123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228 |
- // Ceres Solver - A fast non-linear least squares minimizer
- // Copyright 2019 Google Inc. All rights reserved.
- // http://ceres-solver.org/
- //
- // Redistribution and use in source and binary forms, with or without
- // modification, are permitted provided that the following conditions are met:
- //
- // * Redistributions of source code must retain the above copyright notice,
- // this list of conditions and the following disclaimer.
- // * Redistributions in binary form must reproduce the above copyright notice,
- // this list of conditions and the following disclaimer in the documentation
- // and/or other materials provided with the distribution.
- // * Neither the name of Google Inc. nor the names of its contributors may be
- // used to endorse or promote products derived from this software without
- // specific prior written permission.
- //
- // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
- // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
- // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
- // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
- // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
- // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
- // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
- // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
- // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
- // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
- // POSSIBILITY OF SUCH DAMAGE.
- //
- // Author: sameeragarwal@google.com (Sameer Agarwal)
- //
- // Create CostFunctions as needed by the least squares framework, with
- // Jacobians computed via automatic differentiation. For more
- // information on automatic differentiation, see the wikipedia article
- // at http://en.wikipedia.org/wiki/Automatic_differentiation
- //
- // To get an auto differentiated cost function, you must define a class with a
- // templated operator() (a functor) that computes the cost function in terms of
- // the template parameter T. The autodiff framework substitutes appropriate
- // "jet" objects for T in order to compute the derivative when necessary, but
- // this is hidden, and you should write the function as if T were a scalar type
- // (e.g. a double-precision floating point number).
- //
- // The function must write the computed value in the last argument
- // (the only non-const one) and return true to indicate
- // success. Please see cost_function.h for details on how the return
- // value maybe used to impose simple constraints on the parameter
- // block.
- //
- // For example, consider a scalar error e = k - x'y, where both x and y are
- // two-dimensional column vector parameters, the prime sign indicates
- // transposition, and k is a constant. The form of this error, which is the
- // difference between a constant and an expression, is a common pattern in least
- // squares problems. For example, the value x'y might be the model expectation
- // for a series of measurements, where there is an instance of the cost function
- // for each measurement k.
- //
- // The actual cost added to the total problem is e^2, or (k - x'y)^2; however,
- // the squaring is implicitly done by the optimization framework.
- //
- // To write an auto-differentiable cost function for the above model, first
- // define the object
- //
- // class MyScalarCostFunctor {
- // MyScalarCostFunctor(double k): k_(k) {}
- //
- // template <typename T>
- // bool operator()(const T* const x , const T* const y, T* e) const {
- // e[0] = T(k_) - x[0] * y[0] + x[1] * y[1];
- // return true;
- // }
- //
- // private:
- // double k_;
- // };
- //
- // Note that in the declaration of operator() the input parameters x and y come
- // first, and are passed as const pointers to arrays of T. If there were three
- // input parameters, then the third input parameter would come after y. The
- // output is always the last parameter, and is also a pointer to an array. In
- // the example above, e is a scalar, so only e[0] is set.
- //
- // Then given this class definition, the auto differentiated cost function for
- // it can be constructed as follows.
- //
- // CostFunction* cost_function
- // = new AutoDiffCostFunction<MyScalarCostFunctor, 1, 2, 2>(
- // new MyScalarCostFunctor(1.0)); ^ ^ ^
- // | | |
- // Dimension of residual -----+ | |
- // Dimension of x ---------------+ |
- // Dimension of y ------------------+
- //
- // In this example, there is usually an instance for each measurement of k.
- //
- // In the instantiation above, the template parameters following
- // "MyScalarCostFunctor", "1, 2, 2", describe the functor as computing a
- // 1-dimensional output from two arguments, both 2-dimensional.
- //
- // AutoDiffCostFunction also supports cost functions with a
- // runtime-determined number of residuals. For example:
- //
- // CostFunction* cost_function
- // = new AutoDiffCostFunction<MyScalarCostFunctor, DYNAMIC, 2, 2>(
- // new CostFunctorWithDynamicNumResiduals(1.0), ^ ^ ^
- // runtime_number_of_residuals); <----+ | | |
- // | | | |
- // | | | |
- // Actual number of residuals ------+ | | |
- // Indicate dynamic number of residuals --------+ | |
- // Dimension of x ------------------------------------+ |
- // Dimension of y ---------------------------------------+
- //
- // WARNING #1: Since the functor will get instantiated with different types for
- // T, you must convert from other numeric types to T before mixing
- // computations with other variables of type T. In the example above, this is
- // seen where instead of using k_ directly, k_ is wrapped with T(k_).
- //
- // WARNING #2: A common beginner's error when first using autodiff cost
- // functions is to get the sizing wrong. In particular, there is a tendency to
- // set the template parameters to (dimension of residual, number of parameters)
- // instead of passing a dimension parameter for *every parameter*. In the
- // example above, that would be <MyScalarCostFunctor, 1, 2>, which is missing
- // the last '2' argument. Please be careful when setting the size parameters.
- #ifndef CERES_PUBLIC_AUTODIFF_COST_FUNCTION_H_
- #define CERES_PUBLIC_AUTODIFF_COST_FUNCTION_H_
- #include <memory>
- #include "ceres/internal/autodiff.h"
- #include "ceres/sized_cost_function.h"
- #include "ceres/types.h"
- #include "glog/logging.h"
- namespace ceres {
- // A cost function which computes the derivative of the cost with respect to
- // the parameters (a.k.a. the jacobian) using an auto differentiation framework.
- // The first template argument is the functor object, described in the header
- // comment. The second argument is the dimension of the residual (or
- // ceres::DYNAMIC to indicate it will be set at runtime), and subsequent
- // arguments describe the size of the Nth parameter, one per parameter.
- //
- // The constructors take ownership of the cost functor.
- //
- // If the number of residuals (argument kNumResiduals below) is
- // ceres::DYNAMIC, then the two-argument constructor must be used. The
- // second constructor takes a number of residuals (in addition to the
- // templated number of residuals). This allows for varying the number
- // of residuals for a single autodiff cost function at runtime.
- template <typename CostFunctor,
- int kNumResiduals, // Number of residuals, or ceres::DYNAMIC.
- int... Ns> // Number of parameters in each parameter block.
- class AutoDiffCostFunction final
- : public SizedCostFunction<kNumResiduals, Ns...> {
- public:
- // Takes ownership of functor by default. Uses the template-provided
- // value for the number of residuals ("kNumResiduals").
- explicit AutoDiffCostFunction(CostFunctor* functor,
- Ownership ownership = TAKE_OWNERSHIP)
- : functor_(functor), ownership_(ownership) {
- static_assert(kNumResiduals != DYNAMIC,
- "Can't run the fixed-size constructor if the number of "
- "residuals is set to ceres::DYNAMIC.");
- }
- // Takes ownership of functor by default. Ignores the template-provided
- // kNumResiduals in favor of the "num_residuals" argument provided.
- //
- // This allows for having autodiff cost functions which return varying
- // numbers of residuals at runtime.
- AutoDiffCostFunction(CostFunctor* functor,
- int num_residuals,
- Ownership ownership = TAKE_OWNERSHIP)
- : functor_(functor), ownership_(ownership) {
- static_assert(kNumResiduals == DYNAMIC,
- "Can't run the dynamic-size constructor if the number of "
- "residuals is not ceres::DYNAMIC.");
- SizedCostFunction<kNumResiduals, Ns...>::set_num_residuals(num_residuals);
- }
- AutoDiffCostFunction(AutoDiffCostFunction&& other)
- : functor_(std::move(other.functor_)), ownership_(other.ownership_) {}
- virtual ~AutoDiffCostFunction() {
- // Manually release pointer if configured to not take ownership rather than
- // deleting only if ownership is taken.
- // This is to stay maximally compatible to old user code which may have
- // forgotten to implement a virtual destructor, from when the
- // AutoDiffCostFunction always took ownership.
- if (ownership_ == DO_NOT_TAKE_OWNERSHIP) {
- functor_.release();
- }
- }
- // Implementation details follow; clients of the autodiff cost function should
- // not have to examine below here.
- //
- // To handle variadic cost functions, some template magic is needed. It's
- // mostly hidden inside autodiff.h.
- bool Evaluate(double const* const* parameters,
- double* residuals,
- double** jacobians) const override {
- using ParameterDims =
- typename SizedCostFunction<kNumResiduals, Ns...>::ParameterDims;
- if (!jacobians) {
- return internal::VariadicEvaluate<ParameterDims>(
- *functor_, parameters, residuals);
- }
- return internal::AutoDifferentiate<kNumResiduals, ParameterDims>(
- *functor_,
- parameters,
- SizedCostFunction<kNumResiduals, Ns...>::num_residuals(),
- residuals,
- jacobians);
- };
- const CostFunctor& functor() const { return *functor_; }
- private:
- std::unique_ptr<CostFunctor> functor_;
- Ownership ownership_;
- };
- } // namespace ceres
- #endif // CERES_PUBLIC_AUTODIFF_COST_FUNCTION_H_
|