123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141 |
- // Ceres Solver - A fast non-linear least squares minimizer
- // Copyright 2015 Google Inc. All rights reserved.
- // http://ceres-solver.org/
- //
- // Redistribution and use in source and binary forms, with or without
- // modification, are permitted provided that the following conditions are met:
- //
- // * Redistributions of source code must retain the above copyright notice,
- // this list of conditions and the following disclaimer.
- // * Redistributions in binary form must reproduce the above copyright notice,
- // this list of conditions and the following disclaimer in the documentation
- // and/or other materials provided with the distribution.
- // * Neither the name of Google Inc. nor the names of its contributors may be
- // used to endorse or promote products derived from this software without
- // specific prior written permission.
- //
- // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
- // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
- // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
- // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
- // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
- // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
- // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
- // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
- // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
- // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
- // POSSIBILITY OF SUCH DAMAGE.
- //
- // Author: Sameer Agarwal (sameeragarwal@google.com)
- // David Gallup (dgallup@google.com)
- #include "ceres/canonical_views_clustering.h"
- #include <unordered_map>
- #include "ceres/graph.h"
- #include "gtest/gtest.h"
- namespace ceres::internal {
- const int kVertexIds[] = {0, 1, 2, 3};
- class CanonicalViewsTest : public ::testing::Test {
- protected:
- void SetUp() final {
- // The graph structure is as follows.
- //
- // Vertex weights: 0 2 2 0
- // V0-----V1-----V2-----V3
- // Edge weights: 0.8 0.9 0.3
- const double kVertexWeights[] = {0.0, 2.0, 2.0, -1.0};
- for (int i = 0; i < 4; ++i) {
- graph_.AddVertex(i, kVertexWeights[i]);
- }
- // Create self edges.
- // CanonicalViews requires that every view "sees" itself.
- for (int i = 0; i < 4; ++i) {
- graph_.AddEdge(i, i, 1.0);
- }
- // Create three edges.
- const double kEdgeWeights[] = {0.8, 0.9, 0.3};
- for (int i = 0; i < 3; ++i) {
- // The graph interface is directed, so remember to create both
- // edges.
- graph_.AddEdge(kVertexIds[i], kVertexIds[i + 1], kEdgeWeights[i]);
- }
- }
- void ComputeClustering() {
- ComputeCanonicalViewsClustering(options_, graph_, ¢ers_, &membership_);
- }
- WeightedGraph<int> graph_;
- CanonicalViewsClusteringOptions options_;
- std::vector<int> centers_;
- std::unordered_map<int, int> membership_;
- };
- TEST_F(CanonicalViewsTest, ComputeCanonicalViewsTest) {
- options_.min_views = 0;
- options_.size_penalty_weight = 0.5;
- options_.similarity_penalty_weight = 0.0;
- options_.view_score_weight = 0.0;
- ComputeClustering();
- // 2 canonical views.
- EXPECT_EQ(centers_.size(), 2);
- EXPECT_EQ(centers_[0], kVertexIds[1]);
- EXPECT_EQ(centers_[1], kVertexIds[3]);
- // Check cluster membership.
- EXPECT_EQ(FindOrDie(membership_, kVertexIds[0]), 0);
- EXPECT_EQ(FindOrDie(membership_, kVertexIds[1]), 0);
- EXPECT_EQ(FindOrDie(membership_, kVertexIds[2]), 0);
- EXPECT_EQ(FindOrDie(membership_, kVertexIds[3]), 1);
- }
- // Increases size penalty so the second canonical view won't be
- // chosen.
- TEST_F(CanonicalViewsTest, SizePenaltyTest) {
- options_.min_views = 0;
- options_.size_penalty_weight = 2.0;
- options_.similarity_penalty_weight = 0.0;
- options_.view_score_weight = 0.0;
- ComputeClustering();
- // 1 canonical view.
- EXPECT_EQ(centers_.size(), 1);
- EXPECT_EQ(centers_[0], kVertexIds[1]);
- }
- // Increases view score weight so vertex 2 will be chosen.
- TEST_F(CanonicalViewsTest, ViewScoreTest) {
- options_.min_views = 0;
- options_.size_penalty_weight = 0.5;
- options_.similarity_penalty_weight = 0.0;
- options_.view_score_weight = 1.0;
- ComputeClustering();
- // 2 canonical views.
- EXPECT_EQ(centers_.size(), 2);
- EXPECT_EQ(centers_[0], kVertexIds[1]);
- EXPECT_EQ(centers_[1], kVertexIds[2]);
- }
- // Increases similarity penalty so vertex 2 won't be chosen despite
- // it's view score.
- TEST_F(CanonicalViewsTest, SimilarityPenaltyTest) {
- options_.min_views = 0;
- options_.size_penalty_weight = 0.5;
- options_.similarity_penalty_weight = 3.0;
- options_.view_score_weight = 1.0;
- ComputeClustering();
- // 2 canonical views.
- EXPECT_EQ(centers_.size(), 1);
- EXPECT_EQ(centers_[0], kVertexIds[1]);
- }
- } // namespace ceres::internal
|