123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206 |
- // Ceres Solver - A fast non-linear least squares minimizer
- // Copyright 2019 Google Inc. All rights reserved.
- // http://ceres-solver.org/
- //
- // Redistribution and use in source and binary forms, with or without
- // modification, are permitted provided that the following conditions are met:
- //
- // * Redistributions of source code must retain the above copyright notice,
- // this list of conditions and the following disclaimer.
- // * Redistributions in binary form must reproduce the above copyright notice,
- // this list of conditions and the following disclaimer in the documentation
- // and/or other materials provided with the distribution.
- // * Neither the name of Google Inc. nor the names of its contributors may be
- // used to endorse or promote products derived from this software without
- // specific prior written permission.
- //
- // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
- // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
- // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
- // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
- // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
- // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
- // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
- // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
- // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
- // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
- // POSSIBILITY OF SUCH DAMAGE.
- //
- // Author: mierle@gmail.com (Keir Mierle)
- //
- // WARNING WARNING WARNING
- // WARNING WARNING WARNING Tiny solver is experimental and will change.
- // WARNING WARNING WARNING
- #ifndef CERES_PUBLIC_TINY_SOLVER_AUTODIFF_FUNCTION_H_
- #define CERES_PUBLIC_TINY_SOLVER_AUTODIFF_FUNCTION_H_
- #include <memory>
- #include <type_traits>
- #include "Eigen/Core"
- #include "ceres/jet.h"
- #include "ceres/types.h" // For kImpossibleValue.
- namespace ceres {
- // An adapter around autodiff-style CostFunctors to enable easier use of
- // TinySolver. See the example below showing how to use it:
- //
- // // Example for cost functor with static residual size.
- // // Same as an autodiff cost functor, but taking only 1 parameter.
- // struct MyFunctor {
- // template<typename T>
- // bool operator()(const T* const parameters, T* residuals) const {
- // const T& x = parameters[0];
- // const T& y = parameters[1];
- // const T& z = parameters[2];
- // residuals[0] = x + 2.*y + 4.*z;
- // residuals[1] = y * z;
- // return true;
- // }
- // };
- //
- // typedef TinySolverAutoDiffFunction<MyFunctor, 2, 3>
- // AutoDiffFunction;
- //
- // MyFunctor my_functor;
- // AutoDiffFunction f(my_functor);
- //
- // Vec3 x = ...;
- // TinySolver<AutoDiffFunction> solver;
- // solver.Solve(f, &x);
- //
- // // Example for cost functor with dynamic residual size.
- // // NumResiduals() supplies dynamic size of residuals.
- // // Same functionality as in tiny_solver.h but with autodiff.
- // struct MyFunctorWithDynamicResiduals {
- // int NumResiduals() const {
- // return 2;
- // }
- //
- // template<typename T>
- // bool operator()(const T* const parameters, T* residuals) const {
- // const T& x = parameters[0];
- // const T& y = parameters[1];
- // const T& z = parameters[2];
- // residuals[0] = x + static_cast<T>(2.)*y + static_cast<T>(4.)*z;
- // residuals[1] = y * z;
- // return true;
- // }
- // };
- //
- // typedef TinySolverAutoDiffFunction<MyFunctorWithDynamicResiduals,
- // Eigen::Dynamic,
- // 3>
- // AutoDiffFunctionWithDynamicResiduals;
- //
- // MyFunctorWithDynamicResiduals my_functor_dyn;
- // AutoDiffFunctionWithDynamicResiduals f(my_functor_dyn);
- //
- // Vec3 x = ...;
- // TinySolver<AutoDiffFunctionWithDynamicResiduals> solver;
- // solver.Solve(f, &x);
- //
- // WARNING: The cost function adapter is not thread safe.
- template <typename CostFunctor,
- int kNumResiduals,
- int kNumParameters,
- typename T = double>
- class TinySolverAutoDiffFunction {
- public:
- // This class needs to have an Eigen aligned operator new as it contains
- // as a member a Jet type, which itself has a fixed-size Eigen type as member.
- EIGEN_MAKE_ALIGNED_OPERATOR_NEW
- explicit TinySolverAutoDiffFunction(const CostFunctor& cost_functor)
- : cost_functor_(cost_functor) {
- Initialize<kNumResiduals>(cost_functor);
- }
- using Scalar = T;
- enum {
- NUM_PARAMETERS = kNumParameters,
- NUM_RESIDUALS = kNumResiduals,
- };
- // This is similar to AutoDifferentiate(), but since there is only one
- // parameter block it is easier to inline to avoid overhead.
- bool operator()(const T* parameters, T* residuals, T* jacobian) const {
- if (jacobian == nullptr) {
- // No jacobian requested, so just directly call the cost function with
- // doubles, skipping jets and derivatives.
- return cost_functor_(parameters, residuals);
- }
- // Initialize the input jets with passed parameters.
- for (int i = 0; i < kNumParameters; ++i) {
- jet_parameters_[i].a = parameters[i]; // Scalar part.
- jet_parameters_[i].v.setZero(); // Derivative part.
- jet_parameters_[i].v[i] = T(1.0);
- }
- // Initialize the output jets such that we can detect user errors.
- for (int i = 0; i < num_residuals_; ++i) {
- jet_residuals_[i].a = kImpossibleValue;
- jet_residuals_[i].v.setConstant(kImpossibleValue);
- }
- // Execute the cost function, but with jets to find the derivative.
- if (!cost_functor_(jet_parameters_, jet_residuals_.data())) {
- return false;
- }
- // Copy the jacobian out of the derivative part of the residual jets.
- Eigen::Map<Eigen::Matrix<T, kNumResiduals, kNumParameters>> jacobian_matrix(
- jacobian, num_residuals_, kNumParameters);
- for (int r = 0; r < num_residuals_; ++r) {
- residuals[r] = jet_residuals_[r].a;
- // Note that while this looks like a fast vectorized write, in practice it
- // unfortunately thrashes the cache since the writes to the column-major
- // jacobian are strided (e.g. rows are non-contiguous).
- jacobian_matrix.row(r) = jet_residuals_[r].v;
- }
- return true;
- }
- int NumResiduals() const {
- return num_residuals_; // Set by Initialize.
- }
- private:
- const CostFunctor& cost_functor_;
- // The number of residuals at runtime.
- // This will be overridden if NUM_RESIDUALS == Eigen::Dynamic.
- int num_residuals_ = kNumResiduals;
- // To evaluate the cost function with jets, temporary storage is needed. These
- // are the buffers that are used during evaluation; parameters for the input,
- // and jet_residuals_ are where the final cost and derivatives end up.
- //
- // Since this buffer is used for evaluation, the adapter is not thread safe.
- using JetType = Jet<T, kNumParameters>;
- mutable JetType jet_parameters_[kNumParameters];
- // Eigen::Matrix serves as static or dynamic container.
- mutable Eigen::Matrix<JetType, kNumResiduals, 1> jet_residuals_;
- // The number of residuals is dynamically sized and the number of
- // parameters is statically sized.
- template <int R>
- typename std::enable_if<(R == Eigen::Dynamic), void>::type Initialize(
- const CostFunctor& function) {
- jet_residuals_.resize(function.NumResiduals());
- num_residuals_ = function.NumResiduals();
- }
- // The number of parameters and residuals are statically sized.
- template <int R>
- typename std::enable_if<(R != Eigen::Dynamic), void>::type Initialize(
- const CostFunctor& /* function */) {
- num_residuals_ = kNumResiduals;
- }
- };
- } // namespace ceres
- #endif // CERES_PUBLIC_TINY_SOLVER_AUTODIFF_FUNCTION_H_
|