123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289 |
- // Ceres Solver - A fast non-linear least squares minimizer
- // Copyright 2021 Google Inc. All rights reserved.
- // http://ceres-solver.org/
- //
- // Redistribution and use in source and binary forms, with or without
- // modification, are permitted provided that the following conditions are met:
- //
- // * Redistributions of source code must retain the above copyright notice,
- // this list of conditions and the following disclaimer.
- // * Redistributions in binary form must reproduce the above copyright notice,
- // this list of conditions and the following disclaimer in the documentation
- // and/or other materials provided with the distribution.
- // * Neither the name of Google Inc. nor the names of its contributors may be
- // used to endorse or promote products derived from this software without
- // specific prior written permission.
- //
- // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
- // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
- // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
- // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
- // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
- // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
- // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
- // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
- // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
- // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
- // POSSIBILITY OF SUCH DAMAGE.
- //
- // Author: alex@karatarakis.com (Alexander Karatarakis)
- #include <array>
- #include "benchmark/benchmark.h"
- #include "ceres/jet.h"
- namespace ceres {
- // Cycle the Jets to avoid caching effects in the benchmark.
- template <class JetType>
- class JetInputData {
- using T = typename JetType::Scalar;
- static constexpr std::size_t SIZE = 20;
- public:
- JetInputData() {
- for (int i = 0; i < static_cast<int>(SIZE); i++) {
- const T ti = static_cast<T>(i + 1);
- a_[i].a = T(1.1) * ti;
- a_[i].v.setRandom();
- b_[i].a = T(2.2) * ti;
- b_[i].v.setRandom();
- c_[i].a = T(3.3) * ti;
- c_[i].v.setRandom();
- d_[i].a = T(4.4) * ti;
- d_[i].v.setRandom();
- e_[i].a = T(5.5) * ti;
- e_[i].v.setRandom();
- scalar_a_[i] = T(1.1) * ti;
- scalar_b_[i] = T(2.2) * ti;
- scalar_c_[i] = T(3.3) * ti;
- scalar_d_[i] = T(4.4) * ti;
- scalar_e_[i] = T(5.5) * ti;
- }
- }
- void advance() { index_ = (index_ + 1) % SIZE; }
- const JetType& a() const { return a_[index_]; }
- const JetType& b() const { return b_[index_]; }
- const JetType& c() const { return c_[index_]; }
- const JetType& d() const { return d_[index_]; }
- const JetType& e() const { return e_[index_]; }
- T scalar_a() const { return scalar_a_[index_]; }
- T scalar_b() const { return scalar_b_[index_]; }
- T scalar_c() const { return scalar_c_[index_]; }
- T scalar_d() const { return scalar_d_[index_]; }
- T scalar_e() const { return scalar_e_[index_]; }
- private:
- std::size_t index_{0};
- std::array<JetType, SIZE> a_{};
- std::array<JetType, SIZE> b_{};
- std::array<JetType, SIZE> c_{};
- std::array<JetType, SIZE> d_{};
- std::array<JetType, SIZE> e_{};
- std::array<T, SIZE> scalar_a_;
- std::array<T, SIZE> scalar_b_;
- std::array<T, SIZE> scalar_c_;
- std::array<T, SIZE> scalar_d_;
- std::array<T, SIZE> scalar_e_;
- };
- template <std::size_t JET_SIZE, class Function>
- static void JetBenchmarkHelper(benchmark::State& state, const Function& func) {
- using JetType = Jet<double, JET_SIZE>;
- JetInputData<JetType> data{};
- JetType out{};
- const int iterations = static_cast<int>(state.range(0));
- for (auto _ : state) {
- for (int i = 0; i < iterations; i++) {
- func(data, out);
- data.advance();
- }
- }
- benchmark::DoNotOptimize(out);
- }
- template <std::size_t JET_SIZE>
- static void Addition(benchmark::State& state) {
- using JetType = Jet<double, JET_SIZE>;
- JetBenchmarkHelper<JET_SIZE>(
- state, [](const JetInputData<JetType>& d, JetType& out) {
- out += +d.a() + d.b() + d.c() + d.d() + d.e();
- });
- }
- BENCHMARK_TEMPLATE(Addition, 3)->Arg(1000);
- BENCHMARK_TEMPLATE(Addition, 10)->Arg(1000);
- BENCHMARK_TEMPLATE(Addition, 15)->Arg(1000);
- BENCHMARK_TEMPLATE(Addition, 25)->Arg(1000);
- BENCHMARK_TEMPLATE(Addition, 32)->Arg(1000);
- BENCHMARK_TEMPLATE(Addition, 200)->Arg(160);
- template <std::size_t JET_SIZE>
- static void AdditionScalar(benchmark::State& state) {
- using JetType = Jet<double, JET_SIZE>;
- JetBenchmarkHelper<JET_SIZE>(
- state, [](const JetInputData<JetType>& d, JetType& out) {
- out +=
- d.scalar_a() + d.scalar_b() + d.c() + d.scalar_d() + d.scalar_e();
- });
- }
- BENCHMARK_TEMPLATE(AdditionScalar, 3)->Arg(1000);
- BENCHMARK_TEMPLATE(AdditionScalar, 10)->Arg(1000);
- BENCHMARK_TEMPLATE(AdditionScalar, 15)->Arg(1000);
- BENCHMARK_TEMPLATE(AdditionScalar, 25)->Arg(1000);
- BENCHMARK_TEMPLATE(AdditionScalar, 32)->Arg(1000);
- BENCHMARK_TEMPLATE(AdditionScalar, 200)->Arg(160);
- template <std::size_t JET_SIZE>
- static void Subtraction(benchmark::State& state) {
- using JetType = Jet<double, JET_SIZE>;
- JetBenchmarkHelper<JET_SIZE>(
- state, [](const JetInputData<JetType>& d, JetType& out) {
- out -= -d.a() - d.b() - d.c() - d.d() - d.e();
- });
- }
- BENCHMARK_TEMPLATE(Subtraction, 3)->Arg(1000);
- BENCHMARK_TEMPLATE(Subtraction, 10)->Arg(1000);
- BENCHMARK_TEMPLATE(Subtraction, 15)->Arg(1000);
- BENCHMARK_TEMPLATE(Subtraction, 25)->Arg(1000);
- BENCHMARK_TEMPLATE(Subtraction, 32)->Arg(1000);
- BENCHMARK_TEMPLATE(Subtraction, 200)->Arg(160);
- template <std::size_t JET_SIZE>
- static void SubtractionScalar(benchmark::State& state) {
- using JetType = Jet<double, JET_SIZE>;
- JetBenchmarkHelper<JET_SIZE>(
- state, [](const JetInputData<JetType>& d, JetType& out) {
- out -=
- -d.scalar_a() - d.scalar_b() - d.c() - d.scalar_d() - d.scalar_e();
- });
- }
- BENCHMARK_TEMPLATE(SubtractionScalar, 3)->Arg(1000);
- BENCHMARK_TEMPLATE(SubtractionScalar, 10)->Arg(1000);
- BENCHMARK_TEMPLATE(SubtractionScalar, 15)->Arg(1000);
- BENCHMARK_TEMPLATE(SubtractionScalar, 25)->Arg(1000);
- BENCHMARK_TEMPLATE(SubtractionScalar, 32)->Arg(1000);
- BENCHMARK_TEMPLATE(SubtractionScalar, 200)->Arg(160);
- template <std::size_t JET_SIZE>
- static void Multiplication(benchmark::State& state) {
- using JetType = Jet<double, JET_SIZE>;
- JetBenchmarkHelper<JET_SIZE>(
- state, [](const JetInputData<JetType>& d, JetType& out) {
- out *= d.a() * d.b() * d.c() * d.d() * d.e();
- });
- }
- BENCHMARK_TEMPLATE(Multiplication, 3)->Arg(1000);
- BENCHMARK_TEMPLATE(Multiplication, 10)->Arg(1000);
- BENCHMARK_TEMPLATE(Multiplication, 15)->Arg(1000);
- BENCHMARK_TEMPLATE(Multiplication, 25)->Arg(1000);
- BENCHMARK_TEMPLATE(Multiplication, 32)->Arg(1000);
- BENCHMARK_TEMPLATE(Multiplication, 200)->Arg(160);
- template <std::size_t JET_SIZE>
- static void MultiplicationLeftScalar(benchmark::State& state) {
- using JetType = Jet<double, JET_SIZE>;
- JetBenchmarkHelper<JET_SIZE>(
- state, [](const JetInputData<JetType>& d, JetType& out) {
- out += d.scalar_a() *
- (d.scalar_b() * (d.scalar_c() * (d.scalar_d() * d.e())));
- });
- }
- BENCHMARK_TEMPLATE(MultiplicationLeftScalar, 3)->Arg(1000);
- BENCHMARK_TEMPLATE(MultiplicationLeftScalar, 10)->Arg(1000);
- BENCHMARK_TEMPLATE(MultiplicationLeftScalar, 15)->Arg(1000);
- BENCHMARK_TEMPLATE(MultiplicationLeftScalar, 25)->Arg(1000);
- BENCHMARK_TEMPLATE(MultiplicationLeftScalar, 32)->Arg(1000);
- BENCHMARK_TEMPLATE(MultiplicationLeftScalar, 200)->Arg(160);
- template <std::size_t JET_SIZE>
- static void MultiplicationRightScalar(benchmark::State& state) {
- using JetType = Jet<double, JET_SIZE>;
- JetBenchmarkHelper<JET_SIZE>(
- state, [](const JetInputData<JetType>& d, JetType& out) {
- out += (((d.a() * d.scalar_b()) * d.scalar_c()) * d.scalar_d()) *
- d.scalar_e();
- });
- }
- BENCHMARK_TEMPLATE(MultiplicationRightScalar, 3)->Arg(1000);
- BENCHMARK_TEMPLATE(MultiplicationRightScalar, 10)->Arg(1000);
- BENCHMARK_TEMPLATE(MultiplicationRightScalar, 15)->Arg(1000);
- BENCHMARK_TEMPLATE(MultiplicationRightScalar, 25)->Arg(1000);
- BENCHMARK_TEMPLATE(MultiplicationRightScalar, 32)->Arg(1000);
- BENCHMARK_TEMPLATE(MultiplicationRightScalar, 200)->Arg(160);
- template <std::size_t JET_SIZE>
- static void Division(benchmark::State& state) {
- using JetType = Jet<double, JET_SIZE>;
- JetBenchmarkHelper<JET_SIZE>(
- state, [](const JetInputData<JetType>& d, JetType& out) {
- out /= d.a() / d.b() / d.c() / d.d() / d.e();
- });
- }
- BENCHMARK_TEMPLATE(Division, 3)->Arg(1000);
- BENCHMARK_TEMPLATE(Division, 10)->Arg(1000);
- BENCHMARK_TEMPLATE(Division, 15)->Arg(1000);
- BENCHMARK_TEMPLATE(Division, 25)->Arg(1000);
- BENCHMARK_TEMPLATE(Division, 32)->Arg(1000);
- BENCHMARK_TEMPLATE(Division, 200)->Arg(160);
- template <std::size_t JET_SIZE>
- static void DivisionLeftScalar(benchmark::State& state) {
- using JetType = Jet<double, JET_SIZE>;
- JetBenchmarkHelper<JET_SIZE>(
- state, [](const JetInputData<JetType>& d, JetType& out) {
- out += d.scalar_a() /
- (d.scalar_b() / (d.scalar_c() / (d.scalar_d() / d.e())));
- });
- }
- BENCHMARK_TEMPLATE(DivisionLeftScalar, 3)->Arg(1000);
- BENCHMARK_TEMPLATE(DivisionLeftScalar, 10)->Arg(1000);
- BENCHMARK_TEMPLATE(DivisionLeftScalar, 15)->Arg(1000);
- BENCHMARK_TEMPLATE(DivisionLeftScalar, 25)->Arg(1000);
- BENCHMARK_TEMPLATE(DivisionLeftScalar, 32)->Arg(1000);
- BENCHMARK_TEMPLATE(DivisionLeftScalar, 200)->Arg(160);
- template <std::size_t JET_SIZE>
- static void DivisionRightScalar(benchmark::State& state) {
- using JetType = Jet<double, JET_SIZE>;
- JetBenchmarkHelper<JET_SIZE>(
- state, [](const JetInputData<JetType>& d, JetType& out) {
- out += (((d.a() / d.scalar_b()) / d.scalar_c()) / d.scalar_d()) /
- d.scalar_e();
- });
- }
- BENCHMARK_TEMPLATE(DivisionRightScalar, 3)->Arg(1000);
- BENCHMARK_TEMPLATE(DivisionRightScalar, 10)->Arg(1000);
- BENCHMARK_TEMPLATE(DivisionRightScalar, 15)->Arg(1000);
- BENCHMARK_TEMPLATE(DivisionRightScalar, 25)->Arg(1000);
- BENCHMARK_TEMPLATE(DivisionRightScalar, 32)->Arg(1000);
- BENCHMARK_TEMPLATE(DivisionRightScalar, 200)->Arg(160);
- template <std::size_t JET_SIZE>
- static void MultiplyAndAdd(benchmark::State& state) {
- using JetType = Jet<double, JET_SIZE>;
- JetBenchmarkHelper<JET_SIZE>(
- state, [](const JetInputData<JetType>& d, JetType& out) {
- out += d.scalar_a() * d.a() + d.scalar_b() * d.b() +
- d.scalar_c() * d.c() + d.scalar_d() * d.d() +
- d.scalar_e() * d.e();
- });
- }
- BENCHMARK_TEMPLATE(MultiplyAndAdd, 3)->Arg(1000);
- BENCHMARK_TEMPLATE(MultiplyAndAdd, 10)->Arg(1000);
- BENCHMARK_TEMPLATE(MultiplyAndAdd, 15)->Arg(1000);
- BENCHMARK_TEMPLATE(MultiplyAndAdd, 25)->Arg(1000);
- BENCHMARK_TEMPLATE(MultiplyAndAdd, 32)->Arg(1000);
- BENCHMARK_TEMPLATE(MultiplyAndAdd, 200)->Arg(160);
- } // namespace ceres
- BENCHMARK_MAIN();
|