123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129 |
- // Ceres Solver - A fast non-linear least squares minimizer
- // Copyright 2022 Google Inc. All rights reserved.
- // http://ceres-solver.org/
- //
- // Redistribution and use in source and binary forms, with or without
- // modification, are permitted provided that the following conditions are met:
- //
- // * Redistributions of source code must retain the above copyright notice,
- // this list of conditions and the following disclaimer.
- // * Redistributions in binary form must reproduce the above copyright notice,
- // this list of conditions and the following disclaimer in the documentation
- // and/or other materials provided with the distribution.
- // * Neither the name of Google Inc. nor the names of its contributors may be
- // used to endorse or promote products derived from this software without
- // specific prior written permission.
- //
- // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
- // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
- // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
- // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
- // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
- // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
- // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
- // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
- // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
- // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
- // POSSIBILITY OF SUCH DAMAGE.
- //
- // Author: strandmark@google.com (Petter Strandmark)
- #include "ceres/gradient_problem_solver.h"
- #include "ceres/gradient_problem.h"
- #include "gtest/gtest.h"
- namespace ceres::internal {
- // Rosenbrock function; see http://en.wikipedia.org/wiki/Rosenbrock_function .
- class Rosenbrock : public ceres::FirstOrderFunction {
- public:
- bool Evaluate(const double* parameters,
- double* cost,
- double* gradient) const final {
- const double x = parameters[0];
- const double y = parameters[1];
- cost[0] = (1.0 - x) * (1.0 - x) + 100.0 * (y - x * x) * (y - x * x);
- if (gradient != nullptr) {
- gradient[0] = -2.0 * (1.0 - x) - 200.0 * (y - x * x) * 2.0 * x;
- gradient[1] = 200.0 * (y - x * x);
- }
- return true;
- }
- int NumParameters() const final { return 2; }
- };
- TEST(GradientProblemSolver, SolvesRosenbrockWithDefaultOptions) {
- const double expected_tolerance = 1e-9;
- double parameters[2] = {-1.2, 0.0};
- ceres::GradientProblemSolver::Options options;
- ceres::GradientProblemSolver::Summary summary;
- ceres::GradientProblem problem(new Rosenbrock());
- ceres::Solve(options, problem, parameters, &summary);
- EXPECT_EQ(CONVERGENCE, summary.termination_type);
- EXPECT_NEAR(1.0, parameters[0], expected_tolerance);
- EXPECT_NEAR(1.0, parameters[1], expected_tolerance);
- }
- class QuadraticFunction : public ceres::FirstOrderFunction {
- bool Evaluate(const double* parameters,
- double* cost,
- double* gradient) const final {
- const double x = parameters[0];
- *cost = 0.5 * (5.0 - x) * (5.0 - x);
- if (gradient != nullptr) {
- gradient[0] = x - 5.0;
- }
- return true;
- }
- int NumParameters() const final { return 1; }
- };
- struct RememberingCallback : public IterationCallback {
- explicit RememberingCallback(double* x) : calls(0), x(x) {}
- CallbackReturnType operator()(const IterationSummary& summary) final {
- x_values.push_back(*x);
- return SOLVER_CONTINUE;
- }
- int calls;
- double* x;
- std::vector<double> x_values;
- };
- TEST(Solver, UpdateStateEveryIterationOption) {
- double x = 50.0;
- const double original_x = x;
- ceres::GradientProblem problem(new QuadraticFunction);
- ceres::GradientProblemSolver::Options options;
- RememberingCallback callback(&x);
- options.callbacks.push_back(&callback);
- ceres::GradientProblemSolver::Summary summary;
- int num_iterations;
- // First try: no updating.
- ceres::Solve(options, problem, &x, &summary);
- num_iterations = summary.iterations.size() - 1;
- EXPECT_GT(num_iterations, 1);
- for (double value : callback.x_values) {
- EXPECT_EQ(50.0, value);
- }
- // Second try: with updating
- x = 50.0;
- options.update_state_every_iteration = true;
- callback.x_values.clear();
- ceres::Solve(options, problem, &x, &summary);
- num_iterations = summary.iterations.size() - 1;
- EXPECT_GT(num_iterations, 1);
- EXPECT_EQ(original_x, callback.x_values[0]);
- EXPECT_NE(original_x, callback.x_values[1]);
- }
- } // namespace ceres::internal
|