123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226 |
- // Ceres Solver - A fast non-linear least squares minimizer
- // Copyright 2022 Google Inc. All rights reserved.
- // http://ceres-solver.org/
- //
- // Redistribution and use in source and binary forms, with or without
- // modification, are permitted provided that the following conditions are met:
- //
- // * Redistributions of source code must retain the above copyright notice,
- // this list of conditions and the following disclaimer.
- // * Redistributions in binary form must reproduce the above copyright notice,
- // this list of conditions and the following disclaimer in the documentation
- // and/or other materials provided with the distribution.
- // * Neither the name of Google Inc. nor the names of its contributors may be
- // used to endorse or promote products derived from this software without
- // specific prior written permission.
- //
- // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
- // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
- // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
- // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
- // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
- // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
- // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
- // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
- // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
- // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
- // POSSIBILITY OF SUCH DAMAGE.
- //
- // Author: keir@google.com (Keir Mierle)
- #include "ceres/block_jacobi_preconditioner.h"
- #include <memory>
- #include <mutex>
- #include <utility>
- #include <vector>
- #include "Eigen/Dense"
- #include "ceres/block_random_access_diagonal_matrix.h"
- #include "ceres/block_sparse_matrix.h"
- #include "ceres/block_structure.h"
- #include "ceres/casts.h"
- #include "ceres/internal/eigen.h"
- #include "ceres/parallel_for.h"
- #include "ceres/small_blas.h"
- namespace ceres::internal {
- BlockSparseJacobiPreconditioner::BlockSparseJacobiPreconditioner(
- Preconditioner::Options options, const BlockSparseMatrix& A)
- : options_(std::move(options)) {
- m_ = std::make_unique<BlockRandomAccessDiagonalMatrix>(
- A.block_structure()->cols, options_.context, options_.num_threads);
- }
- BlockSparseJacobiPreconditioner::~BlockSparseJacobiPreconditioner() = default;
- bool BlockSparseJacobiPreconditioner::UpdateImpl(const BlockSparseMatrix& A,
- const double* D) {
- const CompressedRowBlockStructure* bs = A.block_structure();
- const double* values = A.values();
- m_->SetZero();
- ParallelFor(options_.context,
- 0,
- bs->rows.size(),
- options_.num_threads,
- [this, bs, values](int i) {
- const int row_block_size = bs->rows[i].block.size;
- const std::vector<Cell>& cells = bs->rows[i].cells;
- for (const auto& cell : cells) {
- const int block_id = cell.block_id;
- const int col_block_size = bs->cols[block_id].size;
- int r, c, row_stride, col_stride;
- CellInfo* cell_info = m_->GetCell(
- block_id, block_id, &r, &c, &row_stride, &col_stride);
- MatrixRef m(cell_info->values, row_stride, col_stride);
- ConstMatrixRef b(
- values + cell.position, row_block_size, col_block_size);
- auto lock =
- MakeConditionalLock(options_.num_threads, cell_info->m);
- // clang-format off
- MatrixTransposeMatrixMultiply<Eigen::Dynamic, Eigen::Dynamic,
- Eigen::Dynamic,Eigen::Dynamic, 1>(
- values + cell.position, row_block_size,col_block_size,
- values + cell.position, row_block_size,col_block_size,
- cell_info->values,r, c,row_stride,col_stride);
- // clang-format on
- }
- });
- if (D != nullptr) {
- // Add the diagonal.
- ParallelFor(options_.context,
- 0,
- bs->cols.size(),
- options_.num_threads,
- [this, bs, D](int i) {
- const int block_size = bs->cols[i].size;
- int r, c, row_stride, col_stride;
- CellInfo* cell_info =
- m_->GetCell(i, i, &r, &c, &row_stride, &col_stride);
- MatrixRef m(cell_info->values, row_stride, col_stride);
- m.block(r, c, block_size, block_size).diagonal() +=
- ConstVectorRef(D + bs->cols[i].position, block_size)
- .array()
- .square()
- .matrix();
- });
- }
- m_->Invert();
- return true;
- }
- BlockCRSJacobiPreconditioner::BlockCRSJacobiPreconditioner(
- Preconditioner::Options options, const CompressedRowSparseMatrix& A)
- : options_(std::move(options)), locks_(A.col_blocks().size()) {
- auto& col_blocks = A.col_blocks();
- // Compute the number of non-zeros in the preconditioner. This is needed so
- // that we can construct the CompressedRowSparseMatrix.
- const int m_nnz = SumSquaredSizes(col_blocks);
- m_ = std::make_unique<CompressedRowSparseMatrix>(
- A.num_cols(), A.num_cols(), m_nnz);
- const int num_col_blocks = col_blocks.size();
- // Populate the sparsity structure of the preconditioner matrix.
- int* m_cols = m_->mutable_cols();
- int* m_rows = m_->mutable_rows();
- m_rows[0] = 0;
- for (int i = 0, idx = 0; i < num_col_blocks; ++i) {
- // For each column block populate a diagonal block in the preconditioner.
- // Not that the because of the way the CompressedRowSparseMatrix format
- // works, the entire diagonal block is laid out contiguously in memory as a
- // row-major matrix. We will use this when updating the block.
- auto& block = col_blocks[i];
- for (int j = 0; j < block.size; ++j) {
- for (int k = 0; k < block.size; ++k, ++idx) {
- m_cols[idx] = block.position + k;
- }
- m_rows[block.position + j + 1] = idx;
- }
- }
- // In reality we only need num_col_blocks locks, however that would require
- // that in UpdateImpl we are able to look up the column block from the it
- // first column. To save ourselves this map we will instead spend a few extra
- // lock objects.
- std::vector<std::mutex> locks(A.num_cols());
- locks_.swap(locks);
- CHECK_EQ(m_rows[A.num_cols()], m_nnz);
- }
- BlockCRSJacobiPreconditioner::~BlockCRSJacobiPreconditioner() = default;
- bool BlockCRSJacobiPreconditioner::UpdateImpl(
- const CompressedRowSparseMatrix& A, const double* D) {
- const auto& col_blocks = A.col_blocks();
- const auto& row_blocks = A.row_blocks();
- const int num_col_blocks = col_blocks.size();
- const int num_row_blocks = row_blocks.size();
- const int* a_rows = A.rows();
- const int* a_cols = A.cols();
- const double* a_values = A.values();
- double* m_values = m_->mutable_values();
- const int* m_rows = m_->rows();
- m_->SetZero();
- ParallelFor(
- options_.context,
- 0,
- num_row_blocks,
- options_.num_threads,
- [this, row_blocks, a_rows, a_cols, a_values, m_values, m_rows](int i) {
- const int row = row_blocks[i].position;
- const int row_block_size = row_blocks[i].size;
- const int row_nnz = a_rows[row + 1] - a_rows[row];
- ConstMatrixRef row_block(
- a_values + a_rows[row], row_block_size, row_nnz);
- int c = 0;
- while (c < row_nnz) {
- const int idx = a_rows[row] + c;
- const int col = a_cols[idx];
- const int col_block_size = m_rows[col + 1] - m_rows[col];
- // We make use of the fact that the entire diagonal block is
- // stored contiguously in memory as a row-major matrix.
- MatrixRef m(m_values + m_rows[col], col_block_size, col_block_size);
- // We do not have a row_stride version of
- // MatrixTransposeMatrixMultiply, otherwise we could use it
- // here to further speed up the following expression.
- auto b = row_block.middleCols(c, col_block_size);
- auto lock = MakeConditionalLock(options_.num_threads, locks_[col]);
- m.noalias() += b.transpose() * b;
- c += col_block_size;
- }
- });
- ParallelFor(
- options_.context,
- 0,
- num_col_blocks,
- options_.num_threads,
- [col_blocks, m_rows, m_values, D](int i) {
- const int col = col_blocks[i].position;
- const int col_block_size = col_blocks[i].size;
- MatrixRef m(m_values + m_rows[col], col_block_size, col_block_size);
- if (D != nullptr) {
- m.diagonal() +=
- ConstVectorRef(D + col, col_block_size).array().square().matrix();
- }
- // TODO(sameeragarwal): Deal with Cholesky inversion failure here and
- // elsewhere.
- m = m.llt().solve(Matrix::Identity(col_block_size, col_block_size));
- });
- return true;
- }
- } // namespace ceres::internal
|