123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388 |
- // Ceres Solver - A fast non-linear least squares minimizer
- // Copyright 2018 Google Inc. All rights reserved.
- // http://ceres-solver.org/
- //
- // Redistribution and use in source and binary forms, with or without
- // modification, are permitted provided that the following conditions are met:
- //
- // * Redistributions of source code must retain the above copyright notice,
- // this list of conditions and the following disclaimer.
- // * Redistributions in binary form must reproduce the above copyright notice,
- // this list of conditions and the following disclaimer in the documentation
- // and/or other materials provided with the distribution.
- // * Neither the name of Google Inc. nor the names of its contributors may be
- // used to endorse or promote products derived from this software without
- // specific prior written permission.
- //
- // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
- // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
- // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
- // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
- // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
- // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
- // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
- // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
- // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
- // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
- // POSSIBILITY OF SUCH DAMAGE.
- //
- // Author: mierle@gmail.com (Keir Mierle)
- #include "ceres/evaluation_callback.h"
- #include <cmath>
- #include <limits>
- #include <memory>
- #include <vector>
- #include "ceres/autodiff_cost_function.h"
- #include "ceres/problem.h"
- #include "ceres/problem_impl.h"
- #include "ceres/sized_cost_function.h"
- #include "ceres/solver.h"
- #include "gtest/gtest.h"
- namespace ceres::internal {
- // Use an inline hash function to avoid portability wrangling. Algorithm from
- // Daniel Bernstein, known as the "djb2" hash.
- template <typename T>
- uint64_t Djb2Hash(const T* data, const int size) {
- uint64_t hash = 5381;
- const auto* data_as_bytes = reinterpret_cast<const uint8_t*>(data);
- for (int i = 0; i < sizeof(*data) * size; ++i) {
- hash = hash * 33 + data_as_bytes[i];
- }
- return hash;
- }
- const double kUninitialized = 0;
- // Generally multiple inheritance is a terrible idea, but in this (test)
- // case it makes for a relatively elegant test implementation.
- struct WigglyBowlCostFunctionAndEvaluationCallback : SizedCostFunction<2, 2>,
- EvaluationCallback {
- explicit WigglyBowlCostFunctionAndEvaluationCallback(double* parameter)
- : EvaluationCallback(),
- user_parameter_block(parameter),
- prepare_num_calls(0),
- prepare_requested_jacobians(false),
- prepare_new_evaluation_point(false),
- prepare_parameter_hash(kUninitialized),
- evaluate_num_calls(0),
- evaluate_last_parameter_hash(kUninitialized) {}
- // Evaluation callback interface. This checks that all the preconditions are
- // met at the point that Ceres calls into it.
- void PrepareForEvaluation(bool evaluate_jacobians,
- bool new_evaluation_point) final {
- // At this point, the incoming parameters are implicitly pushed by Ceres
- // into the user parameter blocks; in contrast to in Evaluate().
- uint64_t incoming_parameter_hash = Djb2Hash(user_parameter_block, 2);
- // Check: Prepare() & Evaluate() come in pairs, in that order. Before this
- // call, the number of calls excluding this one should match.
- EXPECT_EQ(prepare_num_calls, evaluate_num_calls);
- // Check: new_evaluation_point indicates that the parameter has changed.
- if (new_evaluation_point) {
- // If it's a new evaluation point, then the parameter should have
- // changed. Technically, it's not required that it must change but
- // in practice it does, and that helps with testing.
- EXPECT_NE(evaluate_last_parameter_hash, incoming_parameter_hash);
- EXPECT_NE(prepare_parameter_hash, incoming_parameter_hash);
- } else {
- // If this is the same evaluation point as last time, ensure that
- // the parameters match both from the previous evaluate, the
- // previous prepare, and the current prepare.
- EXPECT_EQ(evaluate_last_parameter_hash, prepare_parameter_hash);
- EXPECT_EQ(evaluate_last_parameter_hash, incoming_parameter_hash);
- }
- // Save details for to check at the next call to Evaluate().
- prepare_num_calls++;
- prepare_requested_jacobians = evaluate_jacobians;
- prepare_new_evaluation_point = new_evaluation_point;
- prepare_parameter_hash = incoming_parameter_hash;
- }
- // Cost function interface. This checks that preconditions that were
- // set as part of the PrepareForEvaluation() call are met in this one.
- bool Evaluate(double const* const* parameters,
- double* residuals,
- double** jacobians) const final {
- // Cost function implementation of the "Wiggly Bowl" function:
- //
- // 1/2 * [(y - a*sin(x))^2 + x^2],
- //
- // expressed as a Ceres cost function with two residuals:
- //
- // r[0] = y - a*sin(x)
- // r[1] = x.
- //
- // This is harder to optimize than the Rosenbrock function because the
- // minimizer has to navigate a sine-shaped valley while descending the 1D
- // parabola formed along the y axis. Note that the "a" needs to be more
- // than 5 to get a strong enough wiggle effect in the cost surface to
- // trigger failed iterations in the optimizer.
- const double a = 10.0;
- double x = (*parameters)[0];
- double y = (*parameters)[1];
- residuals[0] = y - a * sin(x);
- residuals[1] = x;
- if (jacobians != nullptr) {
- (*jacobians)[2 * 0 + 0] = -a * cos(x); // df1/dx
- (*jacobians)[2 * 0 + 1] = 1.0; // df1/dy
- (*jacobians)[2 * 1 + 0] = 1.0; // df2/dx
- (*jacobians)[2 * 1 + 1] = 0.0; // df2/dy
- }
- uint64_t incoming_parameter_hash = Djb2Hash(*parameters, 2);
- // Check: PrepareForEvaluation() & Evaluate() come in pairs, in that order.
- EXPECT_EQ(prepare_num_calls, evaluate_num_calls + 1);
- // Check: if new_evaluation_point indicates that the parameter has
- // changed, it has changed; otherwise it is the same.
- if (prepare_new_evaluation_point) {
- EXPECT_NE(evaluate_last_parameter_hash, incoming_parameter_hash);
- } else {
- EXPECT_NE(evaluate_last_parameter_hash, kUninitialized);
- EXPECT_EQ(evaluate_last_parameter_hash, incoming_parameter_hash);
- }
- // Check: Parameter matches value in in parameter blocks during prepare.
- EXPECT_EQ(prepare_parameter_hash, incoming_parameter_hash);
- // Check: jacobians are requested if they were in PrepareForEvaluation().
- EXPECT_EQ(prepare_requested_jacobians, jacobians != nullptr);
- evaluate_num_calls++;
- evaluate_last_parameter_hash = incoming_parameter_hash;
- return true;
- }
- // Pointer to the parameter block associated with this cost function.
- // Contents should get set by Ceres before calls to PrepareForEvaluation()
- // and Evaluate().
- double* user_parameter_block;
- // Track state: PrepareForEvaluation().
- //
- // These track details from the PrepareForEvaluation() call (hence the
- // "prepare_" prefix), which are checked for consistency in Evaluate().
- int prepare_num_calls;
- bool prepare_requested_jacobians;
- bool prepare_new_evaluation_point;
- uint64_t prepare_parameter_hash;
- // Track state: Evaluate().
- //
- // These track details from the Evaluate() call (hence the "evaluate_"
- // prefix), which are then checked for consistency in the calls to
- // PrepareForEvaluation(). Mutable is reasonable for this case.
- mutable int evaluate_num_calls;
- mutable uint64_t evaluate_last_parameter_hash;
- };
- TEST(EvaluationCallback, WithTrustRegionMinimizer) {
- double parameters[2] = {50.0, 50.0};
- const uint64_t original_parameters_hash = Djb2Hash(parameters, 2);
- WigglyBowlCostFunctionAndEvaluationCallback cost_function(parameters);
- Problem::Options problem_options;
- problem_options.evaluation_callback = &cost_function;
- problem_options.cost_function_ownership = DO_NOT_TAKE_OWNERSHIP;
- Problem problem(problem_options);
- problem.AddResidualBlock(&cost_function, nullptr, parameters);
- Solver::Options options;
- options.linear_solver_type = DENSE_QR;
- options.max_num_iterations = 50;
- // Run the solve. Checking is done inside the cost function / callback.
- Solver::Summary summary;
- Solve(options, &problem, &summary);
- // Ensure that this was a hard cost function (not all steps succeed).
- EXPECT_GT(summary.num_successful_steps, 10);
- EXPECT_GT(summary.num_unsuccessful_steps, 10);
- // Ensure PrepareForEvaluation() is called the appropriate number of times.
- EXPECT_EQ(
- cost_function.prepare_num_calls,
- // Unsuccessful steps are evaluated only once (no jacobians).
- summary.num_unsuccessful_steps +
- // Successful steps are evaluated twice: with and without jacobians.
- 2 * summary.num_successful_steps
- // Final iteration doesn't re-evaluate the jacobian.
- // Note: This may be sensitive to tweaks to the TR algorithm; if
- // this becomes too brittle, remove this EXPECT_EQ() entirely.
- - 1);
- // Ensure the callback calls ran a reasonable number of times.
- EXPECT_GT(cost_function.prepare_num_calls, 0);
- EXPECT_GT(cost_function.evaluate_num_calls, 0);
- EXPECT_EQ(cost_function.prepare_num_calls, cost_function.evaluate_num_calls);
- // Ensure that the parameters did actually change.
- EXPECT_NE(Djb2Hash(parameters, 2), original_parameters_hash);
- }
- // r = 1 - x
- struct LinearResidual {
- template <typename T>
- bool operator()(const T* x, T* residuals) const {
- residuals[0] = 1.0 - x[0];
- return true;
- }
- static CostFunction* Create() {
- return new AutoDiffCostFunction<LinearResidual, 1, 1>(new LinearResidual);
- };
- };
- // Increments a counter everytime PrepareForEvaluation is called.
- class IncrementingEvaluationCallback : public EvaluationCallback {
- public:
- void PrepareForEvaluation(bool evaluate_jacobians,
- bool new_evaluation_point) final {
- (void)evaluate_jacobians;
- (void)new_evaluation_point;
- counter_ += 1.0;
- }
- double counter() const { return counter_; }
- private:
- double counter_ = -1;
- };
- // r = IncrementingEvaluationCallback::counter - x
- struct EvaluationCallbackResidual {
- explicit EvaluationCallbackResidual(
- const IncrementingEvaluationCallback& callback)
- : callback(callback) {}
- template <typename T>
- bool operator()(const T* x, T* residuals) const {
- residuals[0] = callback.counter() - x[0];
- return true;
- }
- const IncrementingEvaluationCallback& callback;
- static CostFunction* Create(IncrementingEvaluationCallback& callback) {
- return new AutoDiffCostFunction<EvaluationCallbackResidual, 1, 1>(
- new EvaluationCallbackResidual(callback));
- };
- };
- // The following test, constructs a problem with residual blocks all
- // of whose parameters are constant, so they are evaluated once
- // outside the Minimizer to compute Solver::Summary::fixed_cost.
- //
- // The cost function for this residual block depends on the
- // IncrementingEvaluationCallback::counter_, by checking the value of
- // the fixed cost, we can check if the IncrementingEvaluationCallback
- // was called.
- TEST(EvaluationCallback, EvaluationCallbackIsCalledBeforeFixedCostIsEvaluated) {
- double x = 1;
- double y = 2;
- std::unique_ptr<IncrementingEvaluationCallback> callback(
- new IncrementingEvaluationCallback);
- Problem::Options problem_options;
- problem_options.evaluation_callback = callback.get();
- Problem problem(problem_options);
- problem.AddResidualBlock(LinearResidual::Create(), nullptr, &x);
- problem.AddResidualBlock(
- EvaluationCallbackResidual::Create(*callback), nullptr, &y);
- problem.SetParameterBlockConstant(&y);
- Solver::Options options;
- options.linear_solver_type = DENSE_QR;
- Solver::Summary summary;
- Solve(options, &problem, &summary);
- EXPECT_EQ(summary.fixed_cost, 2.0);
- EXPECT_EQ(summary.final_cost, summary.fixed_cost);
- EXPECT_GT(callback->counter(), 0);
- }
- static void WithLineSearchMinimizerImpl(
- LineSearchType line_search,
- LineSearchDirectionType line_search_direction,
- LineSearchInterpolationType line_search_interpolation) {
- double parameters[2] = {50.0, 50.0};
- const uint64_t original_parameters_hash = Djb2Hash(parameters, 2);
- WigglyBowlCostFunctionAndEvaluationCallback cost_function(parameters);
- Problem::Options problem_options;
- problem_options.evaluation_callback = &cost_function;
- problem_options.cost_function_ownership = DO_NOT_TAKE_OWNERSHIP;
- Problem problem(problem_options);
- problem.AddResidualBlock(&cost_function, nullptr, parameters);
- Solver::Options options;
- options.linear_solver_type = DENSE_QR;
- options.max_num_iterations = 50;
- options.minimizer_type = ceres::LINE_SEARCH;
- options.line_search_type = line_search;
- options.line_search_direction_type = line_search_direction;
- options.line_search_interpolation_type = line_search_interpolation;
- // Run the solve. Checking is done inside the cost function / callback.
- Solver::Summary summary;
- Solve(options, &problem, &summary);
- // Ensure the callback calls ran a reasonable number of times.
- EXPECT_GT(summary.num_line_search_steps, 10);
- EXPECT_GT(cost_function.prepare_num_calls, 30);
- EXPECT_EQ(cost_function.prepare_num_calls, cost_function.evaluate_num_calls);
- // Ensure that the parameters did actually change.
- EXPECT_NE(Djb2Hash(parameters, 2), original_parameters_hash);
- }
- // Note: These tests omit combinations of Wolfe line search with bisection.
- // Due to an implementation quirk in Wolfe line search with bisection, there
- // are calls to re-evaluate an existing point with new_point = true. That
- // causes the (overly) strict tests to break, since they check the new_point
- // preconditions in an if-and-only-if way. Strictly speaking, if new_point =
- // true, the interface does not *require* that the point has changed; only that
- // if new_point = false, the same point is reused.
- //
- // Since the strict checking is useful to verify that there aren't missed
- // optimizations, omit tests of the Wolfe with bisection cases.
- // Wolfe with L-BFGS.
- TEST(EvaluationCallback, WithLineSearchMinimizerWolfeLbfgsCubic) {
- WithLineSearchMinimizerImpl(WOLFE, LBFGS, CUBIC);
- }
- TEST(EvaluationCallback, WithLineSearchMinimizerWolfeLbfgsQuadratic) {
- WithLineSearchMinimizerImpl(WOLFE, LBFGS, QUADRATIC);
- }
- // Wolfe with full BFGS.
- TEST(EvaluationCallback, WithLineSearchMinimizerWolfeBfgsCubic) {
- WithLineSearchMinimizerImpl(WOLFE, BFGS, CUBIC);
- }
- TEST(EvaluationCallback, WithLineSearchMinimizerWolfeBfgsQuadratic) {
- WithLineSearchMinimizerImpl(WOLFE, BFGS, QUADRATIC);
- }
- // Armijo with nonlinear conjugate gradient.
- TEST(EvaluationCallback, WithLineSearchMinimizerArmijoCubic) {
- WithLineSearchMinimizerImpl(ARMIJO, NONLINEAR_CONJUGATE_GRADIENT, CUBIC);
- }
- TEST(EvaluationCallback, WithLineSearchMinimizerArmijoBisection) {
- WithLineSearchMinimizerImpl(ARMIJO, NONLINEAR_CONJUGATE_GRADIENT, BISECTION);
- }
- TEST(EvaluationCallback, WithLineSearchMinimizerArmijoQuadratic) {
- WithLineSearchMinimizerImpl(ARMIJO, NONLINEAR_CONJUGATE_GRADIENT, QUADRATIC);
- }
- } // namespace ceres::internal
|