123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128 |
- // Ceres Solver - A fast non-linear least squares minimizer
- // Copyright 2023 Google Inc. All rights reserved.
- // http://ceres-solver.org/
- //
- // Redistribution and use in source and binary forms, with or without
- // modification, are permitted provided that the following conditions are met:
- //
- // * Redistributions of source code must retain the above copyright notice,
- // this list of conditions and the following disclaimer.
- // * Redistributions in binary form must reproduce the above copyright notice,
- // this list of conditions and the following disclaimer in the documentation
- // and/or other materials provided with the distribution.
- // * Neither the name of Google Inc. nor the names of its contributors may be
- // used to endorse or promote products derived from this software without
- // specific prior written permission.
- //
- // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
- // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
- // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
- // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
- // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
- // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
- // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
- // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
- // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
- // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
- // POSSIBILITY OF SUCH DAMAGE.
- //
- // Authors: dmitriy.korchemkin@gmail.com (Dmitriy Korchemkin)
- #include "ceres/cuda_block_structure.h"
- #ifndef CERES_NO_CUDA
- namespace ceres::internal {
- namespace {
- // Dimension of a sorted array of blocks
- inline int Dimension(const std::vector<Block>& blocks) {
- if (blocks.empty()) {
- return 0;
- }
- const auto& last = blocks.back();
- return last.size + last.position;
- }
- } // namespace
- CudaBlockSparseStructure::CudaBlockSparseStructure(
- const CompressedRowBlockStructure& block_structure, ContextImpl* context)
- : first_cell_in_row_block_(context),
- cells_(context),
- row_blocks_(context),
- col_blocks_(context) {
- // Row blocks extracted from CompressedRowBlockStructure::rows
- std::vector<Block> row_blocks;
- // Column blocks can be reused as-is
- const auto& col_blocks = block_structure.cols;
- // Row block offset is an index of the first cell corresponding to row block
- std::vector<int> first_cell_in_row_block;
- // Flat array of all cells from all row-blocks
- std::vector<Cell> cells;
- int f_values_offset = 0;
- is_crs_compatible_ = true;
- num_row_blocks_ = block_structure.rows.size();
- num_col_blocks_ = col_blocks.size();
- row_blocks.reserve(num_row_blocks_);
- first_cell_in_row_block.reserve(num_row_blocks_ + 1);
- num_nonzeros_ = 0;
- sequential_layout_ = true;
- for (const auto& r : block_structure.rows) {
- const int row_block_size = r.block.size;
- if (r.cells.size() > 1 && row_block_size > 1) {
- is_crs_compatible_ = false;
- }
- row_blocks.emplace_back(r.block);
- first_cell_in_row_block.push_back(cells.size());
- for (const auto& c : r.cells) {
- const int col_block_size = col_blocks[c.block_id].size;
- const int cell_size = col_block_size * row_block_size;
- cells.push_back(c);
- sequential_layout_ &= c.position == num_nonzeros_;
- num_nonzeros_ += cell_size;
- }
- }
- first_cell_in_row_block.push_back(cells.size());
- num_cells_ = cells.size();
- num_rows_ = Dimension(row_blocks);
- num_cols_ = Dimension(col_blocks);
- is_crs_compatible_ &= sequential_layout_;
- if (VLOG_IS_ON(3)) {
- const size_t first_cell_in_row_block_size =
- first_cell_in_row_block.size() * sizeof(int);
- const size_t cells_size = cells.size() * sizeof(Cell);
- const size_t row_blocks_size = row_blocks.size() * sizeof(Block);
- const size_t col_blocks_size = col_blocks.size() * sizeof(Block);
- const size_t total_size = first_cell_in_row_block_size + cells_size +
- col_blocks_size + row_blocks_size;
- const double ratio =
- (100. * total_size) / (num_nonzeros_ * (sizeof(int) + sizeof(double)) +
- num_rows_ * sizeof(int));
- VLOG(3) << "\nCudaBlockSparseStructure:\n"
- "\tRow block offsets: "
- << first_cell_in_row_block_size
- << " bytes\n"
- "\tColumn blocks: "
- << col_blocks_size
- << " bytes\n"
- "\tRow blocks: "
- << row_blocks_size
- << " bytes\n"
- "\tCells: "
- << cells_size << " bytes\n\tTotal: " << total_size
- << " bytes of GPU memory (" << ratio << "% of CRS matrix size)";
- }
- first_cell_in_row_block_.CopyFromCpuVector(first_cell_in_row_block);
- cells_.CopyFromCpuVector(cells);
- row_blocks_.CopyFromCpuVector(row_blocks);
- col_blocks_.CopyFromCpuVector(col_blocks);
- }
- } // namespace ceres::internal
- #endif // CERES_NO_CUDA
|