123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511 |
- // Ceres Solver - A fast non-linear least squares minimizer
- // Copyright 2022 Google Inc. All rights reserved.
- // http://ceres-solver.org/
- //
- // Redistribution and use in source and binary forms, with or without
- // modification, are permitted provided that the following conditions are met:
- //
- // * Redistributions of source code must retain the above copyright notice,
- // this list of conditions and the following disclaimer.
- // * Redistributions in binary form must reproduce the above copyright notice,
- // this list of conditions and the following disclaimer in the documentation
- // and/or other materials provided with the distribution.
- // * Neither the name of Google Inc. nor the names of its contributors may be
- // used to endorse or promote products derived from this software without
- // specific prior written permission.
- //
- // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
- // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
- // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
- // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
- // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
- // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
- // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
- // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
- // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
- // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
- // POSSIBILITY OF SUCH DAMAGE.
- //
- // Author: sameeragarwal@google.com (Sameer Agarwal)
- // mierle@gmail.com (Keir Mierle)
- #include "ceres/dynamic_numeric_diff_cost_function.h"
- #include <cstddef>
- #include <memory>
- #include <vector>
- #include "gtest/gtest.h"
- namespace ceres::internal {
- const double kTolerance = 1e-6;
- // Takes 2 parameter blocks:
- // parameters[0] is size 10.
- // parameters[1] is size 5.
- // Emits 21 residuals:
- // A: i - parameters[0][i], for i in [0,10) -- this is 10 residuals
- // B: parameters[0][i] - i, for i in [0,10) -- this is another 10.
- // C: sum(parameters[0][i]^2 - 8*parameters[0][i]) + sum(parameters[1][i])
- class MyCostFunctor {
- public:
- bool operator()(double const* const* parameters, double* residuals) const {
- const double* params0 = parameters[0];
- int r = 0;
- for (int i = 0; i < 10; ++i) {
- residuals[r++] = i - params0[i];
- residuals[r++] = params0[i] - i;
- }
- double c_residual = 0.0;
- for (int i = 0; i < 10; ++i) {
- c_residual += pow(params0[i], 2) - 8.0 * params0[i];
- }
- const double* params1 = parameters[1];
- for (int i = 0; i < 5; ++i) {
- c_residual += params1[i];
- }
- residuals[r++] = c_residual;
- return true;
- }
- };
- TEST(DynamicNumericdiffCostFunctionTest, TestResiduals) {
- std::vector<double> param_block_0(10, 0.0);
- std::vector<double> param_block_1(5, 0.0);
- DynamicNumericDiffCostFunction<MyCostFunctor> cost_function(
- new MyCostFunctor());
- cost_function.AddParameterBlock(param_block_0.size());
- cost_function.AddParameterBlock(param_block_1.size());
- cost_function.SetNumResiduals(21);
- // Test residual computation.
- std::vector<double> residuals(21, -100000);
- std::vector<double*> parameter_blocks(2);
- parameter_blocks[0] = ¶m_block_0[0];
- parameter_blocks[1] = ¶m_block_1[0];
- EXPECT_TRUE(
- cost_function.Evaluate(¶meter_blocks[0], residuals.data(), nullptr));
- for (int r = 0; r < 10; ++r) {
- EXPECT_EQ(1.0 * r, residuals.at(r * 2));
- EXPECT_EQ(-1.0 * r, residuals.at(r * 2 + 1));
- }
- EXPECT_EQ(0, residuals.at(20));
- }
- TEST(DynamicNumericdiffCostFunctionTest, TestJacobian) {
- // Test the residual counting.
- std::vector<double> param_block_0(10, 0.0);
- for (int i = 0; i < 10; ++i) {
- param_block_0[i] = 2 * i;
- }
- std::vector<double> param_block_1(5, 0.0);
- DynamicNumericDiffCostFunction<MyCostFunctor> cost_function(
- new MyCostFunctor());
- cost_function.AddParameterBlock(param_block_0.size());
- cost_function.AddParameterBlock(param_block_1.size());
- cost_function.SetNumResiduals(21);
- // Prepare the residuals.
- std::vector<double> residuals(21, -100000);
- // Prepare the parameters.
- std::vector<double*> parameter_blocks(2);
- parameter_blocks[0] = ¶m_block_0[0];
- parameter_blocks[1] = ¶m_block_1[0];
- // Prepare the jacobian.
- std::vector<std::vector<double>> jacobian_vect(2);
- jacobian_vect[0].resize(21 * 10, -100000);
- jacobian_vect[1].resize(21 * 5, -100000);
- std::vector<double*> jacobian;
- jacobian.push_back(jacobian_vect[0].data());
- jacobian.push_back(jacobian_vect[1].data());
- // Test jacobian computation.
- EXPECT_TRUE(cost_function.Evaluate(
- parameter_blocks.data(), residuals.data(), jacobian.data()));
- for (int r = 0; r < 10; ++r) {
- EXPECT_EQ(-1.0 * r, residuals.at(r * 2));
- EXPECT_EQ(+1.0 * r, residuals.at(r * 2 + 1));
- }
- EXPECT_EQ(420, residuals.at(20));
- for (int p = 0; p < 10; ++p) {
- // Check "A" Jacobian.
- EXPECT_NEAR(-1.0, jacobian_vect[0][2 * p * 10 + p], kTolerance);
- // Check "B" Jacobian.
- EXPECT_NEAR(+1.0, jacobian_vect[0][(2 * p + 1) * 10 + p], kTolerance);
- jacobian_vect[0][2 * p * 10 + p] = 0.0;
- jacobian_vect[0][(2 * p + 1) * 10 + p] = 0.0;
- }
- // Check "C" Jacobian for first parameter block.
- for (int p = 0; p < 10; ++p) {
- EXPECT_NEAR(4 * p - 8, jacobian_vect[0][20 * 10 + p], kTolerance);
- jacobian_vect[0][20 * 10 + p] = 0.0;
- }
- for (double entry : jacobian_vect[0]) {
- EXPECT_NEAR(0.0, entry, kTolerance);
- }
- // Check "C" Jacobian for second parameter block.
- for (int p = 0; p < 5; ++p) {
- EXPECT_NEAR(1.0, jacobian_vect[1][20 * 5 + p], kTolerance);
- jacobian_vect[1][20 * 5 + p] = 0.0;
- }
- for (double entry : jacobian_vect[1]) {
- EXPECT_NEAR(0.0, entry, kTolerance);
- }
- }
- TEST(DynamicNumericdiffCostFunctionTest,
- JacobianWithFirstParameterBlockConstant) { // NOLINT
- // Test the residual counting.
- std::vector<double> param_block_0(10, 0.0);
- for (int i = 0; i < 10; ++i) {
- param_block_0[i] = 2 * i;
- }
- std::vector<double> param_block_1(5, 0.0);
- DynamicNumericDiffCostFunction<MyCostFunctor> cost_function(
- new MyCostFunctor());
- cost_function.AddParameterBlock(param_block_0.size());
- cost_function.AddParameterBlock(param_block_1.size());
- cost_function.SetNumResiduals(21);
- // Prepare the residuals.
- std::vector<double> residuals(21, -100000);
- // Prepare the parameters.
- std::vector<double*> parameter_blocks(2);
- parameter_blocks[0] = ¶m_block_0[0];
- parameter_blocks[1] = ¶m_block_1[0];
- // Prepare the jacobian.
- std::vector<std::vector<double>> jacobian_vect(2);
- jacobian_vect[0].resize(21 * 10, -100000);
- jacobian_vect[1].resize(21 * 5, -100000);
- std::vector<double*> jacobian;
- jacobian.push_back(nullptr);
- jacobian.push_back(jacobian_vect[1].data());
- // Test jacobian computation.
- EXPECT_TRUE(cost_function.Evaluate(
- parameter_blocks.data(), residuals.data(), jacobian.data()));
- for (int r = 0; r < 10; ++r) {
- EXPECT_EQ(-1.0 * r, residuals.at(r * 2));
- EXPECT_EQ(+1.0 * r, residuals.at(r * 2 + 1));
- }
- EXPECT_EQ(420, residuals.at(20));
- // Check "C" Jacobian for second parameter block.
- for (int p = 0; p < 5; ++p) {
- EXPECT_NEAR(1.0, jacobian_vect[1][20 * 5 + p], kTolerance);
- jacobian_vect[1][20 * 5 + p] = 0.0;
- }
- for (double& i : jacobian_vect[1]) {
- EXPECT_EQ(0.0, i);
- }
- }
- TEST(DynamicNumericdiffCostFunctionTest,
- JacobianWithSecondParameterBlockConstant) { // NOLINT
- // Test the residual counting.
- std::vector<double> param_block_0(10, 0.0);
- for (int i = 0; i < 10; ++i) {
- param_block_0[i] = 2 * i;
- }
- std::vector<double> param_block_1(5, 0.0);
- DynamicNumericDiffCostFunction<MyCostFunctor> cost_function(
- new MyCostFunctor());
- cost_function.AddParameterBlock(param_block_0.size());
- cost_function.AddParameterBlock(param_block_1.size());
- cost_function.SetNumResiduals(21);
- // Prepare the residuals.
- std::vector<double> residuals(21, -100000);
- // Prepare the parameters.
- std::vector<double*> parameter_blocks(2);
- parameter_blocks[0] = ¶m_block_0[0];
- parameter_blocks[1] = ¶m_block_1[0];
- // Prepare the jacobian.
- std::vector<std::vector<double>> jacobian_vect(2);
- jacobian_vect[0].resize(21 * 10, -100000);
- jacobian_vect[1].resize(21 * 5, -100000);
- std::vector<double*> jacobian;
- jacobian.push_back(jacobian_vect[0].data());
- jacobian.push_back(nullptr);
- // Test jacobian computation.
- EXPECT_TRUE(cost_function.Evaluate(
- parameter_blocks.data(), residuals.data(), jacobian.data()));
- for (int r = 0; r < 10; ++r) {
- EXPECT_EQ(-1.0 * r, residuals.at(r * 2));
- EXPECT_EQ(+1.0 * r, residuals.at(r * 2 + 1));
- }
- EXPECT_EQ(420, residuals.at(20));
- for (int p = 0; p < 10; ++p) {
- // Check "A" Jacobian.
- EXPECT_NEAR(-1.0, jacobian_vect[0][2 * p * 10 + p], kTolerance);
- // Check "B" Jacobian.
- EXPECT_NEAR(+1.0, jacobian_vect[0][(2 * p + 1) * 10 + p], kTolerance);
- jacobian_vect[0][2 * p * 10 + p] = 0.0;
- jacobian_vect[0][(2 * p + 1) * 10 + p] = 0.0;
- }
- // Check "C" Jacobian for first parameter block.
- for (int p = 0; p < 10; ++p) {
- EXPECT_NEAR(4 * p - 8, jacobian_vect[0][20 * 10 + p], kTolerance);
- jacobian_vect[0][20 * 10 + p] = 0.0;
- }
- for (double& i : jacobian_vect[0]) {
- EXPECT_EQ(0.0, i);
- }
- }
- // Takes 3 parameter blocks:
- // parameters[0] (x) is size 1.
- // parameters[1] (y) is size 2.
- // parameters[2] (z) is size 3.
- // Emits 7 residuals:
- // A: x[0] (= sum_x)
- // B: y[0] + 2.0 * y[1] (= sum_y)
- // C: z[0] + 3.0 * z[1] + 6.0 * z[2] (= sum_z)
- // D: sum_x * sum_y
- // E: sum_y * sum_z
- // F: sum_x * sum_z
- // G: sum_x * sum_y * sum_z
- class MyThreeParameterCostFunctor {
- public:
- template <typename T>
- bool operator()(T const* const* parameters, T* residuals) const {
- const T* x = parameters[0];
- const T* y = parameters[1];
- const T* z = parameters[2];
- T sum_x = x[0];
- T sum_y = y[0] + 2.0 * y[1];
- T sum_z = z[0] + 3.0 * z[1] + 6.0 * z[2];
- residuals[0] = sum_x;
- residuals[1] = sum_y;
- residuals[2] = sum_z;
- residuals[3] = sum_x * sum_y;
- residuals[4] = sum_y * sum_z;
- residuals[5] = sum_x * sum_z;
- residuals[6] = sum_x * sum_y * sum_z;
- return true;
- }
- };
- class ThreeParameterCostFunctorTest : public ::testing::Test {
- protected:
- void SetUp() final {
- // Prepare the parameters.
- x_.resize(1);
- x_[0] = 0.0;
- y_.resize(2);
- y_[0] = 1.0;
- y_[1] = 3.0;
- z_.resize(3);
- z_[0] = 2.0;
- z_[1] = 4.0;
- z_[2] = 6.0;
- parameter_blocks_.resize(3);
- parameter_blocks_[0] = &x_[0];
- parameter_blocks_[1] = &y_[0];
- parameter_blocks_[2] = &z_[0];
- // Prepare the cost function.
- using DynamicMyThreeParameterCostFunction =
- DynamicNumericDiffCostFunction<MyThreeParameterCostFunctor>;
- auto cost_function = std::make_unique<DynamicMyThreeParameterCostFunction>(
- new MyThreeParameterCostFunctor());
- cost_function->AddParameterBlock(1);
- cost_function->AddParameterBlock(2);
- cost_function->AddParameterBlock(3);
- cost_function->SetNumResiduals(7);
- cost_function_ = std::move(cost_function);
- // Setup jacobian data.
- jacobian_vect_.resize(3);
- jacobian_vect_[0].resize(7 * x_.size(), -100000);
- jacobian_vect_[1].resize(7 * y_.size(), -100000);
- jacobian_vect_[2].resize(7 * z_.size(), -100000);
- // Prepare the expected residuals.
- const double sum_x = x_[0];
- const double sum_y = y_[0] + 2.0 * y_[1];
- const double sum_z = z_[0] + 3.0 * z_[1] + 6.0 * z_[2];
- expected_residuals_.resize(7);
- expected_residuals_[0] = sum_x;
- expected_residuals_[1] = sum_y;
- expected_residuals_[2] = sum_z;
- expected_residuals_[3] = sum_x * sum_y;
- expected_residuals_[4] = sum_y * sum_z;
- expected_residuals_[5] = sum_x * sum_z;
- expected_residuals_[6] = sum_x * sum_y * sum_z;
- // Prepare the expected jacobian entries.
- expected_jacobian_x_.resize(7);
- expected_jacobian_x_[0] = 1.0;
- expected_jacobian_x_[1] = 0.0;
- expected_jacobian_x_[2] = 0.0;
- expected_jacobian_x_[3] = sum_y;
- expected_jacobian_x_[4] = 0.0;
- expected_jacobian_x_[5] = sum_z;
- expected_jacobian_x_[6] = sum_y * sum_z;
- expected_jacobian_y_.resize(14);
- expected_jacobian_y_[0] = 0.0;
- expected_jacobian_y_[1] = 0.0;
- expected_jacobian_y_[2] = 1.0;
- expected_jacobian_y_[3] = 2.0;
- expected_jacobian_y_[4] = 0.0;
- expected_jacobian_y_[5] = 0.0;
- expected_jacobian_y_[6] = sum_x;
- expected_jacobian_y_[7] = 2.0 * sum_x;
- expected_jacobian_y_[8] = sum_z;
- expected_jacobian_y_[9] = 2.0 * sum_z;
- expected_jacobian_y_[10] = 0.0;
- expected_jacobian_y_[11] = 0.0;
- expected_jacobian_y_[12] = sum_x * sum_z;
- expected_jacobian_y_[13] = 2.0 * sum_x * sum_z;
- expected_jacobian_z_.resize(21);
- expected_jacobian_z_[0] = 0.0;
- expected_jacobian_z_[1] = 0.0;
- expected_jacobian_z_[2] = 0.0;
- expected_jacobian_z_[3] = 0.0;
- expected_jacobian_z_[4] = 0.0;
- expected_jacobian_z_[5] = 0.0;
- expected_jacobian_z_[6] = 1.0;
- expected_jacobian_z_[7] = 3.0;
- expected_jacobian_z_[8] = 6.0;
- expected_jacobian_z_[9] = 0.0;
- expected_jacobian_z_[10] = 0.0;
- expected_jacobian_z_[11] = 0.0;
- expected_jacobian_z_[12] = sum_y;
- expected_jacobian_z_[13] = 3.0 * sum_y;
- expected_jacobian_z_[14] = 6.0 * sum_y;
- expected_jacobian_z_[15] = sum_x;
- expected_jacobian_z_[16] = 3.0 * sum_x;
- expected_jacobian_z_[17] = 6.0 * sum_x;
- expected_jacobian_z_[18] = sum_x * sum_y;
- expected_jacobian_z_[19] = 3.0 * sum_x * sum_y;
- expected_jacobian_z_[20] = 6.0 * sum_x * sum_y;
- }
- protected:
- std::vector<double> x_;
- std::vector<double> y_;
- std::vector<double> z_;
- std::vector<double*> parameter_blocks_;
- std::unique_ptr<CostFunction> cost_function_;
- std::vector<std::vector<double>> jacobian_vect_;
- std::vector<double> expected_residuals_;
- std::vector<double> expected_jacobian_x_;
- std::vector<double> expected_jacobian_y_;
- std::vector<double> expected_jacobian_z_;
- };
- TEST_F(ThreeParameterCostFunctorTest, TestThreeParameterResiduals) {
- std::vector<double> residuals(7, -100000);
- EXPECT_TRUE(cost_function_->Evaluate(
- parameter_blocks_.data(), residuals.data(), nullptr));
- for (int i = 0; i < 7; ++i) {
- EXPECT_EQ(expected_residuals_[i], residuals[i]);
- }
- }
- TEST_F(ThreeParameterCostFunctorTest, TestThreeParameterJacobian) {
- std::vector<double> residuals(7, -100000);
- std::vector<double*> jacobian;
- jacobian.push_back(jacobian_vect_[0].data());
- jacobian.push_back(jacobian_vect_[1].data());
- jacobian.push_back(jacobian_vect_[2].data());
- EXPECT_TRUE(cost_function_->Evaluate(
- parameter_blocks_.data(), residuals.data(), jacobian.data()));
- for (int i = 0; i < 7; ++i) {
- EXPECT_EQ(expected_residuals_[i], residuals[i]);
- }
- for (int i = 0; i < 7; ++i) {
- EXPECT_NEAR(expected_jacobian_x_[i], jacobian[0][i], kTolerance);
- }
- for (int i = 0; i < 14; ++i) {
- EXPECT_NEAR(expected_jacobian_y_[i], jacobian[1][i], kTolerance);
- }
- for (int i = 0; i < 21; ++i) {
- EXPECT_NEAR(expected_jacobian_z_[i], jacobian[2][i], kTolerance);
- }
- }
- TEST_F(ThreeParameterCostFunctorTest,
- ThreeParameterJacobianWithFirstAndLastParameterBlockConstant) {
- std::vector<double> residuals(7, -100000);
- std::vector<double*> jacobian;
- jacobian.push_back(nullptr);
- jacobian.push_back(jacobian_vect_[1].data());
- jacobian.push_back(nullptr);
- EXPECT_TRUE(cost_function_->Evaluate(
- parameter_blocks_.data(), residuals.data(), jacobian.data()));
- for (int i = 0; i < 7; ++i) {
- EXPECT_EQ(expected_residuals_[i], residuals[i]);
- }
- for (int i = 0; i < 14; ++i) {
- EXPECT_NEAR(expected_jacobian_y_[i], jacobian[1][i], kTolerance);
- }
- }
- TEST_F(ThreeParameterCostFunctorTest,
- ThreeParameterJacobianWithSecondParameterBlockConstant) {
- std::vector<double> residuals(7, -100000);
- std::vector<double*> jacobian;
- jacobian.push_back(jacobian_vect_[0].data());
- jacobian.push_back(nullptr);
- jacobian.push_back(jacobian_vect_[2].data());
- EXPECT_TRUE(cost_function_->Evaluate(
- parameter_blocks_.data(), residuals.data(), jacobian.data()));
- for (int i = 0; i < 7; ++i) {
- EXPECT_EQ(expected_residuals_[i], residuals[i]);
- }
- for (int i = 0; i < 7; ++i) {
- EXPECT_NEAR(expected_jacobian_x_[i], jacobian[0][i], kTolerance);
- }
- for (int i = 0; i < 21; ++i) {
- EXPECT_NEAR(expected_jacobian_z_[i], jacobian[2][i], kTolerance);
- }
- }
- } // namespace ceres::internal
|