at s = 0: rho = [0, 1, -1 / a^2].
- double rho[3];
- CauchyLoss(0.7).Evaluate(0.0, rho);
- ASSERT_NEAR(rho[0], 0.0, 1e-6);
- ASSERT_NEAR(rho[1], 1.0, 1e-6);
- ASSERT_NEAR(rho[2], -1.0 / (0.7 * 0.7), 1e-6);
- }
- TEST(LossFunction, ArctanLoss) {
- AssertLossFunctionIsValid(ArctanLoss(0.7), 0.357);
- AssertLossFunctionIsValid(ArctanLoss(0.7), 1.792);
- AssertLossFunctionIsValid(ArctanLoss(1.3), 0.357);
- AssertLossFunctionIsValid(ArctanLoss(1.3), 1.792);
- // Check that at s = 0: rho = [0, 1, 0].
- double rho[3];
- ArctanLoss(0.7).Evaluate(0.0, rho);
- ASSERT_NEAR(rho[0], 0.0, 1e-6);
- ASSERT_NEAR(rho[1], 1.0, 1e-6);
- ASSERT_NEAR(rho[2], 0.0, 1e-6);
- }
- TEST(LossFunction, TolerantLoss) {
- AssertLossFunctionIsValid(TolerantLoss(0.7, 0.4), 0.357);
- AssertLossFunctionIsValid(TolerantLoss(0.7, 0.4), 1.792);
- AssertLossFunctionIsValid(TolerantLoss(0.7, 0.4), 55.5);
- AssertLossFunctionIsValid(TolerantLoss(1.3, 0.1), 0.357);
- AssertLossFunctionIsValid(TolerantLoss(1.3, 0.1), 1.792);
- AssertLossFunctionIsValid(TolerantLoss(1.3, 0.1), 55.5);
- // Check the value at zero is actually zero.
- double rho[3];
- TolerantLoss(0.7, 0.4).Evaluate(0.0, rho);
- ASSERT_NEAR(rho[0], 0.0, 1e-6);
- // Check that loss before and after the approximation threshold are good.
- // A threshold of 36.7 is used by the implementation.
- AssertLossFunctionIsValid(TolerantLoss(20.0, 1.0), 20.0 + 36.6);
- AssertLossFunctionIsValid(TolerantLoss(20.0, 1.0), 20.0 + 36.7);
- AssertLossFunctionIsValid(TolerantLoss(20.0, 1.0), 20.0 + 36.8);
- AssertLossFunctionIsValid(TolerantLoss(20.0, 1.0), 20.0 + 1000.0);
- }
- TEST(LossFunction, TukeyLoss) {
- AssertLossFunctionIsValid(TukeyLoss(0.7), 0.357);
- AssertLossFunctionIsValid(TukeyLoss(0.7), 1.792);
- AssertLossFunctionIsValid(TukeyLoss(1.3), 0.357);
- AssertLossFunctionIsValid(TukeyLoss(1.3), 1.792);
- // Check that at s = 0: rho = [0, 1, -2 / a^2].
- double rho[3];
- TukeyLoss(0.7).Evaluate(0.0, rho);
- ASSERT_NEAR(rho[0], 0.0, 1e-6);
- ASSERT_NEAR(rho[1], 1.0, 1e-6);
- ASSERT_NEAR(rho[2], -2.0 / (0.7 * 0.7), 1e-6);
- }
- TEST(LossFunction, ComposedLoss) {
- {
- HuberLoss f(0.7);
- CauchyLoss g(1.3);
- ComposedLoss c(&f, DO_NOT_TAKE_OWNERSHIP, &g, DO_NOT_TAKE_OWNERSHIP);
- AssertLossFunctionIsValid(c, 0.357);
- AssertLossFunctionIsValid(c, 1.792);
- }
- {
- CauchyLoss f(0.7);
- HuberLoss g(1.3);
- ComposedLoss c(&f, DO_NOT_TAKE_OWNERSHIP, &g, DO_NOT_TAKE_OWNERSHIP);
- AssertLossFunctionIsValid(c, 0.357);
- AssertLossFunctionIsValid(c, 1.792);
- }
- }
- TEST(LossFunction, ScaledLoss) {
- // Wrap a few loss functions, and a few scale factors. This can't combine
- // construction with the call to AssertLossFunctionIsValid() because Apple's
- // GCC is unable to eliminate the copy of ScaledLoss, which is not copyable.
- {
- ScaledLoss scaled_loss(nullptr, 6, TAKE_OWNERSHIP);
- AssertLossFunctionIsValid(scaled_loss, 0.323);
- }
- {
- ScaledLoss scaled_loss(new TrivialLoss(), 10, TAKE_OWNERSHIP);
- AssertLossFunctionIsValid(scaled_loss, 0.357);
- }
- {
- ScaledLoss scaled_loss(new HuberLoss(0.7), 0.1, TAKE_OWNERSHIP);
- AssertLossFunctionIsValid(scaled_loss, 1.792);
- }
- {
- ScaledLoss scaled_loss(new SoftLOneLoss(1.3), 0.1, TAKE_OWNERSHIP);
- AssertLossFunctionIsValid(scaled_loss, 1.792);
- }
- {
- ScaledLoss scaled_loss(new CauchyLoss(1.3), 10, TAKE_OWNERSHIP);
- AssertLossFunctionIsValid(scaled_loss, 1.792);
- }
- {
- ScaledLoss scaled_loss(new ArctanLoss(1.3), 10, TAKE_OWNERSHIP);
- AssertLossFunctionIsValid(scaled_loss, 1.792);
- }
- {
- ScaledLoss scaled_loss(new TolerantLoss(1.3, 0.1), 10, TAKE_OWNERSHIP);
- AssertLossFunctionIsValid(scaled_loss, 1.792);
- }
- {
- ScaledLoss scaled_loss(new ComposedLoss(new HuberLoss(0.8),
- TAKE_OWNERSHIP,
- new TolerantLoss(1.3, 0.5),
- TAKE_OWNERSHIP),
- 10,
- TAKE_OWNERSHIP);
- AssertLossFunctionIsValid(scaled_loss, 1.792);
- }
- }
- TEST(LossFunction, LossFunctionWrapper) {
- // Initialization
- HuberLoss loss_function1(1.0);
- LossFunctionWrapper loss_function_wrapper(new HuberLoss(1.0), TAKE_OWNERSHIP);
- double s = 0.862;
- double rho_gold[3];
- double rho[3];
- loss_function1.Evaluate(s, rho_gold);
- loss_function_wrapper.Evaluate(s, rho);
- for (int i = 0; i < 3; ++i) {
- EXPECT_NEAR(rho[i], rho_gold[i], 1e-12);
- }
- // Resetting
- HuberLoss loss_function2(0.5);
- loss_function_wrapper.Reset(new HuberLoss(0.5), TAKE_OWNERSHIP);
- loss_function_wrapper.Evaluate(s, rho);
- loss_function2.Evaluate(s, rho_gold);
- for (int i = 0; i < 3; ++i) {
- EXPECT_NEAR(rho[i], rho_gold[i], 1e-12);
- }
- // Not taking ownership.
- HuberLoss loss_function3(0.3);
- loss_function_wrapper.Reset(&loss_function3, DO_NOT_TAKE_OWNERSHIP);
- loss_function_wrapper.Evaluate(s, rho);
- loss_function3.Evaluate(s, rho_gold);
- for (int i = 0; i < 3; ++i) {
- EXPECT_NEAR(rho[i], rho_gold[i], 1e-12);
- }
- // Set to nullptr
- TrivialLoss loss_function4;
- loss_function_wrapper.Reset(nullptr, TAKE_OWNERSHIP);
- loss_function_wrapper.Evaluate(s, rho);
- loss_function4.Evaluate(s, rho_gold);
- for (int i = 0; i < 3; ++i) {
- EXPECT_NEAR(rho[i], rho_gold[i], 1e-12);
- }
- // Set to nullptr, not taking ownership
- loss_function_wrapper.Reset(nullptr, DO_NOT_TAKE_OWNERSHIP);
- loss_function_wrapper.Evaluate(s, rho);
- loss_function4.Evaluate(s, rho_gold);
- for (int i = 0; i < 3; ++i) {
- EXPECT_NEAR(rho[i], rho_gold[i], 1e-12);
- }
- }
- } // namespace internal
- } // namespace ceres
|