123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411 |
- // Ceres Solver - A fast non-linear least squares minimizer
- // Copyright 2022 Google Inc. All rights reserved.
- // http://ceres-solver.org/
- //
- // Redistribution and use in source and binary forms, with or without
- // modification, are permitted provided that the following conditions are met:
- //
- // * Redistributions of source code must retain the above copyright notice,
- // this list of conditions and the following disclaimer.
- // * Redistributions in binary form must reproduce the above copyright notice,
- // this list of conditions and the following disclaimer in the documentation
- // and/or other materials provided with the distribution.
- // * Neither the name of Google Inc. nor the names of its contributors may be
- // used to endorse or promote products derived from this software without
- // specific prior written permission.
- //
- // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
- // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
- // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
- // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
- // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
- // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
- // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
- // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
- // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
- // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
- // POSSIBILITY OF SUCH DAMAGE.
- //
- // Author: sameeragarwal@google.com (Sameer Agarwal)
- #ifndef CERES_PUBLIC_MANIFOLD_H_
- #define CERES_PUBLIC_MANIFOLD_H_
- #include <Eigen/Core>
- #include <algorithm>
- #include <array>
- #include <memory>
- #include <utility>
- #include <vector>
- #include "ceres/internal/disable_warnings.h"
- #include "ceres/internal/export.h"
- #include "ceres/types.h"
- #include "glog/logging.h"
- namespace ceres {
- // In sensor fusion problems, often we have to model quantities that live in
- // spaces known as Manifolds, for example the rotation/orientation of a sensor
- // that is represented by a quaternion.
- //
- // Manifolds are spaces which locally look like Euclidean spaces. More
- // precisely, at each point on the manifold there is a linear space that is
- // tangent to the manifold. It has dimension equal to the intrinsic dimension of
- // the manifold itself, which is less than or equal to the ambient space in
- // which the manifold is embedded.
- //
- // For example, the tangent space to a point on a sphere in three dimensions is
- // the two dimensional plane that is tangent to the sphere at that point. There
- // are two reasons tangent spaces are interesting:
- //
- // 1. They are Eucliean spaces so the usual vector space operations apply there,
- // which makes numerical operations easy.
- // 2. Movement in the tangent space translate into movements along the manifold.
- // Movements perpendicular to the tangent space do not translate into
- // movements on the manifold.
- //
- // Returning to our sphere example, moving in the 2 dimensional plane
- // tangent to the sphere and projecting back onto the sphere will move you away
- // from the point you started from but moving along the normal at the same point
- // and the projecting back onto the sphere brings you back to the point.
- //
- // The Manifold interface defines two operations (and their derivatives)
- // involving the tangent space, allowing filtering and optimization to be
- // performed on said manifold:
- //
- // 1. x_plus_delta = Plus(x, delta)
- // 2. delta = Minus(x_plus_delta, x)
- //
- // "Plus" computes the result of moving along delta in the tangent space at x,
- // and then projecting back onto the manifold that x belongs to. In Differential
- // Geometry this is known as a "Retraction". It is a generalization of vector
- // addition in Euclidean spaces.
- //
- // Given two points on the manifold, "Minus" computes the change delta to x in
- // the tangent space at x, that will take it to x_plus_delta.
- //
- // Let us now consider two examples.
- //
- // The Euclidean space R^n is the simplest example of a manifold. It has
- // dimension n (and so does its tangent space) and Plus and Minus are the
- // familiar vector sum and difference operations.
- //
- // Plus(x, delta) = x + delta = y,
- // Minus(y, x) = y - x = delta.
- //
- // A more interesting case is SO(3), the special orthogonal group in three
- // dimensions - the space of 3x3 rotation matrices. SO(3) is a three dimensional
- // manifold embedded in R^9 or R^(3x3). So points on SO(3) are represented using
- // 9 dimensional vectors or 3x3 matrices, and points in its tangent spaces are
- // represented by 3 dimensional vectors.
- //
- // Defining Plus and Minus are defined in terms of the matrix Exp and Log
- // operations as follows:
- //
- // Let Exp(p, q, r) = [cos(theta) + cp^2, -sr + cpq , sq + cpr ]
- // [sr + cpq , cos(theta) + cq^2, -sp + cqr ]
- // [-sq + cpr , sp + cqr , cos(theta) + cr^2]
- //
- // where: theta = sqrt(p^2 + q^2 + r^2)
- // s = sinc(theta)
- // c = (1 - cos(theta))/theta^2
- //
- // and Log(x) = 1/(2 sinc(theta))[x_32 - x_23, x_13 - x_31, x_21 - x_12]
- //
- // where: theta = acos((Trace(x) - 1)/2)
- //
- // Then,
- //
- // Plus(x, delta) = x Exp(delta)
- // Minus(y, x) = Log(x^T y)
- //
- // For Plus and Minus to be mathematically consistent, the following identities
- // must be satisfied at all points x on the manifold:
- //
- // 1. Plus(x, 0) = x.
- // 2. For all y, Plus(x, Minus(y, x)) = y.
- // 3. For all delta, Minus(Plus(x, delta), x) = delta.
- // 4. For all delta_1, delta_2
- // |Minus(Plus(x, delta_1), Plus(x, delta_2)) <= |delta_1 - delta_2|
- //
- // Briefly:
- // (1) Ensures that the tangent space is "centered" at x, and the zero vector is
- // the identity element.
- // (2) Ensures that any y can be reached from x.
- // (3) Ensures that Plus is an injective (one-to-one) map.
- // (4) Allows us to define a metric on the manifold.
- //
- // Additionally we require that Plus and Minus be sufficiently smooth. In
- // particular they need to be differentiable everywhere on the manifold.
- //
- // For more details, please see
- //
- // "Integrating Generic Sensor Fusion Algorithms with Sound State
- // Representations through Encapsulation of Manifolds"
- // By C. Hertzberg, R. Wagner, U. Frese and L. Schroder
- // https://arxiv.org/pdf/1107.1119.pdf
- class CERES_EXPORT Manifold {
- public:
- virtual ~Manifold();
- // Dimension of the ambient space in which the manifold is embedded.
- virtual int AmbientSize() const = 0;
- // Dimension of the manifold/tangent space.
- virtual int TangentSize() const = 0;
- // x_plus_delta = Plus(x, delta),
- //
- // A generalization of vector addition in Euclidean space, Plus computes the
- // result of moving along delta in the tangent space at x, and then projecting
- // back onto the manifold that x belongs to.
- //
- // x and x_plus_delta are AmbientSize() vectors.
- // delta is a TangentSize() vector.
- //
- // Return value indicates if the operation was successful or not.
- virtual bool Plus(const double* x,
- const double* delta,
- double* x_plus_delta) const = 0;
- // Compute the derivative of Plus(x, delta) w.r.t delta at delta = 0, i.e.
- //
- // (D_2 Plus)(x, 0)
- //
- // jacobian is a row-major AmbientSize() x TangentSize() matrix.
- //
- // Return value indicates whether the operation was successful or not.
- virtual bool PlusJacobian(const double* x, double* jacobian) const = 0;
- // tangent_matrix = ambient_matrix * (D_2 Plus)(x, 0)
- //
- // ambient_matrix is a row-major num_rows x AmbientSize() matrix.
- // tangent_matrix is a row-major num_rows x TangentSize() matrix.
- //
- // Return value indicates whether the operation was successful or not.
- //
- // This function is only used by the GradientProblemSolver, where the
- // dimension of the parameter block can be large and it may be more efficient
- // to compute this product directly rather than first evaluating the Jacobian
- // into a matrix and then doing a matrix vector product.
- //
- // Because this is not an often used function, we provide a default
- // implementation for convenience. If performance becomes an issue then the
- // user should consider implementing a specialization.
- virtual bool RightMultiplyByPlusJacobian(const double* x,
- const int num_rows,
- const double* ambient_matrix,
- double* tangent_matrix) const;
- // y_minus_x = Minus(y, x)
- //
- // Given two points on the manifold, Minus computes the change to x in the
- // tangent space at x, that will take it to y.
- //
- // x and y are AmbientSize() vectors.
- // y_minus_x is a TangentSize() vector.
- //
- // Return value indicates if the operation was successful or not.
- virtual bool Minus(const double* y,
- const double* x,
- double* y_minus_x) const = 0;
- // Compute the derivative of Minus(y, x) w.r.t y at y = x, i.e
- //
- // (D_1 Minus) (x, x)
- //
- // Jacobian is a row-major TangentSize() x AmbientSize() matrix.
- //
- // Return value indicates whether the operation was successful or not.
- virtual bool MinusJacobian(const double* x, double* jacobian) const = 0;
- };
- // The Euclidean manifold is another name for the ordinary vector space R^size,
- // where the plus and minus operations are the usual vector addition and
- // subtraction:
- // Plus(x, delta) = x + delta
- // Minus(y, x) = y - x.
- //
- // The class works with dynamic and static ambient space dimensions. If the
- // ambient space dimensions is know at compile time use
- //
- // EuclideanManifold<3> manifold;
- //
- // If the ambient space dimensions is not known at compile time the template
- // parameter needs to be set to ceres::DYNAMIC and the actual dimension needs
- // to be provided as a constructor argument:
- //
- // EuclideanManifold<ceres::DYNAMIC> manifold(ambient_dim);
- template <int Size>
- class EuclideanManifold final : public Manifold {
- public:
- static_assert(Size == ceres::DYNAMIC || Size >= 0,
- "The size of the manifold needs to be non-negative.");
- static_assert(ceres::DYNAMIC == Eigen::Dynamic,
- "ceres::DYNAMIC needs to be the same as Eigen::Dynamic.");
- EuclideanManifold() : size_{Size} {
- static_assert(
- Size != ceres::DYNAMIC,
- "The size is set to dynamic. Please call the constructor with a size.");
- }
- explicit EuclideanManifold(int size) : size_(size) {
- if (Size != ceres::DYNAMIC) {
- CHECK_EQ(Size, size)
- << "Specified size by template parameter differs from the supplied "
- "one.";
- } else {
- CHECK_GE(size_, 0)
- << "The size of the manifold needs to be non-negative.";
- }
- }
- int AmbientSize() const override { return size_; }
- int TangentSize() const override { return size_; }
- bool Plus(const double* x_ptr,
- const double* delta_ptr,
- double* x_plus_delta_ptr) const override {
- Eigen::Map<const AmbientVector> x(x_ptr, size_);
- Eigen::Map<const AmbientVector> delta(delta_ptr, size_);
- Eigen::Map<AmbientVector> x_plus_delta(x_plus_delta_ptr, size_);
- x_plus_delta = x + delta;
- return true;
- }
- bool PlusJacobian(const double* x_ptr, double* jacobian_ptr) const override {
- Eigen::Map<MatrixJacobian> jacobian(jacobian_ptr, size_, size_);
- jacobian.setIdentity();
- return true;
- }
- bool RightMultiplyByPlusJacobian(const double* x,
- const int num_rows,
- const double* ambient_matrix,
- double* tangent_matrix) const override {
- std::copy_n(ambient_matrix, num_rows * size_, tangent_matrix);
- return true;
- }
- bool Minus(const double* y_ptr,
- const double* x_ptr,
- double* y_minus_x_ptr) const override {
- Eigen::Map<const AmbientVector> x(x_ptr, size_);
- Eigen::Map<const AmbientVector> y(y_ptr, size_);
- Eigen::Map<AmbientVector> y_minus_x(y_minus_x_ptr, size_);
- y_minus_x = y - x;
- return true;
- }
- bool MinusJacobian(const double* x_ptr, double* jacobian_ptr) const override {
- Eigen::Map<MatrixJacobian> jacobian(jacobian_ptr, size_, size_);
- jacobian.setIdentity();
- return true;
- }
- private:
- static constexpr bool IsDynamic = (Size == ceres::DYNAMIC);
- using AmbientVector = Eigen::Matrix<double, Size, 1>;
- using MatrixJacobian = Eigen::Matrix<double, Size, Size, Eigen::RowMajor>;
- int size_{};
- };
- // Hold a subset of the parameters inside a parameter block constant.
- class CERES_EXPORT SubsetManifold final : public Manifold {
- public:
- SubsetManifold(int size, const std::vector<int>& constant_parameters);
- int AmbientSize() const override;
- int TangentSize() const override;
- bool Plus(const double* x,
- const double* delta,
- double* x_plus_delta) const override;
- bool PlusJacobian(const double* x, double* jacobian) const override;
- bool RightMultiplyByPlusJacobian(const double* x,
- const int num_rows,
- const double* ambient_matrix,
- double* tangent_matrix) const override;
- bool Minus(const double* y,
- const double* x,
- double* y_minus_x) const override;
- bool MinusJacobian(const double* x, double* jacobian) const override;
- private:
- const int tangent_size_ = 0;
- std::vector<bool> constancy_mask_;
- };
- // Implements the manifold for a Hamilton quaternion as defined in
- // https://en.wikipedia.org/wiki/Quaternion. Quaternions are represented as
- // unit norm 4-vectors, i.e.
- //
- // q = [q0; q1; q2; q3], |q| = 1
- //
- // is the ambient space representation.
- //
- // q0 scalar part.
- // q1 coefficient of i.
- // q2 coefficient of j.
- // q3 coefficient of k.
- //
- // where: i*i = j*j = k*k = -1 and i*j = k, j*k = i, k*i = j.
- //
- // The tangent space is R^3, which relates to the ambient space through the
- // Plus and Minus operations defined as:
- //
- // Plus(x, delta) = [cos(|delta|); sin(|delta|) * delta / |delta|] * x
- // Minus(y, x) = to_delta(y * x^{-1})
- //
- // where "*" is the quaternion product and because q is a unit quaternion
- // (|q|=1), q^-1 = [q0; -q1; -q2; -q3]
- //
- // and to_delta( [q0; u_{3x1}] ) = u / |u| * atan2(|u|, q0)
- class CERES_EXPORT QuaternionManifold final : public Manifold {
- public:
- int AmbientSize() const override { return 4; }
- int TangentSize() const override { return 3; }
- bool Plus(const double* x,
- const double* delta,
- double* x_plus_delta) const override;
- bool PlusJacobian(const double* x, double* jacobian) const override;
- bool Minus(const double* y,
- const double* x,
- double* y_minus_x) const override;
- bool MinusJacobian(const double* x, double* jacobian) const override;
- };
- // Implements the quaternion manifold for Eigen's representation of the
- // Hamilton quaternion. Geometrically it is exactly the same as the
- // QuaternionManifold defined above. However, Eigen uses a different internal
- // memory layout for the elements of the quaternion than what is commonly
- // used. It stores the quaternion in memory as [q1, q2, q3, q0] or
- // [x, y, z, w] where the real (scalar) part is last.
- //
- // Since Ceres operates on parameter blocks which are raw double pointers this
- // difference is important and requires a different manifold.
- class CERES_EXPORT EigenQuaternionManifold final : public Manifold {
- public:
- int AmbientSize() const override { return 4; }
- int TangentSize() const override { return 3; }
- bool Plus(const double* x,
- const double* delta,
- double* x_plus_delta) const override;
- bool PlusJacobian(const double* x, double* jacobian) const override;
- bool Minus(const double* y,
- const double* x,
- double* y_minus_x) const override;
- bool MinusJacobian(const double* x, double* jacobian) const override;
- };
- } // namespace ceres
- // clang-format off
- #include "ceres/internal/reenable_warnings.h"
- // clang-format on
- #endif // CERES_PUBLIC_MANIFOLD_H_
|