123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132 |
- // Ceres Solver - A fast non-linear least squares minimizer
- // Copyright 2022 Google Inc. All rights reserved.
- // http://ceres-solver.org/
- //
- // Redistribution and use in source and binary forms, with or without
- // modification, are permitted provided that the following conditions are met:
- //
- // * Redistributions of source code must retain the above copyright notice,
- // this list of conditions and the following disclaimer.
- // * Redistributions in binary form must reproduce the above copyright notice,
- // this list of conditions and the following disclaimer in the documentation
- // and/or other materials provided with the distribution.
- // * Neither the name of Google Inc. nor the names of its contributors may be
- // used to endorse or promote products derived from this software without
- // specific prior written permission.
- //
- // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
- // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
- // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
- // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
- // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
- // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
- // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
- // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
- // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
- // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
- // POSSIBILITY OF SUCH DAMAGE.
- //
- // Author: joydeepb@cs.utexas.edu (Joydeep Biswas)
- //
- // A CUDA sparse matrix linear operator.
- #ifndef CERES_INTERNAL_CUDA_SPARSE_MATRIX_H_
- #define CERES_INTERNAL_CUDA_SPARSE_MATRIX_H_
- // This include must come before any #ifndef check on Ceres compile options.
- // clang-format off
- #include "ceres/internal/config.h"
- // clang-format on
- #include <cstdint>
- #include <memory>
- #include <string>
- #include "ceres/compressed_row_sparse_matrix.h"
- #include "ceres/context_impl.h"
- #include "ceres/internal/export.h"
- #include "ceres/types.h"
- #ifndef CERES_NO_CUDA
- #include "ceres/cuda_buffer.h"
- #include "ceres/cuda_vector.h"
- #include "cusparse.h"
- namespace ceres::internal {
- // A sparse matrix hosted on the GPU in compressed row sparse format, with
- // CUDA-accelerated operations.
- class CERES_NO_EXPORT CudaSparseMatrix {
- public:
- // Create a GPU copy of the matrix provided. The caller must ensure that
- // InitCuda() has already been successfully called on context before calling
- // this constructor.
- CudaSparseMatrix(ContextImpl* context,
- const CompressedRowSparseMatrix& crs_matrix);
- // Creates a "blank" matrix with an appropriate amount of memory allocated.
- // The object itself is left in an inconsistent state.
- CudaSparseMatrix(int num_rows,
- int num_cols,
- int num_nonzeros,
- ContextImpl* context);
- ~CudaSparseMatrix();
- // y = y + Ax;
- void RightMultiplyAndAccumulate(const CudaVector& x, CudaVector* y);
- // y = y + A'x;
- void LeftMultiplyAndAccumulate(const CudaVector& x, CudaVector* y);
- int num_rows() const { return num_rows_; }
- int num_cols() const { return num_cols_; }
- int num_nonzeros() const { return num_nonzeros_; }
- const int32_t* rows() const { return rows_.data(); }
- const int32_t* cols() const { return cols_.data(); }
- const double* values() const { return values_.data(); }
- int32_t* mutable_rows() { return rows_.data(); }
- int32_t* mutable_cols() { return cols_.data(); }
- double* mutable_values() { return values_.data(); }
- // If subsequent uses of this matrix involve only numerical changes and no
- // structural changes, then this method can be used to copy the updated
- // non-zero values -- the row and column index arrays are kept the same. It
- // is the caller's responsibility to ensure that the sparsity structure of the
- // matrix is unchanged.
- void CopyValuesFromCpu(const CompressedRowSparseMatrix& crs_matrix);
- const cusparseSpMatDescr_t& descr() const { return descr_; }
- private:
- // Disable copy and assignment.
- CudaSparseMatrix(const CudaSparseMatrix&) = delete;
- CudaSparseMatrix& operator=(const CudaSparseMatrix&) = delete;
- // y = y + op(M)x. op must be either CUSPARSE_OPERATION_NON_TRANSPOSE or
- // CUSPARSE_OPERATION_TRANSPOSE.
- void SpMv(cusparseOperation_t op, const CudaVector& x, CudaVector* y);
- int num_rows_ = 0;
- int num_cols_ = 0;
- int num_nonzeros_ = 0;
- ContextImpl* context_ = nullptr;
- // CSR row indices.
- CudaBuffer<int32_t> rows_;
- // CSR column indices.
- CudaBuffer<int32_t> cols_;
- // CSR values.
- CudaBuffer<double> values_;
- // CuSparse object that describes this matrix.
- cusparseSpMatDescr_t descr_ = nullptr;
- CudaBuffer<uint8_t> spmv_buffer_;
- };
- } // namespace ceres::internal
- #endif // CERES_NO_CUDA
- #endif // CERES_INTERNAL_CUDA_SPARSE_MATRIX_H_
|