123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889 |
- // Ceres Solver - A fast non-linear least squares minimizer
- // Copyright 2022 Google Inc. All rights reserved.
- // http://ceres-solver.org/
- //
- // Redistribution and use in source and binary forms, with or without
- // modification, are permitted provided that the following conditions are met:
- //
- // * Redistributions of source code must retain the above copyright notice,
- // this list of conditions and the following disclaimer.
- // * Redistributions in binary form must reproduce the above copyright notice,
- // this list of conditions and the following disclaimer in the documentation
- // and/or other materials provided with the distribution.
- // * Neither the name of Google Inc. nor the names of its contributors may be
- // used to endorse or promote products derived from this software without
- // specific prior written permission.
- //
- // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
- // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
- // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
- // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
- // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
- // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
- // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
- // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
- // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
- // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
- // POSSIBILITY OF SUCH DAMAGE.
- //
- // Author: sameeragarwal@google.com (Sameer Agarwal)
- #include "ceres/covariance_impl.h"
- #include <algorithm>
- #include <cstdlib>
- #include <memory>
- #include <numeric>
- #include <sstream>
- #include <unordered_set>
- #include <utility>
- #include <vector>
- #include "Eigen/SVD"
- #include "Eigen/SparseCore"
- #include "Eigen/SparseQR"
- #include "ceres/compressed_col_sparse_matrix_utils.h"
- #include "ceres/compressed_row_sparse_matrix.h"
- #include "ceres/covariance.h"
- #include "ceres/crs_matrix.h"
- #include "ceres/internal/eigen.h"
- #include "ceres/map_util.h"
- #include "ceres/parallel_for.h"
- #include "ceres/parallel_utils.h"
- #include "ceres/parameter_block.h"
- #include "ceres/problem_impl.h"
- #include "ceres/residual_block.h"
- #include "ceres/suitesparse.h"
- #include "ceres/wall_time.h"
- #include "glog/logging.h"
- namespace ceres::internal {
- using CovarianceBlocks = std::vector<std::pair<const double*, const double*>>;
- CovarianceImpl::CovarianceImpl(const Covariance::Options& options)
- : options_(options), is_computed_(false), is_valid_(false) {
- evaluate_options_.num_threads = options_.num_threads;
- evaluate_options_.apply_loss_function = options_.apply_loss_function;
- }
- CovarianceImpl::~CovarianceImpl() = default;
- template <typename T>
- void CheckForDuplicates(std::vector<T> blocks) {
- std::sort(blocks.begin(), blocks.end());
- auto it = std::adjacent_find(blocks.begin(), blocks.end());
- if (it != blocks.end()) {
- // In case there are duplicates, we search for their location.
- std::map<T, std::vector<int>> blocks_map;
- for (int i = 0; i < blocks.size(); ++i) {
- blocks_map[blocks[i]].push_back(i);
- }
- std::ostringstream duplicates;
- while (it != blocks.end()) {
- duplicates << "(";
- for (int i = 0; i < blocks_map[*it].size() - 1; ++i) {
- duplicates << blocks_map[*it][i] << ", ";
- }
- duplicates << blocks_map[*it].back() << ")";
- it = std::adjacent_find(it + 1, blocks.end());
- if (it < blocks.end()) {
- duplicates << " and ";
- }
- }
- LOG(FATAL) << "Covariance::Compute called with duplicate blocks at "
- << "indices " << duplicates.str();
- }
- }
- bool CovarianceImpl::Compute(const CovarianceBlocks& covariance_blocks,
- ProblemImpl* problem) {
- CheckForDuplicates<std::pair<const double*, const double*>>(
- covariance_blocks);
- problem_ = problem;
- parameter_block_to_row_index_.clear();
- covariance_matrix_ = nullptr;
- is_valid_ = (ComputeCovarianceSparsity(covariance_blocks, problem) &&
- ComputeCovarianceValues());
- is_computed_ = true;
- return is_valid_;
- }
- bool CovarianceImpl::Compute(const std::vector<const double*>& parameter_blocks,
- ProblemImpl* problem) {
- CheckForDuplicates<const double*>(parameter_blocks);
- CovarianceBlocks covariance_blocks;
- for (int i = 0; i < parameter_blocks.size(); ++i) {
- for (int j = i; j < parameter_blocks.size(); ++j) {
- covariance_blocks.push_back(
- std::make_pair(parameter_blocks[i], parameter_blocks[j]));
- }
- }
- return Compute(covariance_blocks, problem);
- }
- bool CovarianceImpl::GetCovarianceBlockInTangentOrAmbientSpace(
- const double* original_parameter_block1,
- const double* original_parameter_block2,
- bool lift_covariance_to_ambient_space,
- double* covariance_block) const {
- CHECK(is_computed_)
- << "Covariance::GetCovarianceBlock called before Covariance::Compute";
- CHECK(is_valid_)
- << "Covariance::GetCovarianceBlock called when Covariance::Compute "
- << "returned false.";
- // If either of the two parameter blocks is constant, then the
- // covariance block is also zero.
- if (constant_parameter_blocks_.count(original_parameter_block1) > 0 ||
- constant_parameter_blocks_.count(original_parameter_block2) > 0) {
- const ProblemImpl::ParameterMap& parameter_map = problem_->parameter_map();
- ParameterBlock* block1 = FindOrDie(
- parameter_map, const_cast<double*>(original_parameter_block1));
- ParameterBlock* block2 = FindOrDie(
- parameter_map, const_cast<double*>(original_parameter_block2));
- const int block1_size = block1->Size();
- const int block2_size = block2->Size();
- const int block1_tangent_size = block1->TangentSize();
- const int block2_tangent_size = block2->TangentSize();
- if (!lift_covariance_to_ambient_space) {
- MatrixRef(covariance_block, block1_tangent_size, block2_tangent_size)
- .setZero();
- } else {
- MatrixRef(covariance_block, block1_size, block2_size).setZero();
- }
- return true;
- }
- const double* parameter_block1 = original_parameter_block1;
- const double* parameter_block2 = original_parameter_block2;
- const bool transpose = parameter_block1 > parameter_block2;
- if (transpose) {
- std::swap(parameter_block1, parameter_block2);
- }
- // Find where in the covariance matrix the block is located.
- const int row_begin =
- FindOrDie(parameter_block_to_row_index_, parameter_block1);
- const int col_begin =
- FindOrDie(parameter_block_to_row_index_, parameter_block2);
- const int* rows = covariance_matrix_->rows();
- const int* cols = covariance_matrix_->cols();
- const int row_size = rows[row_begin + 1] - rows[row_begin];
- const int* cols_begin = cols + rows[row_begin];
- // The only part that requires work is walking the compressed column
- // vector to determine where the set of columns corresponding to the
- // covariance block begin.
- int offset = 0;
- while (cols_begin[offset] != col_begin && offset < row_size) {
- ++offset;
- }
- if (offset == row_size) {
- LOG(ERROR) << "Unable to find covariance block for "
- << original_parameter_block1 << " " << original_parameter_block2;
- return false;
- }
- const ProblemImpl::ParameterMap& parameter_map = problem_->parameter_map();
- ParameterBlock* block1 =
- FindOrDie(parameter_map, const_cast<double*>(parameter_block1));
- ParameterBlock* block2 =
- FindOrDie(parameter_map, const_cast<double*>(parameter_block2));
- const Manifold* manifold1 = block1->manifold();
- const Manifold* manifold2 = block2->manifold();
- const int block1_size = block1->Size();
- const int block1_tangent_size = block1->TangentSize();
- const int block2_size = block2->Size();
- const int block2_tangent_size = block2->TangentSize();
- ConstMatrixRef cov(covariance_matrix_->values() + rows[row_begin],
- block1_tangent_size,
- row_size);
- // Fast path when there are no manifolds or if the user does not want it
- // lifted to the ambient space.
- if ((manifold1 == nullptr && manifold2 == nullptr) ||
- !lift_covariance_to_ambient_space) {
- if (transpose) {
- MatrixRef(covariance_block, block2_tangent_size, block1_tangent_size) =
- cov.block(0, offset, block1_tangent_size, block2_tangent_size)
- .transpose();
- } else {
- MatrixRef(covariance_block, block1_tangent_size, block2_tangent_size) =
- cov.block(0, offset, block1_tangent_size, block2_tangent_size);
- }
- return true;
- }
- // If manifolds are used then the covariance that has been computed is in the
- // tangent space and it needs to be lifted back to the ambient space.
- //
- // This is given by the formula
- //
- // C'_12 = J_1 C_12 J_2'
- //
- // Where C_12 is the local tangent space covariance for parameter
- // blocks 1 and 2. J_1 and J_2 are respectively the local to global
- // jacobians for parameter blocks 1 and 2.
- //
- // See Result 5.11 on page 142 of Hartley & Zisserman (2nd Edition)
- // for a proof.
- //
- // TODO(sameeragarwal): Add caching the manifold plus_jacobian, so that they
- // are computed just once per parameter block.
- Matrix block1_jacobian(block1_size, block1_tangent_size);
- if (manifold1 == nullptr) {
- block1_jacobian.setIdentity();
- } else {
- manifold1->PlusJacobian(parameter_block1, block1_jacobian.data());
- }
- Matrix block2_jacobian(block2_size, block2_tangent_size);
- // Fast path if the user is requesting a diagonal block.
- if (parameter_block1 == parameter_block2) {
- block2_jacobian = block1_jacobian;
- } else {
- if (manifold2 == nullptr) {
- block2_jacobian.setIdentity();
- } else {
- manifold2->PlusJacobian(parameter_block2, block2_jacobian.data());
- }
- }
- if (transpose) {
- MatrixRef(covariance_block, block2_size, block1_size) =
- block2_jacobian *
- cov.block(0, offset, block1_tangent_size, block2_tangent_size)
- .transpose() *
- block1_jacobian.transpose();
- } else {
- MatrixRef(covariance_block, block1_size, block2_size) =
- block1_jacobian *
- cov.block(0, offset, block1_tangent_size, block2_tangent_size) *
- block2_jacobian.transpose();
- }
- return true;
- }
- bool CovarianceImpl::GetCovarianceMatrixInTangentOrAmbientSpace(
- const std::vector<const double*>& parameters,
- bool lift_covariance_to_ambient_space,
- double* covariance_matrix) const {
- CHECK(is_computed_)
- << "Covariance::GetCovarianceMatrix called before Covariance::Compute";
- CHECK(is_valid_)
- << "Covariance::GetCovarianceMatrix called when Covariance::Compute "
- << "returned false.";
- const ProblemImpl::ParameterMap& parameter_map = problem_->parameter_map();
- // For OpenMP compatibility we need to define these vectors in advance
- const int num_parameters = parameters.size();
- std::vector<int> parameter_sizes;
- std::vector<int> cum_parameter_size;
- parameter_sizes.reserve(num_parameters);
- cum_parameter_size.resize(num_parameters + 1);
- cum_parameter_size[0] = 0;
- for (int i = 0; i < num_parameters; ++i) {
- ParameterBlock* block =
- FindOrDie(parameter_map, const_cast<double*>(parameters[i]));
- if (lift_covariance_to_ambient_space) {
- parameter_sizes.push_back(block->Size());
- } else {
- parameter_sizes.push_back(block->TangentSize());
- }
- }
- std::partial_sum(parameter_sizes.begin(),
- parameter_sizes.end(),
- cum_parameter_size.begin() + 1);
- const int max_covariance_block_size =
- *std::max_element(parameter_sizes.begin(), parameter_sizes.end());
- const int covariance_size = cum_parameter_size.back();
- // Assemble the blocks in the covariance matrix.
- MatrixRef covariance(covariance_matrix, covariance_size, covariance_size);
- const int num_threads = options_.num_threads;
- auto workspace = std::make_unique<double[]>(
- num_threads * max_covariance_block_size * max_covariance_block_size);
- bool success = true;
- // Technically the following code is a double nested loop where
- // i = 1:n, j = i:n.
- int iteration_count = (num_parameters * (num_parameters + 1)) / 2;
- problem_->context()->EnsureMinimumThreads(num_threads);
- ParallelFor(problem_->context(),
- 0,
- iteration_count,
- num_threads,
- [&](int thread_id, int k) {
- int i, j;
- LinearIndexToUpperTriangularIndex(k, num_parameters, &i, &j);
- int covariance_row_idx = cum_parameter_size[i];
- int covariance_col_idx = cum_parameter_size[j];
- int size_i = parameter_sizes[i];
- int size_j = parameter_sizes[j];
- double* covariance_block =
- workspace.get() + thread_id * max_covariance_block_size *
- max_covariance_block_size;
- if (!GetCovarianceBlockInTangentOrAmbientSpace(
- parameters[i],
- parameters[j],
- lift_covariance_to_ambient_space,
- covariance_block)) {
- success = false;
- }
- covariance.block(
- covariance_row_idx, covariance_col_idx, size_i, size_j) =
- MatrixRef(covariance_block, size_i, size_j);
- if (i != j) {
- covariance.block(
- covariance_col_idx, covariance_row_idx, size_j, size_i) =
- MatrixRef(covariance_block, size_i, size_j).transpose();
- }
- });
- return success;
- }
- // Determine the sparsity pattern of the covariance matrix based on
- // the block pairs requested by the user.
- bool CovarianceImpl::ComputeCovarianceSparsity(
- const CovarianceBlocks& original_covariance_blocks, ProblemImpl* problem) {
- EventLogger event_logger("CovarianceImpl::ComputeCovarianceSparsity");
- // Determine an ordering for the parameter block, by sorting the
- // parameter blocks by their pointers.
- std::vector<double*> all_parameter_blocks;
- problem->GetParameterBlocks(&all_parameter_blocks);
- const ProblemImpl::ParameterMap& parameter_map = problem->parameter_map();
- std::unordered_set<ParameterBlock*> parameter_blocks_in_use;
- std::vector<ResidualBlock*> residual_blocks;
- problem->GetResidualBlocks(&residual_blocks);
- for (auto* residual_block : residual_blocks) {
- parameter_blocks_in_use.insert(residual_block->parameter_blocks(),
- residual_block->parameter_blocks() +
- residual_block->NumParameterBlocks());
- }
- constant_parameter_blocks_.clear();
- std::vector<double*>& active_parameter_blocks =
- evaluate_options_.parameter_blocks;
- active_parameter_blocks.clear();
- for (auto* parameter_block : all_parameter_blocks) {
- ParameterBlock* block = FindOrDie(parameter_map, parameter_block);
- if (!block->IsConstant() && (parameter_blocks_in_use.count(block) > 0)) {
- active_parameter_blocks.push_back(parameter_block);
- } else {
- constant_parameter_blocks_.insert(parameter_block);
- }
- }
- std::sort(active_parameter_blocks.begin(), active_parameter_blocks.end());
- // Compute the number of rows. Map each parameter block to the
- // first row corresponding to it in the covariance matrix using the
- // ordering of parameter blocks just constructed.
- int num_rows = 0;
- parameter_block_to_row_index_.clear();
- for (auto* parameter_block : active_parameter_blocks) {
- const int parameter_block_size =
- problem->ParameterBlockTangentSize(parameter_block);
- parameter_block_to_row_index_[parameter_block] = num_rows;
- num_rows += parameter_block_size;
- }
- // Compute the number of non-zeros in the covariance matrix. Along
- // the way flip any covariance blocks which are in the lower
- // triangular part of the matrix.
- int num_nonzeros = 0;
- CovarianceBlocks covariance_blocks;
- for (const auto& block_pair : original_covariance_blocks) {
- if (constant_parameter_blocks_.count(block_pair.first) > 0 ||
- constant_parameter_blocks_.count(block_pair.second) > 0) {
- continue;
- }
- int index1 = FindOrDie(parameter_block_to_row_index_, block_pair.first);
- int index2 = FindOrDie(parameter_block_to_row_index_, block_pair.second);
- const int size1 = problem->ParameterBlockTangentSize(block_pair.first);
- const int size2 = problem->ParameterBlockTangentSize(block_pair.second);
- num_nonzeros += size1 * size2;
- // Make sure we are constructing a block upper triangular matrix.
- if (index1 > index2) {
- covariance_blocks.push_back(
- std::make_pair(block_pair.second, block_pair.first));
- } else {
- covariance_blocks.push_back(block_pair);
- }
- }
- if (covariance_blocks.empty()) {
- VLOG(2) << "No non-zero covariance blocks found";
- covariance_matrix_ = nullptr;
- return true;
- }
- // Sort the block pairs. As a consequence we get the covariance
- // blocks as they will occur in the CompressedRowSparseMatrix that
- // will store the covariance.
- std::sort(covariance_blocks.begin(), covariance_blocks.end());
- // Fill the sparsity pattern of the covariance matrix.
- covariance_matrix_ = std::make_unique<CompressedRowSparseMatrix>(
- num_rows, num_rows, num_nonzeros);
- int* rows = covariance_matrix_->mutable_rows();
- int* cols = covariance_matrix_->mutable_cols();
- // Iterate over parameter blocks and in turn over the rows of the
- // covariance matrix. For each parameter block, look in the upper
- // triangular part of the covariance matrix to see if there are any
- // blocks requested by the user. If this is the case then fill out a
- // set of compressed rows corresponding to this parameter block.
- //
- // The key thing that makes this loop work is the fact that the
- // row/columns of the covariance matrix are ordered by the pointer
- // values of the parameter blocks. Thus iterating over the keys of
- // parameter_block_to_row_index_ corresponds to iterating over the
- // rows of the covariance matrix in order.
- int i = 0; // index into covariance_blocks.
- int cursor = 0; // index into the covariance matrix.
- for (const auto& entry : parameter_block_to_row_index_) {
- const double* row_block = entry.first;
- const int row_block_size = problem->ParameterBlockTangentSize(row_block);
- int row_begin = entry.second;
- // Iterate over the covariance blocks contained in this row block
- // and count the number of columns in this row block.
- int num_col_blocks = 0;
- for (int j = i; j < covariance_blocks.size(); ++j, ++num_col_blocks) {
- const std::pair<const double*, const double*>& block_pair =
- covariance_blocks[j];
- if (block_pair.first != row_block) {
- break;
- }
- }
- // Fill out all the compressed rows for this parameter block.
- for (int r = 0; r < row_block_size; ++r) {
- rows[row_begin + r] = cursor;
- for (int c = 0; c < num_col_blocks; ++c) {
- const double* col_block = covariance_blocks[i + c].second;
- const int col_block_size =
- problem->ParameterBlockTangentSize(col_block);
- int col_begin = FindOrDie(parameter_block_to_row_index_, col_block);
- for (int k = 0; k < col_block_size; ++k) {
- cols[cursor++] = col_begin++;
- }
- }
- }
- i += num_col_blocks;
- }
- rows[num_rows] = cursor;
- return true;
- }
- bool CovarianceImpl::ComputeCovarianceValues() {
- if (options_.algorithm_type == DENSE_SVD) {
- return ComputeCovarianceValuesUsingDenseSVD();
- }
- if (options_.algorithm_type == SPARSE_QR) {
- if (options_.sparse_linear_algebra_library_type == EIGEN_SPARSE) {
- return ComputeCovarianceValuesUsingEigenSparseQR();
- }
- if (options_.sparse_linear_algebra_library_type == SUITE_SPARSE) {
- #if !defined(CERES_NO_SUITESPARSE)
- return ComputeCovarianceValuesUsingSuiteSparseQR();
- #else
- LOG(ERROR) << "SuiteSparse is required to use the SPARSE_QR algorithm "
- << "with "
- << "Covariance::Options::sparse_linear_algebra_library_type "
- << "= SUITE_SPARSE.";
- return false;
- #endif
- }
- LOG(ERROR) << "Unsupported "
- << "Covariance::Options::sparse_linear_algebra_library_type "
- << "= "
- << SparseLinearAlgebraLibraryTypeToString(
- options_.sparse_linear_algebra_library_type);
- return false;
- }
- LOG(ERROR) << "Unsupported Covariance::Options::algorithm_type = "
- << CovarianceAlgorithmTypeToString(options_.algorithm_type);
- return false;
- }
- bool CovarianceImpl::ComputeCovarianceValuesUsingSuiteSparseQR() {
- EventLogger event_logger(
- "CovarianceImpl::ComputeCovarianceValuesUsingSparseQR");
- #ifndef CERES_NO_SUITESPARSE
- if (covariance_matrix_ == nullptr) {
- // Nothing to do, all zeros covariance matrix.
- return true;
- }
- CRSMatrix jacobian;
- problem_->Evaluate(evaluate_options_, nullptr, nullptr, nullptr, &jacobian);
- event_logger.AddEvent("Evaluate");
- // Construct a compressed column form of the Jacobian.
- const int num_rows = jacobian.num_rows;
- const int num_cols = jacobian.num_cols;
- const int num_nonzeros = jacobian.values.size();
- std::vector<SuiteSparse_long> transpose_rows(num_cols + 1, 0);
- std::vector<SuiteSparse_long> transpose_cols(num_nonzeros, 0);
- std::vector<double> transpose_values(num_nonzeros, 0);
- for (int idx = 0; idx < num_nonzeros; ++idx) {
- transpose_rows[jacobian.cols[idx] + 1] += 1;
- }
- for (int i = 1; i < transpose_rows.size(); ++i) {
- transpose_rows[i] += transpose_rows[i - 1];
- }
- for (int r = 0; r < num_rows; ++r) {
- for (int idx = jacobian.rows[r]; idx < jacobian.rows[r + 1]; ++idx) {
- const int c = jacobian.cols[idx];
- const int transpose_idx = transpose_rows[c];
- transpose_cols[transpose_idx] = r;
- transpose_values[transpose_idx] = jacobian.values[idx];
- ++transpose_rows[c];
- }
- }
- for (int i = transpose_rows.size() - 1; i > 0; --i) {
- transpose_rows[i] = transpose_rows[i - 1];
- }
- transpose_rows[0] = 0;
- cholmod_sparse cholmod_jacobian;
- cholmod_jacobian.nrow = num_rows;
- cholmod_jacobian.ncol = num_cols;
- cholmod_jacobian.nzmax = num_nonzeros;
- cholmod_jacobian.nz = nullptr;
- cholmod_jacobian.p = reinterpret_cast<void*>(transpose_rows.data());
- cholmod_jacobian.i = reinterpret_cast<void*>(transpose_cols.data());
- cholmod_jacobian.x = reinterpret_cast<void*>(transpose_values.data());
- cholmod_jacobian.z = nullptr;
- cholmod_jacobian.stype = 0; // Matrix is not symmetric.
- cholmod_jacobian.itype = CHOLMOD_LONG;
- cholmod_jacobian.xtype = CHOLMOD_REAL;
- cholmod_jacobian.dtype = CHOLMOD_DOUBLE;
- cholmod_jacobian.sorted = 1;
- cholmod_jacobian.packed = 1;
- cholmod_common cc;
- cholmod_l_start(&cc);
- cholmod_sparse* R = nullptr;
- SuiteSparse_long* permutation = nullptr;
- // Compute a Q-less QR factorization of the Jacobian. Since we are
- // only interested in inverting J'J = R'R, we do not need Q. This
- // saves memory and gives us R as a permuted compressed column
- // sparse matrix.
- //
- // TODO(sameeragarwal): Currently the symbolic factorization and the
- // numeric factorization is done at the same time, and this does not
- // explicitly account for the block column and row structure in the
- // matrix. When using AMD, we have observed in the past that
- // computing the ordering with the block matrix is significantly
- // more efficient, both in runtime as well as the quality of
- // ordering computed. So, it maybe worth doing that analysis
- // separately.
- const SuiteSparse_long rank = SuiteSparseQR<double>(
- SPQR_ORDERING_BESTAMD,
- options_.column_pivot_threshold < 0 ? SPQR_DEFAULT_TOL
- : options_.column_pivot_threshold,
- cholmod_jacobian.ncol,
- &cholmod_jacobian,
- &R,
- &permutation,
- &cc);
- event_logger.AddEvent("Numeric Factorization");
- if (R == nullptr) {
- LOG(ERROR) << "Something is wrong. SuiteSparseQR returned R = nullptr.";
- free(permutation);
- cholmod_l_finish(&cc);
- return false;
- }
- if (rank < cholmod_jacobian.ncol) {
- LOG(WARNING) << "Jacobian matrix is rank deficient. "
- << "Number of columns: " << cholmod_jacobian.ncol
- << " rank: " << rank;
- free(permutation);
- cholmod_l_free_sparse(&R, &cc);
- cholmod_l_finish(&cc);
- return false;
- }
- std::vector<int> inverse_permutation(num_cols);
- if (permutation) {
- for (SuiteSparse_long i = 0; i < num_cols; ++i) {
- inverse_permutation[permutation[i]] = i;
- }
- } else {
- for (SuiteSparse_long i = 0; i < num_cols; ++i) {
- inverse_permutation[i] = i;
- }
- }
- const int* rows = covariance_matrix_->rows();
- const int* cols = covariance_matrix_->cols();
- double* values = covariance_matrix_->mutable_values();
- // The following loop exploits the fact that the i^th column of A^{-1}
- // is given by the solution to the linear system
- //
- // A x = e_i
- //
- // where e_i is a vector with e(i) = 1 and all other entries zero.
- //
- // Since the covariance matrix is symmetric, the i^th row and column
- // are equal.
- const int num_threads = options_.num_threads;
- auto workspace = std::make_unique<double[]>(num_threads * num_cols);
- problem_->context()->EnsureMinimumThreads(num_threads);
- ParallelFor(
- problem_->context(), 0, num_cols, num_threads, [&](int thread_id, int r) {
- const int row_begin = rows[r];
- const int row_end = rows[r + 1];
- if (row_end != row_begin) {
- double* solution = workspace.get() + thread_id * num_cols;
- SolveRTRWithSparseRHS<SuiteSparse_long>(
- num_cols,
- static_cast<SuiteSparse_long*>(R->i),
- static_cast<SuiteSparse_long*>(R->p),
- static_cast<double*>(R->x),
- inverse_permutation[r],
- solution);
- for (int idx = row_begin; idx < row_end; ++idx) {
- const int c = cols[idx];
- values[idx] = solution[inverse_permutation[c]];
- }
- }
- });
- free(permutation);
- cholmod_l_free_sparse(&R, &cc);
- cholmod_l_finish(&cc);
- event_logger.AddEvent("Inversion");
- return true;
- #else // CERES_NO_SUITESPARSE
- return false;
- #endif // CERES_NO_SUITESPARSE
- }
- bool CovarianceImpl::ComputeCovarianceValuesUsingDenseSVD() {
- EventLogger event_logger(
- "CovarianceImpl::ComputeCovarianceValuesUsingDenseSVD");
- if (covariance_matrix_ == nullptr) {
- // Nothing to do, all zeros covariance matrix.
- return true;
- }
- CRSMatrix jacobian;
- problem_->Evaluate(evaluate_options_, nullptr, nullptr, nullptr, &jacobian);
- event_logger.AddEvent("Evaluate");
- Matrix dense_jacobian(jacobian.num_rows, jacobian.num_cols);
- dense_jacobian.setZero();
- for (int r = 0; r < jacobian.num_rows; ++r) {
- for (int idx = jacobian.rows[r]; idx < jacobian.rows[r + 1]; ++idx) {
- const int c = jacobian.cols[idx];
- dense_jacobian(r, c) = jacobian.values[idx];
- }
- }
- event_logger.AddEvent("ConvertToDenseMatrix");
- Eigen::BDCSVD<Matrix> svd(dense_jacobian,
- Eigen::ComputeThinU | Eigen::ComputeThinV);
- event_logger.AddEvent("SingularValueDecomposition");
- const Vector singular_values = svd.singularValues();
- const int num_singular_values = singular_values.rows();
- Vector inverse_squared_singular_values(num_singular_values);
- inverse_squared_singular_values.setZero();
- const double max_singular_value = singular_values[0];
- const double min_singular_value_ratio =
- sqrt(options_.min_reciprocal_condition_number);
- const bool automatic_truncation = (options_.null_space_rank < 0);
- const int max_rank = std::min(num_singular_values,
- num_singular_values - options_.null_space_rank);
- // Compute the squared inverse of the singular values. Truncate the
- // computation based on min_singular_value_ratio and
- // null_space_rank. When either of these two quantities are active,
- // the resulting covariance matrix is a Moore-Penrose inverse
- // instead of a regular inverse.
- for (int i = 0; i < max_rank; ++i) {
- const double singular_value_ratio = singular_values[i] / max_singular_value;
- if (singular_value_ratio < min_singular_value_ratio) {
- // Since the singular values are in decreasing order, if
- // automatic truncation is enabled, then from this point on
- // all values will fail the ratio test and there is nothing to
- // do in this loop.
- if (automatic_truncation) {
- break;
- } else {
- LOG(ERROR) << "Error: Covariance matrix is near rank deficient "
- << "and the user did not specify a non-zero"
- << "Covariance::Options::null_space_rank "
- << "to enable the computation of a Pseudo-Inverse. "
- << "Reciprocal condition number: "
- << singular_value_ratio * singular_value_ratio << " "
- << "min_reciprocal_condition_number: "
- << options_.min_reciprocal_condition_number;
- return false;
- }
- }
- inverse_squared_singular_values[i] =
- 1.0 / (singular_values[i] * singular_values[i]);
- }
- Matrix dense_covariance = svd.matrixV() *
- inverse_squared_singular_values.asDiagonal() *
- svd.matrixV().transpose();
- event_logger.AddEvent("PseudoInverse");
- const int num_rows = covariance_matrix_->num_rows();
- const int* rows = covariance_matrix_->rows();
- const int* cols = covariance_matrix_->cols();
- double* values = covariance_matrix_->mutable_values();
- for (int r = 0; r < num_rows; ++r) {
- for (int idx = rows[r]; idx < rows[r + 1]; ++idx) {
- const int c = cols[idx];
- values[idx] = dense_covariance(r, c);
- }
- }
- event_logger.AddEvent("CopyToCovarianceMatrix");
- return true;
- }
- bool CovarianceImpl::ComputeCovarianceValuesUsingEigenSparseQR() {
- EventLogger event_logger(
- "CovarianceImpl::ComputeCovarianceValuesUsingEigenSparseQR");
- if (covariance_matrix_ == nullptr) {
- // Nothing to do, all zeros covariance matrix.
- return true;
- }
- CRSMatrix jacobian;
- problem_->Evaluate(evaluate_options_, nullptr, nullptr, nullptr, &jacobian);
- event_logger.AddEvent("Evaluate");
- using EigenSparseMatrix = Eigen::SparseMatrix<double, Eigen::ColMajor>;
- // Convert the matrix to column major order as required by SparseQR.
- EigenSparseMatrix sparse_jacobian =
- Eigen::Map<Eigen::SparseMatrix<double, Eigen::RowMajor>>(
- jacobian.num_rows,
- jacobian.num_cols,
- static_cast<int>(jacobian.values.size()),
- jacobian.rows.data(),
- jacobian.cols.data(),
- jacobian.values.data());
- event_logger.AddEvent("ConvertToSparseMatrix");
- Eigen::SparseQR<EigenSparseMatrix, Eigen::COLAMDOrdering<int>> qr;
- if (options_.column_pivot_threshold > 0) {
- qr.setPivotThreshold(options_.column_pivot_threshold);
- }
- qr.compute(sparse_jacobian);
- event_logger.AddEvent("QRDecomposition");
- if (qr.info() != Eigen::Success) {
- LOG(ERROR) << "Eigen::SparseQR decomposition failed.";
- return false;
- }
- if (qr.rank() < jacobian.num_cols) {
- LOG(ERROR) << "Jacobian matrix is rank deficient. "
- << "Number of columns: " << jacobian.num_cols
- << " rank: " << qr.rank();
- return false;
- }
- const int* rows = covariance_matrix_->rows();
- const int* cols = covariance_matrix_->cols();
- double* values = covariance_matrix_->mutable_values();
- // Compute the inverse column permutation used by QR factorization.
- Eigen::PermutationMatrix<Eigen::Dynamic, Eigen::Dynamic> inverse_permutation =
- qr.colsPermutation().inverse();
- // The following loop exploits the fact that the i^th column of A^{-1}
- // is given by the solution to the linear system
- //
- // A x = e_i
- //
- // where e_i is a vector with e(i) = 1 and all other entries zero.
- //
- // Since the covariance matrix is symmetric, the i^th row and column
- // are equal.
- const int num_cols = jacobian.num_cols;
- const int num_threads = options_.num_threads;
- auto workspace = std::make_unique<double[]>(num_threads * num_cols);
- problem_->context()->EnsureMinimumThreads(num_threads);
- ParallelFor(
- problem_->context(), 0, num_cols, num_threads, [&](int thread_id, int r) {
- const int row_begin = rows[r];
- const int row_end = rows[r + 1];
- if (row_end != row_begin) {
- double* solution = workspace.get() + thread_id * num_cols;
- SolveRTRWithSparseRHS<int>(num_cols,
- qr.matrixR().innerIndexPtr(),
- qr.matrixR().outerIndexPtr(),
- &qr.matrixR().data().value(0),
- inverse_permutation.indices().coeff(r),
- solution);
- // Assign the values of the computed covariance using the
- // inverse permutation used in the QR factorization.
- for (int idx = row_begin; idx < row_end; ++idx) {
- const int c = cols[idx];
- values[idx] = solution[inverse_permutation.indices().coeff(c)];
- }
- }
- });
- event_logger.AddEvent("Inverse");
- return true;
- }
- } // namespace ceres::internal
|